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 On-line learning problem

 Halving algorithm, its theoretical mistake bound, and its limitation 

 Regret analysis as a performance measure of online learning algorithms

 Analyses of:

– Follow-the-leader (FTL) and follow-the-regularized-leader (FTRL) 
algorithms

–Online gradient descent algorithm

– Perceptron algorithm

Topics: 
Online learning algorithms and theoretical guarantees

Most of the contents in this lecture are based on:
Shalev-Shwartz, S. (2011). Online learning and online convex optimization. 
Foundations and Trends in Machine Learning, 4(2), 107-194.
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 In standard (batch) learning settings,

1. Given training dataset 𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

2. Make predictions for test dataset 𝐱 𝑁+1 , … , 𝐱 𝑁+𝑀

3. Get feedbacks (reward or loss)

 In online learning, 

1. At each round, make a prediction for an arriving data

2. Get a feedback for the prediction

3. Return to 1

– Training and test are done with the same data 

On-line learning problem: 
Learning to make periodical decisions
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 Online learning can be used when you continuously have to 
make decisions (and get feedbacks)

 Examples:

–Weather forecasting

–Stock price prediction

 Sometimes considered as an efficient alternative to batch 
learning (for big data!)

–e.g. perceptron (as a batch learning algorithm)

On-line learning applications: 
Real-time modeling and prediction
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 At each round 𝑡 = 1, 2, … , 𝑇

1. Receive input 𝐱 𝑡 ∈ 𝒳

2. Make prediction 𝑝 𝑡 ∈ 𝒴

3. Observe true answer 𝑦 𝑡 ∈ 𝒴

4. Suffer loss 𝑙 𝑝 𝑡 , 𝑦 𝑡

 Our goals:

–Find a prediction strategy to minimize cumulative loss 

 𝑡=1
𝑇 𝑙 𝑝 𝑡 , 𝑦 𝑡

–Theoretical guarantees of the performance of the strategy

On-line learning problem formulation: 
Guaranteed strategy to minimize cumulative loss

the environment 

chooses 𝑦 𝑡
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 Consider an on-line two-class classification problem

– At each round 𝑡 = 1, 2, … , 𝑇

1. Receive input 𝐱 𝑡 ∈ 𝒳

2. Make prediction 𝑝 𝑡 ∈ {+1, −1}

3. Observe true answer 𝑦 𝑡 ∈ {+1, −1}

4. Suffer loss 𝑙 𝑝 𝑡 , 𝑦 𝑡 = 0 (if 𝑝 𝑡 =𝑦 𝑡 ) or 1 (if 𝑝 𝑡 ≠𝑦 𝑡 )

 Assumptions:

1. Finite hypotheses: 
A finite set of predictors ℋ ( ℋ < ∞) is available

2. Realizability: True answers are generated by some ℎ∗ ∈ ℋ

A simple online learning problem example : 
Two-class classification with a finite set of predictors
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 Initialization: 𝑉1 = ℋ (𝑉𝑡 is called a version space at round 𝑡)

–𝑉𝑡 maintains predictors consistent with past observations

 At each round 𝑡 = 1, 2, … , 𝑇

1. Receive input 𝐱 𝑡 ∈ 𝒳

2. Predict 𝑝 𝑡 = argmax𝑝∈{+1,−1} ℎ ∈ 𝑉𝑡 |ℎ 𝐱 𝑡 = 𝑝

• Take a majority vote with the current version space

3. Observe true answer 𝑦 𝑡 ∈ {+1, −1}

4. Update 𝑉𝑡+1 = ℎ ∈ 𝑉𝑡 |ℎ 𝐱 𝑡 = 𝑦 𝑡

• Correct hypotheses survive to next round

Halving algorithm : 
Majority vote prediction with version space
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 Halving algorithm makes at most log2 |ℋ| wrong predictions

 Proof:

–Whenever the algorithm makes a mistake, more than a half of 
the members in the current version space 𝑉𝑡 make mistakes

• Size of the next version space |𝑉𝑡+1| ≤
|𝑉𝑡|

2

–After making 𝑀 mistakes, |𝑉𝑡| ≤
|ℋ|

2𝑀

–Since at least one predictor survives, 1 ≤ |𝑉𝑡|

–Rearranging 1 ≤
|ℋ|

2𝑀 concludes the proof

Theoretical guarantee of the halving algorithm : 
Logarithmic mistake bound

realizability
assumption
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 The halving algorithm cannot enjoy the logarithmic bound

–when ℋ is an infinite set (e.g. 𝐰 ∈ ℝ𝐷)

–when the true predictor is not in ℋ

 The situation will be even worse when the environment is 
adversarial

–Adversarial environment: the environment can decide the 
true answer after observing an algorithm’s prediction

–Number of mistakes can be 𝑇

Limitations of the current setting: 
Adversarial environments do not allow mistake bounds
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 Adversarial environments can always make wrong predictions

– Impossible to guarantee mistake bounds

 Regret: relative performance in a particular class of predictors ℋ

Regret𝑇 ℋ =  

𝑡=1

𝑇

𝑙 𝑝 𝑡 , 𝑦 𝑡 − minℎ∈ℋ  

𝑡=1

𝑇

𝑙 ℎ 𝐱 𝑡 , 𝑦 𝑡

–ℎ∗ is the predictor achieving the minimum cumulative loss

–Even with an adversarial environment, 
regret will not be large if all members of ℋperform poorly

Regret: 
Relative performance in a particular class of predictors

cumulative loss 
by the algorithm

minimum cumulative
loss in ℋ
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 If Regret𝑇 ℋ = 𝜊 𝑇 (e.g. 𝑇), 
Regret𝑇 ℋ

𝑇
→ 0 as 𝑇 → ∞

–Your algorithm is asymptotically guaranteed to perform as 
well as the best predictor in ℋ(!)

 

𝑡=1

𝑇

𝑙 𝑝 𝑡 , 𝑦 𝑡 ≤ minℎ∈ℋ  

𝑡=1

𝑇

𝑙 ℎ 𝐱 𝑡 , 𝑦 𝑡 + 𝜊 𝑇

Regret bound: 
Sublinear regret bound guarantees relative performance

sublinear



12 KYOTO UNIVERSITY

 Consider of a specific class of online learning problems

–to design online learning algorithms of models with 
parameters (e.g. linear classifiers)

 At each round 𝑡 = 1, 2, … , 𝑇

1. Submit a parameter vector 𝐰 𝑡 ∈ 𝒮 (e.g. ℝ𝐷)

2. Receive a loss function 𝑙 𝑡 : 𝒮 → ℝ

3. Suffer loss 𝑙 𝑡 𝐰 𝑡

–Loss function 𝑙 𝑡 can be different at each round

Regret𝑇 𝒮 =  𝑡=1
𝑇 𝑙 𝑡 𝐰 𝑡 − min𝐰∈𝒮  𝑡=1

𝑇 𝑙 𝑡 𝐰

On-line learning problem formulation II: 
Online learning of general models with parameters
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 Convex loss functions:

–Squared loss (Online regression)

𝑙 𝑡 𝐰 𝑡 = 𝑙 𝐰 𝑡 ⊤𝐱 𝑡 , 𝑦 𝑡 = 𝐰 𝑡 ⊤𝐱 𝑡 − 𝑦 𝑡 2

–Linear function (Online linear optimization)

𝑙 𝑡 𝐰 𝑡 = 𝐰 𝑡 , 𝐱 𝑡

 Non-convex loss function:

–0-1 loss (Online classification)

𝑙 𝑡 𝐰 𝑡 = 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

Some examples of loss function: 
Convex and non-convex loss functions

prediction is 
wrong
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 An online algorithm specifies 𝐰 𝑡

 Follow-the-Leader (FTL) submits 𝐰 𝑡 which has the minimum 
cumulative loss for the past rounds

– i.e. 𝐰 𝑡 = argmin𝐰∈𝒮  𝜏=1
𝑡−1 𝑙 𝜏 𝐰

 Lemma: 
∀
𝐮, 

 

𝑡=1

𝑇

𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐮 ≤  

𝑡=1

𝑇

𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐰 𝑡+1

–This holds for 𝐮 = argmin𝐰∈𝒮  𝑡=1
𝑇 𝑙 𝑡 𝐰 , 

so gives an upper bound of Regret𝑇 𝒮

Follow-the-leader: 
An online algorithm with regret bound

decrease of 𝑙 𝑡 by 
each update 
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 We want to show 
∀
𝐮,  𝑡=1

𝑇 𝑙 𝑡 𝐰 𝑡+1 ≤  𝑡=1
𝑇 𝑙 𝑡 𝐮

 For 𝑇 = 1, 𝑙 1 𝐰 2 ≤ 𝑙 1 𝐮 holds 

since 𝐰 2 is determined so that 𝑙 1 is minimized

 Suppose the inequality holds for 𝑇 − 1, 

i.e.  𝑡=1
𝑇−1 𝑙 𝑡 𝐰 𝑡+1 ≤  𝑡=1

𝑇−1 𝑙 𝑡 𝐮

 Adding 𝑙 𝑇 𝐰 𝑡+1 to both sides yields

 𝑡=1
𝑇 𝑙 𝑡 𝐰 𝑡+1 ≤ 𝑙 𝑇 𝐰 𝑇+1 +  𝑡=1

𝑇−1 𝑙 𝑡 𝐮

 Since this holds even for 𝐮 = 𝐰 𝑇+1 , 

– 𝑡=1
𝑇 𝑙 𝑡 𝐰 𝑡+1 ≤  𝑡=1

𝑇 𝑙 𝑡 𝐰 𝑇+1 ≤  𝑡=1
𝑇 𝑙 𝑡 𝐮

Proof of the FTL lemma: 
Proof by induction

𝐰 𝑇+1 is taken to satisfy this



16 KYOTO UNIVERSITY

 Too aggressive updates might increase regret of FTL

–Regret bound depends on the sum of decreases of 𝑙 𝑡 so far

 Follow-the-Regularized-Leader (FTRL) makes “milder” updates

𝐰 𝑡 = argmin𝐰∈𝒮  

𝜏=1

𝑡−1

𝑙 𝜏 𝐰 + 𝑅(𝐰)

 Lemma: 

∀
𝐮,    𝑡=1

𝑇 𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐮

≤ 𝑅 𝐮 − 𝑅 𝐰 1 +  𝑡=1
𝑇 𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐰 𝑡+1

Follow-the-regularized-leader: 
An online algorithm with regret bound

regularization term
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 FTRL on 𝑙 1 , 𝑙 2 ,… 
equivalent

FTL on 𝑙 0 = 𝑅 𝐰 , 𝑙 1 , 𝑙 2 ,…

–Since the FTL update is

𝐰 𝑡 = argmin𝐰∈𝒮  𝜏=0
𝑡−1 𝑙 𝜏 𝐰

= argmin𝐰∈𝒮  𝜏=1
𝑡−1 𝑙 𝜏 𝐰 + 𝑅 𝐰

 Applying the previous FTL lemma, we obtain additional terms 
on the right-hand side:

𝑙 0 𝐮 − 𝑙 0 𝐰 1 = 𝑅 𝐮 − 𝑅 𝐰 1

Proof of the FTRL lemma: 
Reuse of the FTL lemma
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 Assume:

–Linear loss function: 𝑙 𝑡 𝐰 𝑡 = 𝐰 𝑡 , 𝐱 𝑡

–Standard L2-regularization term: 𝑅 𝐰 =
1

2𝜂
𝐰 2

2

 FTRL update: 𝐰 𝑡+1 = argmin𝐰∈ℝ𝑑  𝜏=1
𝑡 𝐰, 𝐳 𝜏 +

1

2𝜂
𝐰 2

2

 i.e. 𝐰 𝑡+1 = −𝜂  𝜏=1
𝑡 𝐳 𝜏 = 𝐰 𝑡 − 𝜂𝐳 𝑡

 With no regularization term, 𝐰 𝑡+1 = −∞ ⋅ sign  𝜏=1
𝑡 𝐳 𝜏

 suffers infinite loss

Example of FTRL update: 
Online linear optimization
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Regret𝑇 𝒮 ≤
1

2𝜂
𝐰∗

2
2 +  𝑡=1

𝑇 𝐰 𝑡 , 𝐳 𝑡 − 𝐰 𝑡+1 , 𝐳 𝑡

=
1

2𝜂
𝐰∗

2
2 +  

𝑡=1

𝑇

𝐰 𝑡 − 𝐰 𝑡+1 , 𝐳 𝑡

=
1

2𝜂
𝐰∗

2
2 +  

𝑡=1

𝑇

𝜂𝐳 𝑡 , 𝐳 𝑡 =
1

2𝜂
𝐰∗

2
2 + 𝜂  

𝑡=1

𝑇

𝐳 𝑡
2

2

 By optimizing 𝜂, 𝜂 =
𝐰∗

2
2

𝐿 2𝑇
gives a sublinear bound: 

Regret𝑇 𝒮 ≤ 𝐰∗
2
2 𝐿 2𝑇, where 

1

𝑇
 𝑡=1

𝑇 𝐳 𝑡
2

2
≤ 𝐿2

Regret bound for online linear optimization: 
FTRL enjoys sublinear regret bound
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 Obtaining Ο 2𝑇 regret bound requires us to know the total 

number of rounds 𝑇; we would get rid the dependence

 Suppose we have an algorithm 𝐴 with regret bound of α 𝑇

 Doubling trick: 

–Make 𝑇 double when the round reaches 𝑇

– i.e.  for each epoch 𝑚 = 1, 2, … , run 𝐴 for  𝑇 = 2𝑚 rounds

 Total regret is bounded by

 

𝑚=1

log2𝑇

α  𝑇 =  

𝑚=1

log2𝑇

α 2𝑚 ≤
2

2 − 1
α 𝑇

Doubling trick: 
Making the regret bound independence of 𝑇
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 Online gradient descent

–Hyper-parameter (learning rate): 𝜂 > 0

– Initialization: 𝐰 𝑡 = 𝟎

 At each round 𝑡 = 1, 2, … , 𝑇

1. Submit a parameter vector 𝐰 𝑡 ∈ 𝒮 (convex set e.g. ℝ𝐷)

2. Receive a convex loss function 𝑙 𝑡 : 𝒮 → ℝ

and suffer loss 𝑙 𝑡 𝐰 𝑡

3. Update parameter 𝐰 𝑡+1 = 𝐰 𝑡 − 𝜂𝐳 𝑡 ,

where 𝐳 𝑡 ∈ 𝜕𝑙 𝑡 𝐰 𝑡 (subgradients)

Online gradient descent: 
Online learning algorithm with convex loss function
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 A function 𝑓: 𝑆 (convex set) → ℝ is a convex function 
iff ∀𝐮 ∈ 𝑆, there exists 𝐳 such that

∀𝐮 ∈ 𝑆, 𝑓 𝐮 ≥ 𝑓 𝐰 + 𝐮 − 𝐰, 𝐳

 𝐳 is called a subgradient of 𝑓 at 𝐰, and denote the set of 
subgradients by 𝜕𝑓 𝐰

 If 𝑓 is differentiable at 𝐰, 𝜕𝑓 𝐰 has only a single element 
𝛻𝑙 𝐰 called gradient

[Supplement]: 
Subgradient
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 Lemma: Regret bound of online gradient descent is 

Regret𝑇 𝒮 ≤
1

2𝜂
𝐰∗

2
2 + 𝜂  

𝑡=1

𝑇

𝐳 𝑡
2

2

 Optimizing 𝜂, 𝜂 =
𝐰∗

2
2

𝐿 2𝑇
, where 

1

𝑇
 𝑡=1

𝑇 𝐳 𝑡
2

2
≤ 𝐿2, 

we have a sublinear bound: Regret𝑇 𝒮 ≤ 𝐰∗
2
2 𝐿 2𝑇

 Same results as those for regret bounds for online linear 
optimization

Regret bound of online gradient descent: 
OGD also enjoys sublinear regret bound

optimal 𝐰 norm of subgradient
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 For convex loss 𝑙, 
𝑙 𝐰∗ ≥ 𝑙 𝐰 + 𝐰∗ − 𝐰, 𝐳 , 𝐳 ∈ 𝜕𝑙 𝐰 ⇒ 𝑙 𝐰 − 𝑙 𝐰∗ ≤ 𝐰 − 𝐰∗, 𝐳

 Regret is bounded above 

Regret𝑇 𝒮 =  

𝑡=1

𝑇

𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐰∗ ≤  

𝑡=1

𝑇

𝐰 𝑡 , 𝐳 𝑡 − 𝐰∗, 𝐳 𝑡

–This is exactly what we bounded in the online linear 
optimization using FTRL

OGD is equivalent to FTRL by taking 𝐳 𝑡 ∈ 𝜕𝑙 𝑡 𝐰 𝑡 , 

results in the same regret bounds as those of FTRL

–Remember the FTRL update: 𝐰 𝑡+1 = 𝐰 𝑡 − 𝜂𝐳 𝑡

Proof of regret bound of online gradient descent: 
Reduction to online linear optimization

optimal 𝐰
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 Our analysis relied on the convexity of 𝑙 𝑡 ; what if it is not?

 Consider a convex upper bound  𝑙 𝑡 such that 𝑙 𝑡 ≤  𝑙 𝑡

 Running the online gradient descent using  𝑙 𝑡 gives regret 

bound   𝑡=1
𝑇  𝑙 𝑡 𝐰 𝑡 −  𝑙 𝑡 𝐰∗ ≤ 𝒘∗

2
2 𝐿 2𝑇

 Combined with 𝑙 𝑡 𝐰 𝑡 ≤  𝑙 𝑡 𝐰 𝑡 , we get 

 

𝑡=1

𝑇

𝑙 𝑡 𝐰 𝑡 ≤  

𝑡=1

𝑇

 𝑙 𝑡 𝐰∗ + 𝒘∗
2
2 𝐿 2𝑇

Convex surrogate: 
Regret bound for non-convex loss
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 Perceptron update: 

𝐰 𝑡+1 = 𝐰 𝑡 + 𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

 Non-convex loss function 0-1 loss (Online classification)

𝑙 𝑡 𝐰 𝑡 = 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

 Lemma: If there exists 𝐰∗ such that  ∀𝑡, 𝑦 𝑡 𝐰∗, 𝐱 𝑡 ≥ 1,

mistake bound of perceptron is 
𝑚 ≤ 2𝑅2 𝐰∗

2
2,

where 𝐱 𝑡
2

2
≤ 𝑅2

Perceptron algorithm: 
Online classification learning with mistake bound

number of 
mistakes
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 Define convex surrogate  𝑙 𝑡 as  𝑙 𝑡 = 1 − 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡

if the perceptron makes a mistake, and  𝑙 𝑡 = 0 if not

 Online gradient descent with  𝑙 𝑡 is equivalent to perceptron

–OGD: 
𝐰 𝑡+1 = 𝐰 𝑡 + 𝜂𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

= 𝜂  𝑡=1
𝑇 𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

–Perceptron: 
𝐰 𝑡+1 = 𝐰 𝑡 + 𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

=  𝑡=1
𝑇 𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

–We can take arbitrary 𝜂 since sign 𝐰 𝑡 , 𝐱 𝑡 = sign 𝜂𝐰 𝑡 , 𝐱 𝑡

Perceptron algorithm: 
Equivalent to ODG with surrogate loss

no effect on 
prediction
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 Online gradient descent with  𝑙 𝑡 gives 

Regret𝑇 𝒮 ≤
1

2𝜂
𝐰∗

2
2 + 𝜂  

𝑡=1

𝑇

𝑦 𝑡 𝐱 𝑡
2

2
⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

 On the other hand,

Regret𝑇 𝒮 =  

𝑡=1

𝑇

 𝑙 𝑡 𝐰 𝑡 −  𝑙 𝑡 𝐰∗ ≥ 𝑚

– since 𝑡
 𝑙 𝑡 𝐰 𝑡 ≥  𝑡 𝑙 𝑡 𝐰 𝑡 = 𝑚,

and  𝑡=1
𝑇  𝑙 𝑡 𝐰∗ = 0 (since ∀𝑡, 𝑦 𝑡 𝐰∗, 𝐱 𝑡 ≥ 1)

 Connecting the two inequalities yields 𝑚 ≤
1

2𝜂
𝐰∗

2
2 + 𝜂𝑚𝑅2

Proof of perceptron mistake bound (1/2): 
Use regret bound of OGD with surrogate loss 

𝑦 𝑡 𝐱 𝑡
2

2
= 𝐱 𝑡

2

2
≤ 𝑅2
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 We have 𝑚 ≤
1

2𝜂
𝐰∗

2
2 + 𝜂𝑚𝑅2

 Minimizing the r.h.s. finds 𝜂 =
𝐰∗

2

𝑅 2𝑚
, 

which results in 𝑚 ≤ 𝑅 2𝑚 𝐰∗
2

–Remember we do not have to determine 𝜂 actually

𝑚 ≤ 2𝑅2 𝐰∗
2
2

Proof of perceptron mistake bound (2/2): 
Optimize the bound


