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Abstract. Organizing objects such as human ideas, opinions, and designs
based on their similarity relationships is an important first step in data
exploration and decision making. Those similarity comparisons are often
cast as triplet comparisons asking which of two given objects is more
similar to another given object, because humans are better at this type
of relative judgments than pairwise similarity comparisons which ask for
absolute judgments, especially in sensory domains. Crowdsourcing is an
effective way to collect such human judgments easily and on a large scale;
however, there is a large variation in abilities among workers and the
difficulties of evaluating the target objects. How to aggregate the labels
of crowdsourced triplet similarity comparisons for estimating similarity
relations of all objects when there are only a smaller number of labels
remains a challenge. In this work, we construct two novel real datasets
for investigating this research topic. For label aggregation approach,
we propose a family of models to learn the object embeddings from
crowdsourced triplet similarity comparisons by incorporating worker
abilities and object difficulties. Because of the diverse properties of real
datasets, we automatically search for the optimal model from all variants
of the proposed model. The experimental results verified the effectiveness
of our approach. We also investigated how the data properties and model
options influence the performance.
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1 Introduction

Organizing various objects such as human ideas, opinions, and designs based
on their similarity relationships is an important first step in data exploration
and decision making. Crowdsourcing is widely used as an inexpensive and rapid
way to collect data for pairwise similarity comparisons of objects (e.g., [4]),
especially when feature representations or similarities of the objects are not
readily available. Pairwise similarities among objects are usually evaluated in
terms of binary judgments indicating whether or not two objects are similar to
each other. These pairwise similarity comparisons are aggregated to organize the
objects into groups to elucidate the landscape of these objects for decision-making.
However, there are at least two problems when using these crowdsourced pairwise
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similarity labels. First, it is often difficult for humans to make absolute judgments,
especially when the judgments are subjective. Second, there are large differences
in the abilities and label numbers among workers and difficulties among objects.

For the first problem, the threshold for distinguishing similarity and dissim-
ilarity is difficult to determine. For some object pairs, people can easily judge
whether they are similar, while for some object pairs, it can be difficult to provide
absolute judgments. For such cases, judgments based on relative comparisons
are more human-friendly. For example, a triplet similarity comparison can be
described as “object a is more similar to object b than to object c” [11,3,13],
and a quadruplet similarity comparison can be described as “objects a and b
are more similar than objects c and d.” [1,12]. Such relative comparisons can
assist a model to better estimate the similarities among objects. In this paper,
we focus on triplet similarity comparisons. One of the obstacles in conducting
relative comparisons is that the total number of combinations of objects is huge.
Given n objects, the number of triplets is O(n3). Therefore, a worker cannot
label all triplets and can only evaluate a small subset. We need a method that
can aggregate a small number of labels and estimate the similarity relations of
all objects. To investigate this research topic and the label aggregation methods,
we need datasets that contain crowdsourced triplet similarity comparison labels.
Because there were no existing datasets available to the best of our knowledge,
we created two novel real datasets using a crowdsourcing platform.

For the label aggregation methods, in the early years, one type of solutions
is to learn the similarity matrix of objects, i.e., multi-dimensional scaling [11].
After that, another type of solutions is proposed which first learns the objects
embeddings from labeled triplets, i.e., stochastic triplet embeddings [3,13], based
on Gaussian kernel (STE) or Student-t kernel (tSTE), and then estimate the
object similarities based on the embeddings. However, these existing approaches
were not proposed for addressing the second problem. On the topic of label
aggregation for categorical labels [14] and pairwise preference comparison labels
[2] in the crowdsourcing context, researchers always incorporate worker abilities
and/or object difficulties as the crucial factors in constructing the probabilistic
models. In this paper, we propose a family of stochastic triplet embedding
models incorporating worker abilities and object difficulties to learn the object
embeddings from triplet similarity comparison labels, namely, Crowdsourced (t-
distributed) Stochastic Triplet Embeddings (Crowd-(t)STE). The performances
of the variants of the proposed model depend on the diverse properties of the
real datasets; thus we also automatically search the optimal model with the best
validation performance from all variants of our model.

We conducted experiments on the created datasets with diverse settings to
verify our approaches. We also investigated how the data properties and model
options influence the performance. The contributions of this paper are as follows:

1. We created two novel real datasets with large-scale crowd labels available
that can be used for the research on label aggregation from crowdsourced
stochastic triplet comparisons for estimating similarity relations of all objects.
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2. We propose an approach to solve the problems of stochastic triplet embedding
in the crowdsourcing context.

3. We propose a family of models by incorporating the worker ability and object
difficulty by constructing diverse similarity kernels and loss objectives. There
are 10 variants in total and we automatically search the optimal model.

2 Our Approach

2.1 Notations

We denote the set of objects by O = {oi}ni=1. We assume that no feature
representations of the objects are available. Our goal is to estimate the similarity
relations among all objects. For this purpose, we learn the representations X =
{xi}ni=1 of the objects in a d-dimensional latent feature space, i.e., xi ∈ Rd, by
utilizing the triplet similarity comparisons of objects. We use crowdsourcing
to collect the triplet similarity comparison labels. We denote the set of crowd
workers by A = {al}ml=1.

For three given objects oi, oj , and ok in O, the triplet similarity comparison
we consider is a type of questions that ask crowd workers to annotate the relations
of pairwise similarities among them. More specifically, we ask a question that is
“which object of oj or ok is more similar to the anchor object oi?”; the candidate
answers are either of “oj” or “ok”. If a worker al annotates that oi and oj are
more similar, then the triplet similarity label is ylijk = 1; otherwise ylijk = 0. The
set of triplet similarity labels is defined as Y = {ylijk}i,j,k,l for the set of triplets
T = {(oi, oj , ok)}i,j,k. The set of labels given by worker al is denoted byY l; the
label set of a triplet is defined as Yijk.

2.2 Problem Definition

Since the total number of object triplets is cubic in the number of objects, it costs
too much budget and time to collect the labels for all of the triplets. In addition,
due to the diverse ability and diligence of crowd workers, the collected labels are
more likely to be noisy. We thus must collect multiple labels for a triplet and
aggregate them to obtain more reliable labels, which further increases the total
number of collected labels. These facts motivate us to estimate more accurate
similarities of all objects based on a smaller number of similarity comparison
labels. We provide large number of labels in the proposed datasets to construct
ground truth for evaluation, while the problem setting is using only a small subset
of our dataset in the training stage, i.e., only using a subset of triplets Tt ⊂ T
and only using a subset of labels Yt,ijk ⊂ Yijk for each triplet. The problem
setting can be summarized as follows.
INPUTS: A set of objects O, a set of crowd workers A, and a subset of triplet
similarity comparison labels Yt ⊂ Y , with the subset Yt,ijk ⊂ Yijk for each triplet,
for the subset of triplets Tt ⊂ T .
OUTPUTS: The object representations X = {xi}ni=1. In addition, by some
variants of the proposed model, we can also obtain the estimated object difficulty
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H = {hi}ni=1, hi ∈ Rd and the estimated worker ability W = {Wl}ml=1, where
the size of Wl depends on the variants of the model.

2.3 Label Aggregation for Triplet Similarity Comparisons

Given a triplet of objects (oi, oj , ok), we define the probability that “object oi is
more similar to object oj than to object ok”. In the existing general models of
Stochastic Triplet Embedding (STE) [3,13], the probability is given as

pijk =
K(xi,xj)

K(xi,xj) +K(xi,xk)
, (1)

where

K(xi,xj) = exp
(
−(xi − xj)

>(xi − xj)
)

(2)

is a kernel function for measuring the similarity of two objects. The object
embeddings can be learned by minimizing the cross-entropy loss function:

L = −
∑

(oi,oj ,ok)∈T

(sijk log pijk + (1− sijk) log(1− pijk))) + λ0||X||22, (3)

sijk =
∑

ylijk∈Yijk

1(ylijk = 1)/|Yijk|, (4)

where sijk is the normalized sum computed from ylijk and indicates the proportion
of answers saying oi and oj being more similar. 1 is an indicator function. λ0 is
a regularization hyperparameter. Then the estimated labels of triplet similarity
comparisons of all objects can be computed by using the object embeddings. ven
Der Maaten et al. ([3]) proposed a t-distributed Stochastic Triplet Embedding
(tSTE), which uses a heavy-tailed Student-t kernel with α degrees of freedom
instead of the Gaussian kernel (2), expressed as

K(xi,xj) =

(
1 +

(xi − xj)
>(xi − xj)

α

)−α+1
2

. (5)

2.4 Label Aggregation for Crowdsourced Triplet Similarity
Comparisons

In the crowdsourcing context, there are large differences in the abilities among
workers and difficulties among objects. Existing (t)STE methods do not consider
them. We thus propose Crowd-(t)STE to solve this problem.

Worker Ability Modeling. The previously mentioned (t)STE model assumes
that all crowd workers perform equally well. It does not distinguish the labels
from different workers and utilizes the normalized sum (majority voting) of the
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labels in Eq. (4). However, in the crowdsourcing context, the ability and diligence
of workers are diverse. We thus propose a model that incorporates the worker
abilities. We define an ability matrix Wl ∈ Rd′×d′

for a worker al, and propose
the probabilistic model and the two kernels as

plijk =
K(xi,xj ,W

l)

K(xi,xj ,Wl) +K(xi,xk,Wl)
, (6)

K(xi,xj ,W
l) = exp

(
−(xi − xj)

>Wl(xi − xj)
)
, (7)

K(xi,xj ,W
l) =

(
1 +

(xi − xj)
>Wl(xi − xj)

α

)−α+1
2

. (8)

When d′ = 1, Wl is a scalar variable, which means worker al performs equally
on the entire dataset. When d′ = d, we expect it potentially learn the rich
representation of worker ability by interacting with each dimension in the object
embeddings xi when computing the probability of the similarity relations among
objects.

Object Difficulty Modeling. Besides the worker ability, object difficulty is
also an important factor that can influence the correctness of the judgments
by workers, i.e., workers are more likely to assign incorrect answers to difficult
object triplets. We thus also propose models that consider the object difficulty. In
the existing work, methods for categorical labels, such as GLAD [14], leverage a
scalar variable to represent the object difficulty; methods for pairwise labels, such
as CrowdBT [2], do not model the object difficulty which is required to consider
the interactions of the difficulties of two objects for the pairwise preference
comparisons.

In this study that focuses on object triplet similarity comparisons, we define
the difficulty based on an object, i.e., we utilize a d-dimensional vector hi to
represent the difficulty of an object oi. To model the difficulty of a triplet, we
need to interact the difficulties of the three objects in it. We thus use the dot
product on the difficulties of two objects to compute a scalar for each object
pair, to represent the difficulties of judging the similarity of the object pair. We
propose the probabilistic model and candidate kernel functions as

plijk =
K(xi,xj ,hi,hj)

K(xi,xj ,hi,hj) +K(xi,xk,hi,hk)
, (9)

K(xi,xj ,hi,hj) = exp
(
−(xi − xj)

>(h>i hj)(xi − xj)
)
, (10)

K(xi,xj ,hi,hj) =

(
1 +

(xi − xj)
>(h>i hj)(xi − xj)

α

)−α+1
2

. (11)

Label Aggregation by Learning Object Embeddings. In summary, we
propose a family of crowdsourced stochastic triplet embedding models by incor-
porating worker ability and object difficulty. The generalized model is described
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as

plijk =
K(xi,xj ,hi,hj ,W

l)

K(xi,xj ,hi,hj ,Wl) +K(xi,xk,hi,hk,Wl)
. (12)

K(xi,xj ,hi,hj,W
l) = exp

(
−(xi − xj)

>(h>i hj)W
l(xi − xj)

)
, (13)

K(xi,xj ,hi,hj,W
l) =

(
1 +

(xi − xj)
>(h>i hj)W

l(xi − xj)

α

)−α+1
2

. (14)

When H = 1, it is equivalent to the model with Eqs. (6), (7), and (8); when
W = 1, it is equivalent to the model with Eqs. (9), (10), and (11). Note that
although seemingly similar forms are utilized for two different factors of worker
ability and object difficulty, they can be distinguished in the optimization because,
when computing the loss, worker ability is aggregated by the labels of a worker
and object difficulty is aggregated by the labels of an object.

The loss function in Eq. (3) of (t)STE utilizes an aggregated label sijk. In
contrast, because we individually consider the influences of the triplet labels from
different workers, we modify the loss to differ these labels. The cross-entropy loss
function of Crowd-(t)STE can be formulated as follows:

L =−
∑

ylijk∈Y

(
ylijk log p

l
ijk + (1− ylijk) log(1− plijk))

)
+ λ0||X||22 + λ1||W||22 + λ2||H||22. (15)

With the combinations of two types of worker ability, one type of object
difficulty, and two types of kernel functions (Gaussian and Student-t), there are
10 variants of the proposed model in total. The combinations only without worker
ability (or object difficulty) are included.

Because of the diverse properties of real datasets, certain variants are more
appropriate for certain cases. We thus automatically search the variants when
utilizing our approach. Recently, automatic machine learning, such as network
architecture search [17,7], has been extensively studied. In contrast to these works,
we focus on searching the candidate kernels. Because the search space is small,
we utilize a brute force search to select the variant with optimal performance on
the validation subset.

3 Experiments

3.1 Dataset Collection

In order to investigate the performance of the label aggregation approaches in the
context of crowdsourced triplet similarity comparisons, we require real datasets
that contain crowdsourced triplet similarity labels. However, to the best of our
knowledge, no public datasets were available, thus we created two novel datasets
by collecting triplet similarity comparison labels using a real-world crowdsourcing



Label Aggregation for Crowdsourced Triplet Similarity Comparisons 7

Table 1. Statistics of the datasets. |O|: number of objects, |T |: number of triplets,
|Yijk|: number of workers for each triplet, |A|: total number of workers, |Y|: total
number of labels; |Y l|min: minimum label numbers of workers, |Y l|max: maximum label
numbers of workers, and |Y l|avg: average label numbers of workers.

Data |O| |T | |Yijk| |A| |Y| |Y l|min |Y l|max |Y l|avg

Food 50 20,000 20 433 400,000 50 19,950 923.79
Scene 50 20,000 20 528 400,000 50 19,950 757.58

platform1. We first extracted sets of objects from existing image collections and
then generated the triplets to publish them on the crowdsourcing platform. The
questions we asked the crowd workers were “which image oj and ok is more similar
to image oi?”.

The food dataset consists of images of five categories (bread, dessert, meat,
soup, and vegetable/fruit) from the Food-11 image collection [10] (No Licence
Required). For each category, we randomly selected ten images. The scene dataset
consists of images of five categories (coast, forest, highway, open country, and
street) from a collection of urban and natural scenes [9] (Licence CC BY 4.0).
We also randomly selected ten images for each category. In each dataset, there
are 50 images (objects) in total. We randomly sampled 20,000 triplets in each
dataset and published them on the crowdsourcing platform to obtain comparison
labels. Each crowd task includes 50 triplets. For each triplet, we collected labels
from 20 workers. Each worker did not need to judge all of the triplets and only
provided labels for a subset.

Table 1 shows the statistics of the datasets. Although the number of objects
is not large, there are 400,000 crowd labels in total in each dataset, which is
large-scale. The number of workers |A| are 433 for the Food dataset and 528
for the Scene dataset. The label numbers |Y l| by a worker are diverse, i.e., the
minimum and maximum are 50 and 19,950. In addition, although the total
numbers of objects and triplets are the same for these two datasets, the total
numbers of workers are different because the the label numbers of the workers
are different. On average, one worker tended to label less triplets in the scene
dataset than in the food dataset. Because the workers can decide the number of
tasks they complete, this shows that workers stopped their annotations for the
scene dataset earlier than for the food dataset. One possible reason for this is
that the scene dataset is more difficult than the food dataset.

3.2 Experimental Settings

We compared our approach to two typical baselines that extend the existing
methods that do not consider the factors of worker ability and object difficulty.
We adapted and extended the vanilla STE and tSTE [3] for the crowdsourcing
context as the baselines. Specifically, we extended the STE method using Eqs.
1 Lancers: www.lancers.jp

www.lancers.jp
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(1), (2), and (15), and we extended tSTE method using Eqs. (1), (5), and (15),
without using the regularization terms of worker ability and object difficulty in
Eq. (15).

We define the names of the variants of our approach by using several suffixes
to Crowd-(t)STE; ‘-s’ denotes the scalar worker ability, ‘-m’ for the matrix worker
ability, ‘-d’ for the object difficulty. The detailed hyperparameter settings of our
approach are as follows. We carried out the experiments for each type of kernel
function (Gaussian and Student-t) respectively. The degree of freedom α in all
approaches using Student-t kernels is set to d− 1. The regularization terms of
all approaches are set to λ0, λ1, λ2 ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, λ0=λ1=λ2.
Although it is possible to tune different values for each λ (λ0 6= λ1 6= λ2) to
improve the performance, we mainly investigate the influence of data properties
and model options and utilize equal λ. We tuned the hyperparameters λ and
search the model variants based on their performance on the validation set. We
implemented the approaches by Python and Theano.

3.3 Evaluation Methods

We verify the approaches on their capability to estimate the triplet comparison
labels of all object triplets using only a small number of labeled object triplets. In
one experimental trial, we first created a subset Yu

T by only using u ∈ {3, 5, 10}
labels in all labels of each triplet in Y. Yu

T still contains all object triplets in T .
We then randomly selected a subset Tt of all object triplets in T with sampling
rate r ∈ {0.05, 0.1, 0.2}. This triplet subset is defined as Yu

t and was used as the
training set. A subset Yu′

t with the same size and settings was also created and
used as the validation set. d is not tuned so that the proposed approaches and
baselines are compared using same d, d = 10. The additional experiments with
different d is in the appendix. We evaluated the average performance of ten trials
for each (u, r, d) group. u and r are data properties and d is a hyperparameter.

We have two evaluation metrics to verify the proposed approach on the gold
standards from different aspects. The objects in the real datasets we create have
the category labels in the raw collections that they are from. We can use this
category information to verify the performance of object embeddings by using
the estimated object similarities. We utilized two object oi and oj from the same
category and an object ok from another category to create a triplet (oi,oj ,ok);
then, we utilized all the triplet combinations from the objects in O that satisfy the
above condition as the triplets in the ground truth. We computed the estimated
similarity comparisons of these triplets using the estimated object embeddings
and evaluated the accuracy of the estimated triplet comparisons. For an object
triplet (oi, oj , ok) in the ground truth, if the estimated similarity of (oi, oj) is
higher than that of (oi, ok), we judge the estimated similarity comparison of this
object triplet to be correct. We call this accuracy category-based accuracy.

The raw category information is not usually available in the scenario of
our research topic, e.g., a set of logo designs have no clear categories. To eval-
uate the approach in a universal manner, we also use an evaluation metric
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Table 2. Results for different sampling rates r. The number of dimensions d = 10. The
number of labels (workers) per triplet u = 5. The numbers in the bold font indicate the
best performance in each dataset in a group of approaches (STE or tSTE). We show
the name of the optimal variant selected by the automatic search.

(a). Category-based accuracy.

Data r = 0.05 r = 0.10 r = 0.20
STE Crowd-STE STE Crowd-STE STE Crowd-STE

Food 0.8700 0.8927 -s-d 0.9023 0.9155 -s-d 0.9179 0.9127 -s-d
Scene 0.8531 0.9083 -s-d 0.8978 0.9174 -s 0.9219 0.9312 -s

tSTE Crowd-tSTE tSTE Crowd-tSTE tSTE Crowd-tSTE

Food 0.8397 0.8833 -s-d 0.8943 0.9116 -s-d 0.9187 0.9175 -s-d
Scene 0.8166 0.8904 -s 0.8828 0.9203 -s-d 0.9184 0.9268 -s-d

(b). Aggregation-based accuracy.

Data r = 0.05 r = 0.10 r = 0.20
STE Crowd-STE STE Crowd-STE STE Crowd-STE

Food 0.7915 0.8168 -s-d 0.8276 0.8494 -s-d 0.8484 0.8630 -s-d
Scene 0.7826 0.8165 -s-d 0.8203 0.8381 -s 0.8403 0.8567 -s

tSTE Crowd-tSTE tSTE Crowd-tSTE tSTE Crowd-tSTE

Food 0.7691 0.8161 -s-d 0.8171 0.8528 -s-d 0.8435 0.8730 -s-d
Scene 0.7512 0.8116 -s 0.8099 0.8441 -s-d 0.8354 0.8579 -s-d

called aggregation-based accuracy to measure the performance. The golden stan-
dard labels are computed by majority-voting based aggregation using sijk =∑

ylijk∈Yijk
1(ylijk = 1)/|Yijk| on all labels in Y . If sijk > 0.5, the golden standard

label is 1; otherwise, the golden standard label is 0. We trained the model based
on a small subset Yu

t and evaluated the accuracy of the estimated triplet com-
parisons to the aggregated labels of Y. Furthermore, in the stage of tuning the
hyperparameters λ and searching the model variants based on the performances
on the validation set Yu′

t , we utilized the aggregation-based accuracy and the
labels in the ground truth are the aggregated labels of the validation set Yu′

t .

3.4 Experimental Results

Q1: Is the proposed Crowd-(t)STE effective?
We show the results with representative hyperparameter setting and data

properties as the conditions to compare the approaches: d = 10, which is a
moderate number of dimensions for representing an object; r = 0.1 because
we want to verify the performance when there are not many labels available;
and u = 5 which is a moderate number of workers for annotating a triplet.
The columns of r = 0.10 in Table 2 lists the results. We organize our methods
and the baselines into two groups: Gaussian kernel-based group and Student-t
kernel-based group. First, our proposed approach has better performance than
the baselines in all of the cases in the columns of r = 0.10 in Table 2, regardless
of which of the kernels (Gaussian or Student-t) being used. This shows that
modeling crowdsourced factors such as worker ability and object difficulty is
crucial for the task of label aggregation from crowdsourced triplet similarity
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Table 3. Results for different numbers of labels (workers) per triplet u. The number of
dimensions d = 10. The sampling rate r = 0.10. The numbers in the bold font indicate
the best performance in each dataset in a group of approaches (STE or tSTE). We
show the name of the optimal variant selected by the automatic search.

(a). Category-based accuracy.

Data u = 3 u = 5 u = 10
STE Crowd-STE STE Crowd-STE STE Crowd-STE

Food 0.8911 0.9132 -s-d 0.9023 0.9155 -s-d 0.9097 0.9109 -s
Scene 0.8732 0.9167 -s-d 0.8978 0.9174 -s 0.9176 0.9364 -s-d

tSTE Crowd-tSTE tSTE Crowd-tSTE tSTE Crowd-tSTE

Food 0.8824 0.9066 -s-d 0.8943 0.9116 -s-d 0.9001 0.9108 -s-d
Scene 0.8672 0.9078 -s 0.8828 0.9203 -s-d 0.9076 0.9299 -s-d

(b). Aggregation-based accuracy.

Data u = 3 u = 5 u = 10
STE Crowd-STE STE Crowd-STE STE Crowd-STE

Food 0.8152 0.8365 -s-d 0.8276 0.8494 -s-d 0.8394 0.8622 -s
Scene 0.8042 0.8302 -s-d 0.8203 0.8381 -s 0.8357 0.8568 -s-d

tSTE Crowd-tSTE tSTE Crowd-tSTE tSTE Crowd-tSTE

Food 0.8056 0.8381 -s-d 0.8171 0.8528 -s-d 0.8289 0.8635 -s-d
Scene 0.8006 0.8257 -s 0.8099 0.8441 -s-d 0.8263 0.8598 -s-d

comparisons. Secondly, the selected optimal variant of our approach is diverse.
All two factors of worker ability and object difficulty have ever been selected
in some cases. This shows that all these factors are effective for improving the
overall performance and automatically search the optimal variant is important
because certain variants are appropriate for certain data properties. Furthermore,
because the variants modeling worker ability are always selected, it shows that
worker ability is the required crowdsourced factor which need to be considered in
the label aggregation approaches.
Q2: How do the data properties influence the performance?

We investigated the influences of two data properties, i.e., label (worker)
number per triplet u and triplet sampling rate r. We changed one factor and fixed
the others (u = 5, r = 0.10 and d = 10 as default), and verified the changes in
the performance. Tables 2 and 3 list the results. First, the family of the proposed
approaches always outperforms the baselines in all these cases. This observation
is consistent with the results in the columns of r = 0.10 in Table 2. Secondly,
when u and r increase, the amount of training data increases. The performances
on the two accuracy metrics generally increase. Thirdly, when the data are very
few and sparse, i.e., r = 0.05 in Table 2 and u = 3 in Table 3, our approach
still performs well. The performance difference between the baselines and our
approach when the data are relatively few (e.g., u = 3 in Table 3) is larger than
that when the data are relatively abundant (e.g., u = 10 in Table 3). This shows
that our approach is very efficient when the number of collected labels is small. It
also shows that although collecting more labels can improve the performance, the
improvement may be small. As shown in Table 3, u = 10 doubles the number of
collected labels from u = 5, but the performance only increases by approximately
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1%. Therefore, cares must be taken in the trade-off between budget cost and
accuracy. Fourthly, the selected variants are different for each dataset with same
u and r, which also shows the importance and effectiveness of automatic variant
search.
Q3: How do the model options influence the performance?

We investigated the influences of the model options, i.e., the worker ability and
object difficulty. We draw observations from Tables 2, 3. First, modeling worker
ability is always required in all cases. For the options of modeling worker ability,
the results show that the scalar worker ability ‘-s’, rather than the matrix worker
ability ‘-m’, is always selected. This shows that the complexity of worker abilities
on these two datasets is not high; a scalar value is capable of representing the
worker ability, and using a large worker ability matrix may be overparameterized
and can easily lead to overfitting. Secondly, the variants with object difficulty are
sometimes selected depending on data properties; this shows that automatically
selecting the optimal variant is useful for label aggregation from crowdsourced
triplet similarity comparisons. Thirdly, we observed that the variants based on
the Student-t kernel are not always better than those based on the Gaussian
kernel. One candidate solution for this issue is searching the optimal models from
both the Crowd-STE and Crowd-tSTE variants of the model.

4 Related Work

To learn the stochastic pairwise embedding from high-dimensional feature rep-
resentations or pairwise similarity comparison labels, the objects are usually
represented in a low-dimensional space so that pairwise similarities or neigh-
borhoods are preserved [5,8,15]. Crowdsourced pairwise similarity comparison
labels have also been leveraged for object clustering [4] and learning similarity
matrices [11]; additional context information has also been utilized [16]. The
costs of special multiple pairwise questions have also been discussed [6].

Because it is often difficult for humans to make absolute subjective judgements,
in contrast to learning the embedding with absolute pairwise comparisons, some
existing works have utilized relative comparisons with more than two objects,
e.g., triplet comparisons [11,3,13] and quadruplet comparisons [1,12]. However,
these works did not consider crowdsourced factors such as the diverse worker
ability and object difficulty. In this study, we focused on crowdsourced triplet
similarity comparisons and label aggregation for estimating similarity relations
of all objects when only a small number of labels are available.

5 Conclusion

We considered label aggregation from crowdsourced triplet similarity comparisons.
It can also be regarded as stochastic triplet embedding in the crowdsourcing
context. We created two novel real datasets for investigating this research topic.
We proposed a family of models by incorporating worker ability and object
difficulty with different similarity kernels as well as automatically searching the
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optimal model from the possible model variants. We also investigated how the
data properties and model options influence the performance. A limitation of
these datasets is that the objects are only images, other types of objects will
be considered in future work. We can apply the proposed method to various
domains including text opinions and 3D designs since our approach is not limited
to image objects. Another interesting direction is efficient sampling method for
adaptively collecting labels.
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