http://goo.gl/Jv7Vj9

Course website

KYOTO UNIVERSITY

Statistical Machine Learning Theory

Model Evaluation

Hisashi Kashima kashima@i.Kyoto-u.ac.jp

Topics: Performance measures and evaluation frameworks

- You want to know the final performance of your model, or select the best one among possible models (or both)
- Performance measure: accuracy, precision/recall, DCG@k, AUC
- Evaluation framework: cross validation
- Model stacking

Performance Measures

Various performance measures: Should be chosen according to your applications

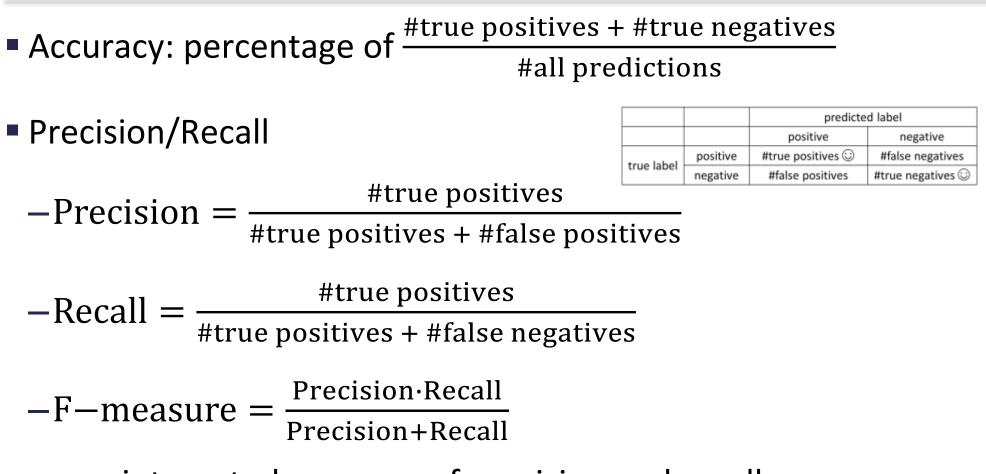
- There are various evaluation measure to quantify the performance of a trained model especially in supervised classification
 - -Accuracy, precision/recall, DCG@k, AUC, ...
- They should be appropriately chosen depending on applications
 - —Classification with decision thresholds: accuracy, precision/recall, ...
 - -Classification without decision thresholds: AUC, ...
 - -Ranking: DCG@k, ...

Decision model and confusion matrix: Decisions on a dataset give a confusion matrix

- The trained model gives confidence f(x) on given instance
 x belonging to the positive class (+1)
- Assign +1 to x whose $f(\mathbf{x})$ is larger than decision threshold τ
- Fixing a model, a dataset, and a decision threshold gives a confusion matrix

		predicted label	
		positive	negative
true label	positive	#true positives 😳	#false negatives
	negative	#false positives	#true negatives 😳

Accuracy, precision, recall, and F-measure: Basic predictive performance measures



an integrated measure of precision and recall

DCG@k: Performance measure for ranking

- In ranking (of web pages), accuracy of top-ranked items is more important
- Precision@k: precision calculated using the top-k scored items
- DCG(Discounted Cumulative Gain)@k is a weighted variant of Precision@k: $\sum_{i=1}^{k} \frac{\operatorname{rel}(i)}{\log(i+1)}$
 - -rel(i) is the relevance score for the *i*-th ranked item

AUC: Performance measure not depending on the threshold

- Evaluation needs fixing the decision threshold
- Imbalanced data generally results in a high accuracy
- AUC:
 - -A performance measure directly defined with confidence score $f(\mathbf{x})$
 - -Probability of A being larger than B
 - A: confidence score of a randomly chosen positive instance
 - B: confidence score of a randomly chosen negative instance
 - -takes 1 for perfect predictions, 0.5 for random predictions

Evaluation Framework

Evaluation framework: We want to predict model performance

- Performance of a model for training data and that for future data are different
 - –What we are interested in is the latter
- Many models have hyper-parameters to be specified by users
 - -We want to tune them so that the final performance gets better

First principle: Evaluation must use a dataset not used in training

- You must not evaluate your classifier on the dataset you used for training
- Usually, first divide a given dataset into a training dataset and a test dataset
 - 1. Train a classifier using the training dataset
 - 2. Evaluate its performance on the test dataset
- Sometimes ordering of data instances (unintentionally) has some patterns in their labels

-Partitioning should be done carefully

Cross validation (for performance testing): A statistical framework for performance evaluation

- You want to know the performance of the classifier (will be obtained using your algorithm) when it is deployed
- (*K*-fold) cross validation do this
- Divide a given dataset into K non-overlapping sets
 - -Use K 1 of them for training
 - -Use the remaining one for testing
- Changing the "test" datasets results in *K* measurements
 - -Take their average to get a final performance estimate

Cross validation for tuning hyper-parameters: A statistical framework for performance evaluation

- Most of machine learning algorithms have hyper-parameters
 - Hyper-parameters: Parameters not automatically tuned in the training phase; given by users
- (*K*-fold) cross validation can be used for this
 - -Use K 1 of K sets for training models for various hyperparameter settings
 - -Use the remaining one for testing
 - -Choose the hyper-parameter setting with the best averaged performance
 - Note that this is **NOT** its final performance estimate

Double loop of cross validation: Tuning hyper-parameters and performance evaluation

- Sometimes you want to do both hyper-parameter tuning and performance evaluation
- Doing both with one K-fold cross validation is guilty
 - -You see the test for tuning hyper-parameters
- Double loop cross validation
 - -Outer loop for performance evaluation
 - Inner loop for hyper-parameter tuning
 - -High computational costs...

A simple alternative of double-loop cross validation: "Development set" approach

- A simple alternative for the double-loop cross validation
- "Development set" approach
 - -Use K 2 of K sets for training
 - -Use one for tuning hyper-parameters
 - -Use one for testing

Model Stacking

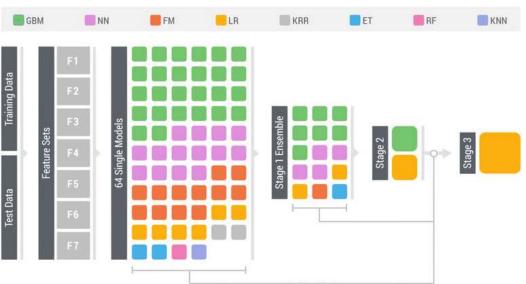
Kohei Ozaki: Techniques (Tricks) for Data Mining Competitions

https://speakerdeck.com/smly/techniques-tricks-for-data-mining-competitions

Model ensemble:

Combines different models to improve performance

- One model cannot fit all
- Ensemble of different predictors to improve performance
- Commonly used technique in predictive modeling competitions (e.g. Kaggle)
 Three-Stage Ensemble



64 single + 15 ensemble + 2 ensemble + 1 blending

Model stacking:

An ensemble method to combine different models

- Outputs of the level-0 models are inputs of the level-1 models
 - -Original feature vector \mathbf{x}
 - -Outputs of the level-0 models ${f y}$

-New extended feature vector
$$\widetilde{\mathbf{x}} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$
 for level-1 models

Stacking:

- -is similar to the multi-layer neural network
 - Stacked one-layer perceptron
- -but has heterogeneous components

Difficulty in model stacking: An easy solution is biased

- How can we train staked models?:
- An easy solution:
 - 1. train a classifier f using the training dataset L
 - 2. add the prediction values of f as a new feature

.... seemingly works... but actually NOT

- Remember the first principle: you cannot make a prediction for the data you used in the training
 - The prediction value to the training data are biased because your model has been trained to reproduce the labels

A solution:

Use cross-validation to extend features

- Divide a given dataset into K non-overlapping sets
 - 1. Use K 1 of them for training a model
 - 2. Use the model to add a new feature to the remaining set
 - Doing steps 1&2 for K holdout sets gives the new feature for the whole dataset
- Train the level-1 predictor using the extended dataset
- The level-0 predictor is (re-)trained using the original whole dataset

 Because the extended feature for training the level-1 predictor is produced by different level-0 predictors