http://goo.gl/Jv7Vj9

Course website
KyYoTo UNIVERSITY

Statistical Machine Learning Theory

On-line Learning

Hisashi Kashima
kashima@i.Kyoto-u.ac.jp

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Topics:
Online learning algorithms and theoretical guarantees

= On-line learning problem

= Halving algorithm, its theoretical mistake bound, and its limitation

= Regret analysis as a performance measure of online learning algorithms

= Analyses of:

— Follow-the-leader (FTL) and follow-the-regularized-leader (FTRL)
algorithms

— Online gradient descent algorithm

— Perceptron algorithm

Most of the contents in this lecture are based on:

Shalev-Shwartz, S. (2011). Online learning and online convex optimization.
Foundations and Trends in Machine Learning, 4(2), 107-194.

2 KYOTO UNIVERSITY

On-line learning problem:
Learning to make periodical decisions
" |n standard (batch) learning settings,

1. Given training dataset { (x(¥),y), .., (xV), (M)}

2. Make predictions for test dataset {X(N+1), : X(N+M)}

II’

3. Get feedbacks (reward or loss)

" |n online learning,
1. At each round, make a prediction for an arriving data
2. Get a feedback for the prediction
3. Returntol

— Training and test are done with the same data

3 KyoTo UNIVERSITY

On-line learning applications:
Real-time modeling and prediction

" Online learning can be used when you continuously have to
make decisions (and get feedbacks)

= Examples:
—Weather forecasting

—Stock price prediction

= Sometimes considered as an efficient alternative to batch
learning (for big data!)

—e.g. perceptron (as a batch learning algorithm)

4 KYOTO UNIVERSITY

On-line learning problem formulation:
Guaranteed strategy to minimize cumulative loss

= Ateachroundt=1,2,...,T

1. Receive input X~ € X the environment J
2. Make prediction p{&) € Y chooses y(©)

3. Observe true answer y(t) eEY

4. Sufferloss I(p®),y®)

= Our goals:
—Find a prediction strategy to minimize cumulative loss
Y1 l(P(t)» y(t))

—Theoretical guarantees of the performance of the strategy
5 KYOTO UNIVERSITY

A simple online learning problem example :
Two-class classification with a finite set of predictors

= Consider an on-line two-class classification problem

—Ateachroundt=1,2,.., T

1. Receive inputx® € X

2. Make prediction p® € {+1,—1}

3. Observe true answer y(t) € {+1,—1}

4. Sufferloss [(pH,y®) = 0 (if pP=y®) or 1 (if p £y D)

= Assumptions:

1. Finite hypotheses:
A finite set of predictors H (|H| < o) is available

2. Realizability: True answers are generated by some h* € H

6 KyoTo UNIVERSITY

Halving algorithm :
Majority vote prediction with version space

" |nitialization: V; = H (V; is called a version space at round t)

—V: maintains predictors consistent with past observations
= Ateachroundt=1,2,...,T

1. Receive inputx®) € X

2. Predict p® = argmaxpe{ﬂ,_l}‘{h eV, |h(x(t)) = p}‘

e Take a majority vote with the current version space

3. Observe true answer y*) € {+1, -1}
4. Update Vyyq = {h € V; |h(xD) =y}

e Correct hypotheses survive to next round

7 KYOTO UNIVERSITY

Theoretical guarantee of the halving algorithm :
Logarithmic mistake bound

= Halving algorithm makes at most log,(|H'|) wrong predictions

= Proof:

—Whenever the algorithm makes a mistake, more than a half of
the members in the current version space V; make mistakes

%
e Size of the next version space Vi, 1| < lztl

2 -
—After making M mistakes, |V;| < l l Qzab'!'ty J
assumption

—Since at least one predictor survives, 1 < |V;|

—Rearranging 1 < % concludes the proof

8 KyoTo UNIVERSITY

Limitations of the current setting:
Adversarial environments do not allow mistake bounds

" The halving algorithm cannot enjoy the logarithmic bound
—when H is an infinite set (e.g. w € RP)

—when the true predictor is not in H

= The situation will be even worse when the environment is
adversarial

—Adversarial environment: the environment can decide the
true answer after observing an algorithm’s prediction

—Number of mistakes can be T

9 KyoTo UNIVERSITY

Regret:
Relative performance in a particular class of predictors

= Adversarial environments can always make wrong predictions

—Impossible to guarantee mistake bounds

= Regret: relative performance in a particular class of predictors H

T T
Regretr(3) = Z l(P(t);y(t)) — MiNpeyy z l(h(x(t))'y(t))
t= t=1

cumulative loss minimum cumulative
by the algorithm loss in H

—h" is the predictor achieving the minimum cumulative loss

—Even with an adversarial environment,
regret will not be large if all members of H perform poorly

10 KYoTo UNIVERSITY

Regret bound:
Sublinear regret bound guarantees relative performance

sublinear RegretT(}f)

= [f Regret(H) = o(T) (e.g. VT), - >0asT — o

—Your algorithm is asymptotically guaranteed to perform as
well as the best predictor in H (!)

T T
Z 1(p®,y®) < minpey z 1(R(x®), y®) + o(T)
t=1 t=1

11 KYoTo UNIVERSITY

On-line learning problem formulation II:
Online learning of general models with parameters
= Consider of a specific class of online learning problems

—to design online learning algorithms of models with
parameters (e.g. linear classifiers)

= Ateachroundt =1,2,...,T
1. Submit a parameter vector w es (e.g. RP)

2. Receive a loss function [(©): S - R

3. Suffer loss (V) (w(t))

—Loss function [() can be different at each round

« Regret; (5) = X1, [O(w®) — minyes X1, 1O (w)

12 KYoTo UNIVERSITY

Some examples of loss function:
Convex and non-convex loss functions

= Convex loss functions:

—Squared loss (Online regression)
2
[() (W(t)) — l(w(t)Tx(t),y(t)) — (W(t)Tx(t) _ y(t))

—Linear function (Online linear optimization)
[() (w(t)) — (w(t),x(t))

= Non-convex loss function: J

prediction is
—0-1 loss (Online classification) wrong

[O(w®) = Lry@w®, x®)<0]

13 KYoTo UNIVERSITY

Follow-the-leader:
An online algorithm with regret bound

= An online algorithm specifies w(®)

= Follow-the-Leader (FTL) submits w8 which has the minimum
cumulative loss for the past rounds

)) . t—1
—i.e. wlt) = argminges 27=1 [(w) decrease of [(V) by
. Lemma: vu’ each update
T

l(t) (W®) —1® (w<t+1>))

Mq

(la:) (w®) —1® (u) <
t=1 t=1

—This holds for u = argminyeg Yy 18 (W),
so gives an upper bound of Regret(S)

KYOTO UNIVERSITY

Proof of the FTL lemma:
Proof by induction

= \We want to show Vu, >, [(6) (w(t“)) <> (D (u)

=ForT =1, [P (w?) < I (u) holds
since w? is determined so that [V is minimized

= Suppose the inequality holds for T — 1,
e X1 1O (wt D) < 312110 (u)

= Adding [P (w{t*1) to both sides yields
17;=1 [() (W(t+1)) < |(T) (W(T+1)) i Zz::—ll [() (u)

: : — w(T+1 w T+ s taken to satisfy thi J
= Since this holds even foru = w{T+1), 's taken 1o satisty this

ZZ=1 [(®) (w(t+1)) < ZZ=1 [() (W(T+1)) < ZZ=1 [® (u)

KYOTO UNIVERSITY

15

Follow-the-regularized-leader:
An online algorithm with regret bound

" Too aggressive updates might increase regret of FTL
—Regret bound depends on the sum of decreases of 1) so far

* Follow-the-Regularized-Leader (FTRL) makes “milder” updates
t—1

w() = argmin,,cg Z (D (W) + R(w)
=1
" lemma:

{mzation term]
v, I (10(w®) — 1O w)

< R(u) — R(WwW) + T, (10(w®) — 1O (wE+D))

16 KYoTo UNIVERSITY

Proof of the FTRL lemma:
Reuse of the FTL lemma

equlvalent

s FTRLon [(@ ¢ > FTLon 1 = R(w), D, 1@ .

—Since the FTL update is
w® = argminycs 25-1 1@ (w)
= argminyes 2621 P (W) + R(W)

= Applying the previous FTL lemma, we obtain additional terms
on the right-hand side:

1O (u) — 1@ (WD) = R(u) — R(WD)

17 KYoTo UNIVERSITY

Example of FTRL update:
Online linear optimization

= Assume:;

—Linear loss function: [(©) (w(t)) = (w(t),x(t))

o 1
—Standard L,-regularization term: R(w) = o IVUIE

= FTRL update: wit+h) = argmin,, pd Z$=1(w, Z(T)) T % Iwll5

] |e w(t+1) — _n Z€=1 Z(T) — w(t) — le(t)

= With no regularization term, w(t*1) = —oo - sign(Xt_, z(P)

= suffers infinite loss

18 KYoTo UNIVERSITY

Regret bound for online linear optimization:
FTRL enjoys sublinear regret bound

" Regretr(S) < — IIW 12 + X1 ((w®,z) — (wlttD) z(D))
T
_ L Iw*||5 + Z(w(t) — w(ttD) Z7(®)
21 '
t=1
T T
= W IE + Y (120, 20) = w3+ Y 20
21 2 | 21 2 t=1 i

t=1

alF

i
Regret(S) < [|[w*||5 LV2T, Where; t=1Hz(t)H2 < L?

" By optimizingn, n = gives a sublinear bound:

19 KYoTo UNIVERSITY

Doubling trick:
Making the regret bound independence of T

= Obtaining O(\/ZT) regret bound requires us to know the total
number of rounds T'; we would get rid the dependence

= Suppose we have an algorithm A with regret bound of av/T

=" Doubling trick:
—Make T double when the round reaches T

—i.e. foreachepochm =1,2,..., run A for T = 2™ rounds

= Total regret is bounded by
[log, T [log, T

zaT_zan\/_ilﬁ

20 KYoTo UNIVERSITY

m:

Online gradient descent:
Online learning algorithm with convex loss function
" Online gradient descent

—Hyper-parameter (learning rate): n > 0
—Initialization: w(®) = 0
= Ateachroundt=1,2,...,T
1. Submit a parameter vector w® € § (convex set e.g. RP)

2. Receive a convex loss function [(9:§ - R
and suffer loss 1) (w(®))

3. Update parameter w1 = w(t) — pz(®),
where z(®) € 91V (w(t)) (subgradients)

21 KYoTo UNIVERSITY

[Supplement]:
Subgradient

= A function f: S (convex set) = R is a convex function
iff Yu € S, there exists zZ such that
Vues f(u)=fw)+{(u—w,z)

= 7 is called a subgradient of f at w, and denote the set of
subgradients by df (w)

= |f f is differentiable at w, df (w) has only a single element
Vi(w) called gradient

22 KYoTo UNIVERSITY

Regret bound of online gradient descent:
OGD also enjoys sublinear regret bound

" Lemma: Regret bound of online gradient descent is

T
1
Regret,(S) < % lw*[|5 + 1 ”Z(t)nz
t=

/\ 1
[optimal w] norm of subgradient]
lw*||5

1gT OI% < 12
i where T2t=1HZ , = L,
we have a sublinear bound: Regret(S) < |[w*||5 LV2T

= Optimizingn, n =

= Same results as those for regret bounds for online linear
optimization

23 KYoTo UNIVERSITY

Proof of regret bound of online gradient descent:
Reduction to online linear optimization

optimal w }

= For convex loss [,
(W) =1l(w)+{w"—w,z),Z € dl(w) =2 I(w) —l(w") <{(w—WH*1Z)

= Regret is bounded above
T

T
Regret,(S) = z (l(t)(w(t)) _ l(t)(w Z((w®, z®) — (w*,z©))
t=1

t=1

—This is exactly what we bounded in the online linear
optimization using FTRL

= OGD is equivalent to FTRL by taking z(®) € 91(®) (w(t)),
results in the same regret bounds as those of FTRL

—Remember the FTRL update: w(ttD) = w(t) — pz®

24 KYoTo UNIVERSITY

Convex surrogate:
Regret bound for non-convex loss

= Our analysis relied on the convexity of (D). what if it is not?
= Consider a convex upper bound [(©) such that [< [(©
=" Running the online gradient descent using [(6) gives regret

bound Yf_, (i(t) (w(t)) — Z(t)(w*)) < |lw*|l5 LV2T

= Combined with [(w(®)) < [O(w®), we get
T T

z [O(w)) < Z (D (w*) + |lw*||3 LV2T

25 KYoTo UNIVERSITY

Perceptron algorithm:
Online classification learning with mistake bound

= Perceptron update:

wttD) = w® 4 5, Ox(®) . 1[y(t)<w(t),x(t)>so]

= Non-convex loss function 0-1 loss (Online classification)

[O(w®) = Lry@w®, x®)<o]

= lemma: If there exists w™ such that Vt,y(t)(w*, X(t)> > 1,

mistake bound of perceptron is
m < 2R*|lw*||3,

where ”x(t)Hz < R?
number of J

mistakes

26 KYoTo UNIVERSITY

Perceptron algorithm:
Equivalent to ODG with surrogate loss

= Define convex surrogate [(9) as [V = 1 — y(O(w(®) x(0))

if the perceptron makes a mistake, and [(©) = 0 if not

" Online gradient descent with [(©) s equivalent to perceptron

—0GD:
=nXio yPx® 1[y(t)<w(t),x(t))50]

wttD) — w® + y(t)x(t) : l[y(t)<w(t)’x(t))so]

—Perceptron: no effect on)

= ZZ=1y(t)X(t) : 1[y(t)<w(t)’x(t))so] prediction

—We can take arbitrary 7 since sign({w®,x)) = sign((nw®,x(®)})

27 KYoTo UNIVERSITY

Proof of perceptron mistake bound (1/2):
Use regret bound of OGD with surrogate loss

= Online gradient descent with [(6) gives
T
t=

1 2
Regretr(S) < T W[5 +7 Z“y(t)x(t)uz A OwWo, x®)<0]
1

2
= On the other hand, ||y(t)x(t)||2=||x(t)||§ < R? J
T

Regret;(S) = Z (Z(t) (w(t)) — [® (w*)) >m

t=1

—sinceY, [(w®)) > 3,10 (wl)) = m,
and YT_, [(D(w*) = 0 (since Vt,yO(w*, x) > 1)

1
= Connecting the two inequalities yields m < P lw*||5 + nmR?

28 KYoTo UNIVERSITY

Proof of perceptron mistake bound (2/2):
Optimize the bound

1
= We havem < = lw*[|5 + nmR?
W™,

RV2m '’
which resultsinm < RvV2m ||w*||,

" Minimizing the r.h.s. finds n =

—Remember we do not have to determine n actually

"m < 2R? ||w*||3

pAS) KYoTo UNIVERSITY

