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Abstract—Ranking is a ubiquitous problem appearing in many
real-world applications. The superior players or objects are often-
times determined by a matchup or pairwise comparison. Various
models have been developed to integrate the matchup results into
a single ranking list of players and to further predict the results
of future matchups. Amongst them, the Bradley-Terry model is a
mainstream model that achieves the goals by constructing explicit
probabilistic interpretation. However, the model suffers from
its strong assumption of transitive relationships and becomes
vulnerable in practices where intransitive relationships exist.
Blade-Chest model is an alternative solution to this intransitivity
challenge by allowing the multi-dimensional representation of
players. In this paper, we propose a low-rank matrix approach
to characterize all players and generalize the related works by
introducing a unified framework. Our experimental results on
synthetic datasets and real-world datasets show that the proposed
model is stably competitive with the standard models in terms
of the consistency of probabilistic model interpretation and the
predictive performance in out-of-sample tests.

I. INTRODUCTION

The modeling of pairwise comparisons and the modeling of
ranking lists are used in a wide range of applications and share
a common basis of interactions between players and objects.
Representative pairwise comparisons are matchups, including
online video games [1], [2] and sports tournaments [3], where
the model of matchups are used to either pair an equal and fair
game or to predict the winner by systematically taking into
account of overall track records. In ranking problems where
rankings are aggregated from partially observed results, models
of comparisons and pairwise preferences are easily found
as a founding element [4], [5] and the application includes
recommender systems [6] and social choice systems [7]–[10].

The advantage of highlighting the pairwise comparisons for
ranking problem comes in two. First, pairwise comparison is
the basic element for the data-driven model and the learning
system to read and to learn from, in order to predict a win/lose
result of future competitions. Second, the interpretation of the
model can be streamlined in the lens of a simple matchup
matrix because the matchup matrix explicitly carves out the
predictive ranking list out of the model definition and model
parameters.

Two of the most widely used models of ranking from
pairwise comparisons are the Thurstone model [9] and the
Bradley-Terry (BT) model [11], [12]. Both of these two
models belong to an extended class of Random Utility Models
and share a common characteristic that a player in game is

parameterized by a scalar score that represents his overall
capability. In more recent related works [13], the BT model
becomes the basis of this probabilistic approach and shows a
well-balanced status between interpretability and predictability.

A critical limitation of the BT pairwise comparison model
is that the strength or the competitiveness of a player is
modeled by using only a single scalar. In fact, it is not
sufficient to represent one player with only a single scalar
because the general features of the matchups between players
will remain transitive. It is straightforward to show that if
player A beats B and B beats C more often than not, then the
model will predict that A always beats C. However, intransitive
relationship naturally exists in many real world applications
such as economics, sports games and social choice theory. An
exemplar case is a basketball tournament with three teams, i.e.
team A, team B and team C. The transitive model can not
satisfy the following potential outcomes at the same time: Pr(A
beats B) > 0.5, Pr(B beats C) > 0.5 and Pr(C beats A) > 0.5,
where Pr(A beats B) > 0.5 implies the probability of team
A beats team B is larger than 0.5, that is, A beats B more
often than not. Besides, certain essential factors, like injuries,
teamwork and psychological factors, are also not explicitly
included. As a result, the marginal impact of these factors is
unknown. Therefore, these model limitations motivate solutions
in such direction in the pursuit of edging improvement of the
fairness in pairing players and the accuracy in predictive setting.

To overcome such limitation, several models of intransitive
comparisons have been proposed, such as the 2-dimensional
vector representation BT model [14], the Blade-Chest (BC)
model [15], [16] that introduced two multi-dimensional vectors,
i.e. ‘blade’ and ‘chest’, to reflect different aspects of each
player’s strength, and a generalized intransitive model [17]
which carves the relationship between players out of the intrin-
sic characteristics of players. All of these works considered
multi-dimensional representation of each player and used the
stochastic gradient method to solve the optimization problem.

In this paper, we propose a low-rank matrix approach
to develop an intransitive model which is generalized from
the Blade-Chest model. The generalized model avoids the
estimation of the ‘blade’ and ‘chest’ vectors of each player
by introducing a low-rank relation matrix for each pairwise
comparison. We show that the developed framework is efficient
for intransitivity modeling, unifies a series of existing related
works and constructively maintains an elastic link to deep



neural network approaches. Experimental results show that
the proposed model consistently outperforms the benchmark
methods and excels the competitive deep learning approach by
its simplicity.

II. RELATED WORK

The traditional and well-known models, Thurstone [9] and
Bradley-Terry-Luce [11], [12], are the fundamentals of the
matchup and pairwise comparison. They use one-dimensional
embedding which assume that each item is completely rep-
resented by an inherent strength. These work were surveyed
extensively [13], [18]. In addition, following the using of a
single scalar to measure the strength of the players, the research
for ranking of the players in real-world has also been widely
studied. For instance, the matchmaking for online games [19],
[20], sports [21]–[23] and rating system [24]–[26].

However, it is oversimple to use a single value to present
the ability of each player in many real-world applications. It
is unable to explore the intransitivity in the games like the
rock-paper-scissor. [14] use a 2-dimensional vector to model
the property of each player, but only with the verification on
very small datasets. [27] uses a matrix factorization to predict
scores of professional basketball games by using different
feature for offense and defense, although it does not explicitly
study the intransitive property . [15]–[17] propose state-of-the-
art intransitive models that with multi-dimensional vector to
represent each play which are analogous to the model [27].
The idea of multi-dimensional representation are appeared in
[13], [28], but without intransitivity issues. Moreover, this idea
has also been widely explored in many applications such as
the recommendation system [27], [29], language modeling [30]
and so on.

There are further extension of the multi-dimensional mod-
eling to context-aware settings [15], which concerns learning
from user’s pairwise preferences to predict the choice and its
probability and with a significantly improvement. Learning with
context has also been studied in recommendation systems in
which using context information can improve the performance
[31]–[33], and context-aware decision-making where different
contexts can change the decision [34], [35].

III. PROBLEM SETTING AND PRELIMINARIES

We start with some notations and define the problem of
matchup and pairwise comparison modeling, and then review
some preliminary models.

A. Notations and problem setting

In this work we focus on modeling comparisons between
two players and we assume the result of each matchup cannot
be a draw. Given a set of players P with |P | = N and a
dataset D which contains n pairwise matchup records (i, j),
where i, j ∈ P . For any players i, j ∈ P , we denote i � j
when player i wins a match against player j. For an observed
matchup between each pair of players can be described in
4-tuple as (i, j, 1, 0) that means i � j, or (i, j, 0, 1) which
means j � i. In any subset of D, the game between the same

players can be aggregated, and also resulting in a 4-tuple as
(i, j, ni, nj). In this data entry, ni indicates the number of times
i wins j and nj means the opposition.

By learning the representation or the ability of the players
from a training set in which contains multiple matches, we want
to predict the result of any future matchups. In the following
subsections, we review several models for modeling matchup
or pairwise comparison based on the notion of the matchup
matrix that gives the winning probability of a match between
two players. Bradley-Terry (BT) model is the most basic model
that only allows transitive ordering of the items. The Blade-
Chest (BC) model allows intransitive ordering by generalizing
the BT model. The Blade-Chest-Sigma model is a generalized
intransitive model of the BC model. We will generalize the
models in the next subsections.

B. Bradley-Terry model

Bradley-Terry model [11], [12] is the most basic model for
pairwise comparison. A critical determinant of the Bradley-
Terry model is matchup matrix M ∈ RN×N , whose entry Mij

indicates the comparative advantages of item i over item j.
Mij > 0 literally reads, "item i has a comparative advantage
over item j." and vice versa.

In the model, each player i is given a strength parameter γi,
and the (i, j)-th element of the matchup matrix can be defined
as

Mij = γi − γj .

When two players i and j play a match, the winning probability
pij = Pr(i � j) that player i wins the match is given using
the matchup matrix, that is,

pij =
exp(γi)

exp(γi) + exp(γj)

=
1

1 + exp (−(γi − γj))
= σ(M(i, j)), (1)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid or logistic
function.

The three core properties are: M(i, j) > 0 means i has more
than 50% chance to win, and M(i, i) = 0 means it is an even
matchup; M(i, j)→ +∞ means Pr(i � j)→ 1; the matchup
matrix M satisfies negative symmetry, i.e.,

M = −M>. (2)

Note that the negative symmetry property M(i, j) = −M(j, i)
(2) is put in place to ensures pij + pji = 1.

In the Bradley-Terry model, each player has a one-
dimensional strength parameter and the probability of player
i winning a match against j only depends on the relative
advantage of player i over player j.



C. Blade-Chest model
A critical limitation of the Bradley-Terry model is that it

assumes transitive relations among players; that is, if player
γi > γj (i.e., i has an advantage over player) and γj > γk,
then γi > γk holds. In other words, all players are constantly
ordered. However, we can see such assumption does not hold
in many applications. A simplest counter example is Rock-
Paper-Scissors game where the rule is Paper � Rock, Rock �
Scissor and Scissor � Paper. Such relations have a property
called intransitivity, which is defined as the following:

Definition III.1. Matchup relations of n players contain
(stochastic) intransitivity if there exist three players i, j and k
such that
• Pr(i � j) > 0.5;
• Pr(j � k) > 0.5;
• Pr(k � i) > 0.5.

Chen and Joachims [16] proposed the Blade-Chest model
that allows intransitive relations among players by introducing
two extra D-dimensional vectors for each player i: xblade

i and
xchest
i . The matchup matrix of the Blade-Chest model1 is given

as
Mij = xblade

i

>
xchest
j − xblade

j

>
xchest
i + γi − γj . (3)

The Blade-Chest model is a multi-dimensional extension of
the Bradley-Terry model and the multi-dimensional representa-
tion allows intransitive relations among players. Generally, the
more dimensions the representation has, the more intransitivity
the model allows.

A neural network framework of the Blade-Chest model has
been proposed by Chen and Joachims [15]. The top layer of
it is the blade-chest-inner model (3). The bottom layer uses a
fully-connected feed-forward mapping linking the blade/chest
vectors and feature vectors. In their two models called CONCAT
and SPLIT, game feature vectors are contained along with the
player features.

D. Blade-Chest-Sigma model
Duan et al. [17] proposed a generic formulation of the

comparison model. They also assume a d-dimensional repre-
sentation xi ∈ Rd for player i, then the matchup matrix is
given by

Mij = x>i Σxj + x>i Γxi − x>j Γxj , (4)

where Σ,Γ ∈ Rd×d are the transitive matrices. x>i Σxj reflects
the interaction between players, and x>i Γxi − x>j Γxj reflects
the intrinsic strength of each individual. We denote this model
as "Blade-Chest-Sigma".

Specially, if taking the matrix Σ with

Σ =

(
0 I
−I 0

)
,

the generalized model (4) reduces to the Blade-Chest-Inner.

1More precisely, this model is called the Blade-Chest-Inner model, and
they also propose another variant called the Blade-Chest-Dist model; however,
there is no significant difference between them. And in practice, the Blade-
Chest-Inner always achieves better prediction than Blade-Chest-Dist. Then we
focus on the former in this paper.

IV. INTRANSITIVITY MODEL

In this section, we generalize the Blade-Chest intransitivity
model by a low-rank matrix, and propose our framework for
the generalized model. We first detail the model and analysis
some properties which can unify several existing models, and
then we briefly introduce the neural network framework.

A. Generalized intransitivity model

We first give a generalized representation of the matchup ma-
trix of the Blade-Chest model. Let us denote the representations
of player i by

xi =

(
xblade
i

xchest
i

)
,

and define the representation matrix as

X =

(
Xblade

Xchest

)
,

where

Xblade = (xblade
1 , . . . ,xblade

N ),

Xchest = (xchest
1 , . . . ,xchest

N ).

We also denote the strength parameters in the original Bradley-
Terry model by

γ = (γ1, γ2, . . . , γN ).

Using the above notations, we can see the Blade-Chest-Inner
model (3) can be represented as

M = X>
(

0 I
−I 0

)
X + γ>1− 1>γ (5)

= Xblade>Xchest −Xchest>Xblade + γ>1− 1>γ. (6)

Now we replace the matrix product Xblade>Xchest by a new
matrix Y as

Y = Xblade>Xchest,

which results in a general representation of the matchup matrix
as

M =
(
γ>1− 1>γ

)
+
(
Y −Y>

)
s.t. rank(Y) ≤ D. (7)

The rank D controls the intransitivity level that the model
allows. By increasing the rank of Y or ultimately, by removing
the rank constraint, we can represent an arbitrarily complex
matchup matrix by Y − Y>, which is also implied by the
existing research [16, Theorem 1].

B. Properties of the generalized intransitivity model

Firstly, it has been mentioned above that Y − Y> can
represent an arbitrarily complex matchup matrix by removing
the rank constraint.

Secondly, it is important to notice that the model can still
represent the intransitivity even when we reduce the rank of
Y to 1. If we take a rank-1 matrix as Y, that is,

Y = (xblade
1 , xblade

2 , . . . , xblade
N )>(xchest

1 , xchest
2 , . . . xchest

N ),



the matchup matrix without the strength terms γ>1 − 1>γ
becomes

Mij = xblade
i xchest

j − xchest
i xblade

j .

Assume that i � j and j � k (i.e., Mij > 0 and Mjk > 0),
then taking xchest

i > 0, xchest
j < 0, and xchest

k > 0 shows k � i
(i.e., Mik < 0), which gives the intransitive relations among
three players in the rock-paper-scissors game.

Lastly, noting that Y = 0 if rank(Y) = 0, the model with
the strength terms (7) is equivalent to the ordinary Bradley-
Terry model when rank(Y) = 0.

C. Model estimation

We now introduce our framework for the generalized
intransitivity model. Initially, for a pairwise (i, j), we have
two 0-1 vectors that encode the players’ identities. The bottom
is an embedding that link the player vector into an embedded
vector. Assume to link the embedding vector and the final
objective Yij and Yji by the linear mapping, which shows that

Yij = A

(
xi

xj

)
+ b,

Yji = A

(
xj

xi

)
+ b. (8)

For this linear transformation, the rank of matrix Y is
consistence to the dimension in the framework. Besides, it
is easy to show the negative symmetry of the matchup matrix
as that

Mij = Yij − Yji = A

(
xi

xj

)
−A

(
xj

xi

)
,

Mji = Yji − Yij = A

(
xj

xi

)
−A

(
xi

xj

)
,

and thus Mij = −Mji.

As a special case, if we define the mapping A =

(
B
C

)
and b = 0, the formulation (8) can be viewed as the linear
transformation to blade and chest vectors in [15].

Alternatively and generally, we can use a fully-connected
nonlinear neural network layer with the activation function f .
The first hidden layer is given as an example that

z11 = f1(xi,xj),

z12 = f1(xj ,xi).

The top layer is the winning probability of the generalized
model that

pij = σ(M(i, j)) = σ(Yij − Yji). (9)

The entire pipeline is depicted in Figure 1.
In essence, this proposed framework is simpler than the

framework of the Blade-Chest model in [15], because the
“blade” and “chest” vectors are not explicitly updated in
the learning process. Alternatively, the vectors are implicitly
embedded in the model via the embedding modules and an
explicit rank constraint.

V. EXPERIMENTS

In this section, we evaluate the proposed model by using
one synthetic dataset and several real-world datasets that range
from food preference, recommender system and online games.
We investigate the model by the accuracy of model in predictive
setting.

A. Experiment settings

We first introduce the general setup of the experiments.
The input of all experiments includes: a set of players P =
{1, 2, ..., N}; a dataset D of all the match results between
player i and j in P , for any i, j ∈ P , ni be the number of
times player i win j and nj be the opposition. The output of
the experiments is a estimated strength matrix Y.

Assuming i is the winner, the objective function is

argmaxΘ Σ(i,j)∈D log Pr(i � j|Θ).

For a test partition D′, the test accuracy is defined as

A(D′|Y) =
1

N ′

∑
(i,j)∈D

1(i � j),

where N ′ is the total number of games in the testing set, and
1(·) is the indicator function. The model performs better when
the accuracy value is higher.

For the baselines, we compared our proposed method with
four competitive methods as following

1). Bradley-Terry model with the stochastic gradient method
(BT model);

2). Blade-Chest-Inner with the stochastic gradient method
(Blade-Chest-Inner);

3). Blade-Chest-Sigma with the stochastic gradient method
(Blade-Chest-Sigma);

4). Blade-Chest-Inner with neural network framework (Neural
BC).

We follow the same setting for BT model, Blade-Chest-Inner
and Blade-Chest-Sigma with the SGD methods as those in [16],
[17]. The objective functions are to optimize the maximum
log-likelihood function with different regularization terms. It
includes three parameters: the parameter λ of the regularization
term, the learning rate r and the embedding dimension d. We
do grid search over powers of 10 from 1e−5 to 1e+2 for λ
and r. We take d = {2, 5, 10, 50, 100}. For the Neural BC and
our proposed method, we take the batch size from 16 to 1024
and the middle dimension from 8 to 512.

B. Experiments with synthetic datasets

In this experiment, the simple synthetic datasets are firstly
used for performance evaluations. Next, we also test the
proposed algorithm with several real-world data to demonstrate
the expressiveness.



Figure 1. An illustration of the proposed generalized intransitivity framework

1) Synthetic datasets: We randomly generate the datasets
which have the full intransitivity with different ranks and
sizes. Let R = {1, 3, 5, 7} be a set of truth ranks which
means the dimensions of the blade and chest vectors, and
S = {500, 1000, 2000} be a set of training data size. Given
N = 100 players, for every rank element r ∈ R, we first
randomly generate blade and chest parameters X∗blade ∈ Rr×100

and X∗chest ∈ Rr×100. Then the relation matrices Y∗ and M∗

are calculated by

Y∗ = X∗blade
>X∗chest, M∗ = Y∗ −Y∗>.

Then for all sizes s ∈ S, we randomly generate a training
data T with size s, a validation data V with size 2000 and a
evaluation data E with size 2000 using the true relation matrix
M.

For each rank, there are three different training sets, and we
generate 10 trials for each rank.

2) Experiment results: We train our model with all the
baselines for these four rank groups and the accuracy results
are averaged over the 10 trials which are shown in Figure 2.

Figure 2 shows the curves of the accuracy values with respect
to the sizes of training datasets. For all the competitive methods,
the accuracy value turns to be higher around 0.9 along with
the bigger dataset, which also shows the better performance.
The original intransitivity models Blade-Chest-Inner and Blade-
Chest-Sigma perform nearly the same and better than the
basic BT model, while our proposed new model outperforms
them and is consistence to the neural Blade-Chest model. This
indicates that our generalized intransitivity model is simple but
has the same expressiveness as the multi-dimensional Blade-
Chest model.

C. Experiments with real datasets

We now move on to the real-world applications to investigate
the feasibility and effectiveness of our proposed method.

1) Real-world datasets: The datasets are generally used in
pairwise comparison problems which includes food preference
datasets: SushiA and SushiB [8], online recommender system
for pairwise preference datasets: MovieLens100K [7], decision
making datasets: Elections in terms of several sizes [10], and
online games: SF4, Dota [16] and Pokemon.

The SushiA and Election A48 are not intransitivity, Movie-
Lens100K and other Elections have lower ratios of intransitivity,
while SushiB and online games are with a higher ratios. We
list all the related intransitive relationships in Table I. Intrans.
means the existence of the intransitivity, No.IntPlayer indicates
the number of players those involved in rock-paper-scissors
relationship, and the Int.Ration is the percentage of intransitive
loops in the whole games.

We use 50% matches for training, 20% matches for valida-
tion and 30% matches for testing in each dataset by randomly
separating. We do this random splitting for 3 times and report
the mean and standard deviation.

2) Experiment results: In this subsection, the performances
of all the comparison methods for real-world datasets are
explored. Table II shows the averaged test accuracies.

Firstly, focusing on the comparison with baselines BT model,
Blade-Chest-Inner and Blade-Chest-Sigma with SGD methods,
the neural BC and our proposed model have relatively larger
improvement on the test accuracy. It could tell that the neural
network framework make a bigger contribution. Then we
compare the new generalized model with the neural BC. Our
new method outperforms the baseline on monst of the datasets,
however it just leads to typically small improvements.

VI. CONCLUSIONS

In this paper, we presented a generalized intransitive frame-
work for modeling pairwise comparison. We proposed a
low-rank matrix formulation of pairwise matchups instead
of conventional multi-dimensional vectors that were used to
characterize each player. The proposed framework is efficient
to address the intransitive relationships that are abnormal for
Bradley-Terry model but widely exists in datasets. We also
showed an unified perspective of our model and its linkage
to the Bradley-Terry model, the Blade-Chest model and the
Neural Blade-Chest model. The effectiveness of the proposed
model is evidenced in the experiments on a synthetic dataset
and various real-world datasets. The model outperforms most of
the baseline methods and enhanced the accuracy in predictive
setting. It is distinctly simpler than the neural Blade-Chest
framework.
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Figure 2. Test accuracy with the synthetic datasets

Table I
SUMMARY OF THE DATASETS

Dataset Players Records Intrans. No.IntPlayer Int.Ratio

SushiA 10 100000 no 0 0
SushiB 100 25000 yes 92 26.87%

MovieLens100K 1682 139982 yes 1130 0.19%

Election A5 16 44298 yes 6 0.44%

Election A9 12 95888 yes 5 1.82%

Election A17 13 21037 yes 8 8.18%

Election A48 10 25848 no 0 0
Election A81 11 44298 yes 5 2.50%

SF4-5000 35 5000 yes 34 23.86%

Dota 757 10442 yes 550 97.58%

Pokemon 800 50000 yes 784 78.58%

Table II
TEST ACCURACY

Dataset Bradley-Terry Blade-Chest-Inner Blade-Chest-Sigma Neural BC New model

SushiA 0.6525 ± 0.0011 0.6546 ± 0.0006 0.6560 ± 0.0004 0.6630 ± 0.0004 0.6632 ± 0.0003
SushiB 0.6257 ± 0.0025 0.6235 ± 0.0150 0.6414 ± 0.0019 0.6561 ± 0.0017 0.6563 ± 0.0011

MovieLens100K 0.6785 ± 0.0005 0.6792 ± 0.0004 0.6789 ± 0.0003 0.6950 ± 0.0019 0.6973 ± 0.0002
Election A5 0.6478 ± 0.0017 0.6489 ± 0.0011 0.6494 ± 0.0018 0.6550 ± 0.0030 0.6560 ± 0.0018
Election A9 0.6028 ± 0.0003 0.6096 ± 0.0007 0.6047 ± 0.0008 0.6174 ± 0.0003 0.6175 ± 0.0003
Election A17 0.5189 ± 0.0001 0.5305 ± 0.0010 0.5296 ± 0.0013 0.5582 ± 0.0003 0.5598 ± 0.0002
Election A48 0.5993 ± 0.0001 0.6001 ± 0.0001 0.5996 ± 0.0001 0.6060 ± 0.0001 0.6056 ± 0.0001
Election A81 0.6013 ± 0.0001 0.6018 ± 0.0001 0.6011 ± 0.0002 0.6194 ± 0.0001 0.6194 ± 0.0001

SF4-5000 0.5079 ± 0.0078 0.5181 ± 0.0171 0.5358 ± 0.0049 0.5514 ± 0.0008 0.5496 ± 0.0021
DotA 0.6334 ± 0.0077 0.6432 ± 0.0034 0.6420 ± 0.0051 0.6468 ± 0.0031 0.6485 ± 0.0025

Pokemon 0.8157 ± 0.0094 0.8495 ± 0.0016 0.8187 ± 0.0168 0.8943 ± 0.0040 0.8949 ± 0.0021
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