http://goo.gl/Jv7Vj9

Course website

KYOTO UNIVERSITY

Statistical Machine Learning Theory

On-line Learning

Hisashi Kashima kashima@i.Kyoto-u.ac.jp

Topics: Online learning algorithms and theoretical guarantees

- On-line learning problem
- Halving algorithm, its theoretical mistake bound, and its limitation
- Regret analysis as a performance measure of online learning algorithms
- Analyses of:
 - Follow-the-leader (FTL) and follow-the-regularized-leader (FTRL) algorithms
 - Online gradient descent algorithm
 - Perceptron algorithm

Most of the contents in this lecture are based on: Shalev-Shwartz, S. (2011). Online learning and online convex optimization. *Foundations and Trends in Machine Learning*, 4(2), 107-194.

KYOTO UNIVERSITY

On-line learning problem: Learning to make periodical decisions

- In standard (batch) learning settings,
 - 1. Given training dataset $\{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(N)}, y^{(N)})\}$
 - 2. Make predictions for test dataset $\{\mathbf{x}^{(N+1)}, \dots, \mathbf{x}^{(N+M)}\}$
 - 3. Get feedbacks (reward or loss)
- In online learning,
 - 1. At each round, make a prediction for an arriving data
 - 2. Get a feedback for the prediction
 - 3. Return to 1
 - Training and test are done with the same data

On-line learning applications: Real-time modeling and prediction

- Online learning can be used when you continuously have to make decisions (and get feedbacks)
- Examples:
 - -Weather forecasting
 - -Stock price prediction
- Sometimes considered as an efficient alternative to batch learning (for big data!)
 - -e.g. perceptron (as a batch learning algorithm)

On-line learning problem formulation: Guaranteed strategy to minimize cumulative loss

- At each round t = 1, 2, ..., T
 - 1. Receive input $\mathbf{x}^{(t)} \in \mathcal{X}$
 - 2. Make prediction $p^{(t)} \in \mathcal{Y}$
 - 3. Observe true answer $y^{(t)} \in \mathcal{Y}$

- Our goals:
 - -Find a prediction strategy to minimize cumulative loss $\sum_{t=1}^{T} l(p^{(t)}, y^{(t)})$
 - -Theoretical guarantees of the performance of the strategy

A simple online learning problem example : Two-class classification with a finite set of predictors

- Consider an on-line two-class classification problem
 - At each round t = 1, 2, ..., T
 - 1. Receive input $\mathbf{x}^{(t)} \in \mathcal{X}$
 - 2. Make prediction $p^{(t)} \in \{+1, -1\}$
 - 3. Observe true answer $y^{(t)} \in \{+1, -1\}$
 - 4. Suffer loss $l(p^{(t)}, y^{(t)}) = 0$ (if $p^{(t)} = y^{(t)}$) or 1 (if $p^{(t)} \neq y^{(t)}$)
- Assumptions:
 - 1. Finite hypotheses: A finite set of predictors \mathcal{H} ($|\mathcal{H}| < \infty$) is available
 - 2. Realizability: True answers are generated by some $h^* \in \mathcal{H}$

Halving algorithm : Majority vote prediction with version space

- Initialization: $V_1 = \mathcal{H}$ (V_t is called a version space at round t)
 - $-V_t$ maintains predictors consistent with past observations
- At each round t = 1, 2, ..., T
 - 1. Receive input $\mathbf{x}^{(t)} \in \mathcal{X}$
 - 2. Predict $p^{(t)} = \operatorname{argmax}_{p \in \{+1,-1\}} |\{h \in V_t | h(\mathbf{x}^{(t)}) = p\}|$
 - Take a majority vote with the current version space
 - 3. Observe true answer $y^{(t)} \in \{+1, -1\}$
 - 4. Update $V_{t+1} = \{h \in V_t | h(\mathbf{x}^{(t)}) = y^{(t)}\}$
 - Correct hypotheses survive to next round

Theoretical guarantee of the halving algorithm : Logarithmic mistake bound

• Halving algorithm makes at most $\log_2(|\mathcal{H}|)$ wrong predictions

Proof:

- -Whenever the algorithm makes a mistake, more than a half of the members in the current version space V_t make mistakes
 - Size of the next version space $|V_{t+1}| \leq \frac{|V_t|}{2}$
- -After making M mistakes, $|V_t| \leq \frac{|\mathcal{H}|}{2^M}$

realizability assumption

-Since at least one predictor survives, $1 \leq |V_t|$

-Rearranging
$$1 \leq \frac{|\mathcal{H}|}{2^M}$$
 concludes the proof

Limitations of the current setting: Adversarial environments do not allow mistake bounds

- The halving algorithm cannot enjoy the logarithmic bound
 - -when \mathcal{H} is an infinite set (e.g. $\mathbf{w} \in \mathbb{R}^D$)
 - —when the true predictor is not in ${\mathcal H}$
- The situation will be even worse when the environment is adversarial
 - Adversarial environment: the environment can decide the true answer after observing an algorithm's prediction
 - -Number of mistakes can be T

Regret: Relative performance in a particular class of predictors

- Adversarial environments can always make wrong predictions
 - -Impossible to guarantee mistake bounds
- ${\ensuremath{\,^\circ}}$ Regret: relative performance in a particular class of predictors ${\mathcal H}$

$$\operatorname{Regret}_{T}(\mathcal{H}) = \sum_{t=1}^{T} l(p^{(t)}, y^{(t)}) - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} l(h(\mathbf{x}^{(t)}), y^{(t)})$$

cumulative loss
by the algorithm
$$\operatorname{Ioss in} \mathcal{H}$$

- $-h^*$ is the predictor achieving the minimum cumulative loss
- -Even with an adversarial environment, regret will not be large if all members of $\mathcal H$ perform poorly

Regret bound: Sublinear regret bound guarantees relative performance

• If
$$\operatorname{Regret}_T(\mathcal{H}) = o(T)$$
 (e.g. \sqrt{T}), $\frac{\operatorname{Regret}_T(\mathcal{H})}{T} \to 0$ as $T \to \infty$

–Your algorithm is asymptotically guaranteed to perform as well as the best predictor in $\mathcal{H}(!)$

$$\sum_{t=1}^{T} l(p^{(t)}, y^{(t)}) \le \min_{h \in \mathcal{H}} \sum_{t=1}^{T} l(h(\mathbf{x}^{(t)}), y^{(t)}) + o(T)$$

On-line learning problem formulation II: Online learning of general models with parameters

- Consider of a specific class of online learning problems
 - -to design online learning algorithms of models with parameters (e.g. linear classifiers)
- At each round t = 1, 2, ..., T
 - 1. Submit a parameter vector $\mathbf{w}^{(t)} \in \mathcal{S}$ (e.g. \mathbb{R}^D)
 - 2. Receive a loss function $l^{(t)}: S \to \mathbb{R}$
 - 3. Suffer loss $l^{(t)}(\mathbf{w}^{(t)})$
 - -Loss function $l^{(t)}$ can be different at each round
- Regret_T(S) = $\sum_{t=1}^{T} l^{(t)}(\mathbf{w}^{(t)}) \min_{\mathbf{w} \in S} \sum_{t=1}^{T} l^{(t)}(\mathbf{w})$

Some examples of loss function: Convex and non-convex loss functions

Convex loss functions:

-Squared loss (Online regression)

$$l^{(t)}(\mathbf{w}^{(t)}) = l(\mathbf{w}^{(t)\top}\mathbf{x}^{(t)}, y^{(t)}) = (\mathbf{w}^{(t)\top}\mathbf{x}^{(t)} - y^{(t)})^{2}$$

-Linear function (Online linear optimization) $l^{(t)}(\mathbf{w}^{(t)}) = \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle$

Follow-the-leader: An online algorithm with regret bound

- An online algorithm specifies $\mathbf{w}^{(t)}$
- Follow-the-Leader (FTL) submits w^(t) which has the minimum cumulative loss for the past rounds

-i.e.
$$\mathbf{w}^{(t)} = \operatorname{argmin}_{\mathbf{w} \in S} \sum_{\tau=1}^{t-1} l^{(\tau)}(\mathbf{w})$$

• Lemma: $\forall \mathbf{u}$,

$$\sum_{t=1}^{T} \left(l^{(t)}(\mathbf{w}^{(t)}) - l^{(t)}(\mathbf{u}) \right) \le \sum_{t=1}^{T} \left(l^{(t)}(\mathbf{w}^{(t)}) - l^{(t)}(\mathbf{w}^{(t+1)}) \right)$$

-This holds for $\mathbf{u} = \operatorname{argmin}_{\mathbf{w} \in S} \sum_{t=1}^{T} l^{(t)}(\mathbf{w})$, so gives an upper bound of $\operatorname{Regret}_{T}(S)$

decrease of $l^{(t)}$ by

each update

Proof of the FTL lemma: Proof by induction

• We want to show $\forall \mathbf{u}, \sum_{t=1}^{T} l^{(t)} (\mathbf{w}^{(t+1)}) \leq \sum_{t=1}^{T} l^{(t)} (\mathbf{u})$

• For
$$T = 1$$
, $l^{(1)}(\mathbf{w}^{(2)}) \le l^{(1)}(\mathbf{u})$ holds
since $\mathbf{w}^{(2)}$ is determined so that $l^{(1)}$ is minimized

- Suppose the inequality holds for T 1, i.e. $\sum_{t=1}^{T-1} l^{(t)} (\mathbf{w}^{(t+1)}) \leq \sum_{t=1}^{T-1} l^{(t)} (\mathbf{u})$
- Adding $l^{(T)}(\mathbf{w}^{(t+1)})$ to both sides yields $\sum_{t=1}^{T} l^{(t)}(\mathbf{w}^{(t+1)}) \leq l^{(T)}(\mathbf{w}^{(T+1)}) + \sum_{t=1}^{T-1} l^{(t)}(\mathbf{u})$

• Since this holds even for $\mathbf{u} = \mathbf{w}^{(T+1)}$, $\mathbf{w}^{(T+1)}$ is taken to satisfy this

$$\sum_{t=1}^{T} l^{(t)} (\mathbf{w}^{(t+1)}) \leq \sum_{t=1}^{T} l^{(t)} (\mathbf{w}^{(T+1)}) \leq \sum_{t=1}^{T} l^{(t)} (\mathbf{u})$$

KYOTO UNIVERSITY

KYOTO UNIVERSITY

Follow-the-regularized-leader: An online algorithm with regret bound

- Too aggressive updates might increase regret of FTL
 - -Regret bound depends on the sum of decreases of $l^{(t)}$ so far
- Follow-the-Regularized-Leader (FTRL) makes "milder" updates

$$\mathbf{w}^{(t)} = \operatorname{argmin}_{\mathbf{w} \in S} \sum_{\tau=1}^{t-1} l^{(\tau)}(\mathbf{w}) + R(\mathbf{w})$$
regularization term

Lemma:

^{$$\forall$$}**u**, $\sum_{t=1}^{T} \left(l^{(t)}(\mathbf{w}^{(t)}) - l^{(t)}(\mathbf{u}) \right)$
 $\leq R(\mathbf{u}) - R(\mathbf{w}^{(1)}) + \sum_{t=1}^{T} \left(l^{(t)}(\mathbf{w}^{(t)}) - l^{(t)}(\mathbf{w}^{(t+1)}) \right)$

Proof of the FTRL lemma: Reuse of the FTL lemma

• FTRL on $l^{(1)}, l^{(2)}, \dots \stackrel{\text{equivalent}}{\longleftrightarrow}$ FTL on $l^{(0)} = R(\mathbf{w}), l^{(1)}, l^{(2)}, \dots$

-Since the **FTL** update is

$$\mathbf{w}^{(t)} = \operatorname{argmin}_{\mathbf{w} \in S} \sum_{\tau=0}^{t-1} l^{(\tau)}(\mathbf{w})$$

$$= \operatorname{argmin}_{\mathbf{w} \in S} \sum_{\tau=1}^{t-1} l^{(\tau)}(\mathbf{w}) + R(\mathbf{w})$$

Applying the previous FTL lemma, we obtain additional terms on the right-hand side:

$$l^{(0)}(\mathbf{u}) - l^{(0)}(\mathbf{w}^{(1)}) = R(\mathbf{u}) - R(\mathbf{w}^{(1)})$$

Example of FTRL update: Online linear optimization

Assume:

-Linear loss function: $l^{(t)}(\mathbf{w}^{(t)}) = \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle$

-Standard L₂-regularization term: $R(\mathbf{w}) = \frac{1}{2\eta} \|\mathbf{w}\|_2^2$

• FTRL update:
$$\mathbf{w}^{(t+1)} = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^d} \sum_{\tau=1}^t \langle \mathbf{w}, \mathbf{z}^{(\tau)} \rangle + \frac{1}{2\eta} \|\mathbf{w}\|_2^2$$

• i.e.
$$\mathbf{w}^{(t+1)} = -\eta \sum_{\tau=1}^{t} \mathbf{z}^{(\tau)} = \mathbf{w}^{(t)} - \eta \mathbf{z}^{(t)}$$

• With no regularization term, $\mathbf{w}^{(t+1)} = -\infty \cdot \operatorname{sign}\left(\sum_{\tau=1}^{t} \mathbf{z}^{(\tau)}\right)$

suffers infinite loss

Regret bound for online linear optimization: FTRL enjoys sublinear regret bound

• Regret_T(S)
$$\leq \frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \sum_{t=1}^T (\langle \mathbf{w}^{(t)}, \mathbf{z}^{(t)} \rangle - \langle \mathbf{w}^{(t+1)}, \mathbf{z}^{(t)} \rangle)$$

$$= \frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \sum_{t=1}^T \langle \mathbf{w}^{(t)} - \mathbf{w}^{(t+1)}, \mathbf{z}^{(t)} \rangle$$

$$= \frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \sum_{t=1}^T \langle \eta \mathbf{z}^{(t)}, \mathbf{z}^{(t)} \rangle = \frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \eta \sum_{t=1}^T \|\mathbf{z}^{(t)}\|_2^2$$

• By optimizing η , $\eta = \frac{\|\mathbf{w}^*\|_2^2}{L\sqrt{2T}}$ gives a sublinear bound: Regret_T(S) $\leq \|\mathbf{w}^*\|_2^2 L\sqrt{2T}$, where $\frac{1}{T}\sum_{t=1}^T \|\mathbf{z}^{(t)}\|_2^2 \leq L^2$

Doubling trick: Making the regret bound independence of T

- Obtaining $O(\sqrt{2T})$ regret bound requires us to know the total number of rounds T; we would get rid the dependence
- Suppose we have an algorithm A with regret bound of $\alpha\sqrt{T}$
- Doubling trick:
 - -Make T double when the round reaches T
 - -i.e. for each epoch m = 1, 2, ..., run A for $\tilde{T} = 2^m$ rounds
- Total regret is bounded by

$$\sum_{m=1}^{\lceil \log_2 T \rceil} \alpha \sqrt{\tilde{T}} = \sum_{m=1}^{\lceil \log_2 T \rceil} \alpha \sqrt{2^m} \le \frac{\sqrt{2}}{\sqrt{2} - 1} \alpha \sqrt{T}$$

Online gradient descent: Online learning algorithm with convex loss function

- Online gradient descent
 - –Hyper-parameter (learning rate): $\eta > 0$
 - -Initialization: $\mathbf{w}^{(t)} = \mathbf{0}$
- At each round t = 1, 2, ..., T
 - 1. Submit a parameter vector $\mathbf{w}^{(t)} \in S$ (convex set e.g. \mathbb{R}^D)
 - 2. Receive a convex loss function $l^{(t)}: S \to \mathbb{R}$ and suffer loss $l^{(t)}(\mathbf{w}^{(t)})$
 - 3. Update parameter $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \mathbf{z}^{(t)}$, where $\mathbf{z}^{(t)} \in \partial l^{(t)}(\mathbf{w}^{(t)})$ (subgradients)

[Supplement]: Subgradient

- A function f: S (convex set) $\rightarrow \mathbb{R}$ is a convex function iff $\forall \mathbf{u} \in S$, there exists \mathbf{z} such that $\forall \mathbf{u} \in S, f(\mathbf{u}) \ge f(\mathbf{w}) + \langle \mathbf{u} - \mathbf{w}, \mathbf{z} \rangle$
- z is called a *subgradient* of f at w, and denote the set of subgradients by ∂f(w)
- If f is differentiable at w, ∂f(w) has only a single element
 ∇l(w) called gradient

Regret bound of online gradient descent: OGD also enjoys sublinear regret bound

Lemma: Regret bound of online gradient descent is

$$\operatorname{Regret}_{T}(\mathcal{S}) \leq \frac{1}{2\eta} \|\mathbf{w}^{*}\|_{2}^{2} + \eta \sum_{t=1}^{T} \|\mathbf{z}^{(t)}\|_{2}^{2}$$

optimal **w** norm of subgradient

- Optimizing η , $\eta = \frac{\|\mathbf{w}^*\|_2^2}{L\sqrt{2T}}$, where $\frac{1}{T}\sum_{t=1}^T \|\mathbf{z}^{(t)}\|_2^2 \le L^2$, we have a sublinear bound: $\operatorname{Regret}_T(\mathcal{S}) \le \|\mathbf{w}^*\|_2^2 L\sqrt{2T}$
- Same results as those for regret bounds for online linear optimization

Proof of regret bound of online gradient descent: Reduction to online linear optimization optimal w

• For convex loss l, $l(\mathbf{w}^*) \ge l(\mathbf{w}) + \langle \mathbf{w}^* - \mathbf{w}, \mathbf{z} \rangle, \mathbf{z} \in \partial l(\mathbf{w}) \Rightarrow l(\mathbf{w}) - l(\mathbf{w}^*) \le \langle \mathbf{w} - \mathbf{w}^*, \mathbf{z} \rangle$

Regret is bounded above

24

$$\operatorname{Regret}_{T}(S) = \sum_{t=1}^{T} \left(l^{(t)}(\mathbf{w}^{(t)}) - l^{(t)}(\mathbf{w}^{*}) \right) \leq \sum_{t=1}^{T} \left(\left\langle \mathbf{w}^{(t)}, \mathbf{z}^{(t)} \right\rangle - \left\langle \mathbf{w}^{*}, \mathbf{z}^{(t)} \right\rangle \right)$$

- This is exactly what we bounded in the online linear optimization using FTRL
- OGD is equivalent to FTRL by taking $\mathbf{z}^{(t)} \in \partial l^{(t)}(\mathbf{w}^{(t)})$, results in the same regret bounds as those of FTRL

-Remember the FTRL update: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{z}^{(t)}$

Convex surrogate: Regret bound for non-convex loss

- Our analysis relied on the convexity of $l^{(t)}$; what if it is not?
- \bullet Consider a *convex* upper bound $\hat{l}^{(t)}$ such that $l^{(t)} \leq \hat{l}^{(t)}$
- Running the online gradient descent using $\hat{l}^{(t)}$ gives regret bound $\sum_{t=1}^{T} \left(\hat{l}^{(t)}(\mathbf{w}^{(t)}) - \hat{l}^{(t)}(\mathbf{w}^{*}) \right) \le \|\mathbf{w}^{*}\|_{2}^{2} L\sqrt{2T}$
- Combined with $l^{(t)}(\mathbf{w}^{(t)}) \leq \hat{l}^{(t)}(\mathbf{w}^{(t)})$, we get $\sum_{t=1}^{T} l^{(t)}(\mathbf{w}^{(t)}) \leq \sum_{t=1}^{T} \hat{l}^{(t)}(\mathbf{w}^{*}) + \|\mathbf{w}^{*}\|_{2}^{2} L\sqrt{2T}$

Perceptron algorithm: Online classification learning with mistake bound

Perceptron update:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y^{(t)} \mathbf{x}^{(t)} \cdot \mathbf{1}_{\left[y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \le 0\right]}$$

- Non-convex loss function 0-1 loss (Online classification) $l^{(t)}(\mathbf{w}^{(t)}) = \mathbf{1}_{\left[y^{(t)}\langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0\right]}$
- Lemma: If there exists \mathbf{w}^* such that $\forall t, y^{(t)} \langle \mathbf{w}^*, \mathbf{x}^{(t)} \rangle \ge 1$, mistake bound of perceptron is

where
$$\|\mathbf{x}^{(t)}\|_2^2 \le R^2$$

 $m \le 2R^2 \|\mathbf{w}^*\|_2^2$,
number of
mistakes

Perceptron algorithm: Equivalent to ODG with surrogate loss

- Define convex surrogate $\hat{l}^{(t)}$ as $\hat{l}^{(t)} = 1 y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle$ if the perceptron makes a mistake, and $\hat{l}^{(t)} = 0$ if not
- Online gradient descent with $\hat{l}^{(t)}$ is equivalent to perceptron

$$-\text{OGD:} \begin{array}{l} \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta y^{(t)} \mathbf{x}^{(t)} \cdot \mathbf{1}_{[y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0]} \\ = \eta \sum_{t=1}^{T} y^{(t)} \mathbf{x}^{(t)} \cdot \mathbf{1}_{[y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0]} \end{array}$$

27

$$-\text{Perceptron:} \begin{aligned} \mathbf{w}^{(t+1)} &= \mathbf{w}^{(t)} + y^{(t)} \mathbf{x}^{(t)} \cdot \mathbf{1}_{\left[y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0\right]} \\ &= \sum_{t=1}^{T} y^{(t)} \mathbf{x}^{(t)} \cdot \mathbf{1}_{\left[y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0\right]} \end{aligned} \qquad \begin{array}{c} \text{no effect on} \\ \text{prediction} \end{array}$$

-We can take arbitrary η since sign $(\langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle) = \operatorname{sign}(\langle \eta \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle)$

KYOTO UNIVERSITY

Proof of perceptron mistake bound (1/2): Use regret bound of OGD with surrogate loss

• Online gradient descent with $\hat{l}^{(t)}$ gives

$$\operatorname{Regret}_{T}(S) \leq \frac{1}{2\eta} \|\mathbf{w}^{*}\|_{2}^{2} + \eta \sum_{t=1}^{I} \|y^{(t)}\mathbf{x}^{(t)}\|_{2}^{2} \cdot 1_{[y^{(t)}\langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0]}$$

In the other hand,
$$\|y^{(t)}\mathbf{x}^{(t)}\|_{2}^{2} = \|\mathbf{x}^{(t)}\|_{2}^{2} \leq R^{2}$$

$$\operatorname{Regret}_{T}(\mathcal{S}) = \sum_{t=1}^{T} \left(\hat{l}^{(t)}(\mathbf{w}^{(t)}) - \hat{l}^{(t)}(\mathbf{w}^{*}) \right) \ge m$$

$$-\operatorname{since} \sum_{t} \hat{l}^{(t)} \left(\mathbf{w}^{(t)} \right) \geq \sum_{t} l^{(t)} \left(\mathbf{w}^{(t)} \right) = m,$$

and
$$\sum_{t=1}^{T} \hat{l}^{(t)} \left(\mathbf{w}^{*} \right) = 0 \text{ (since } \forall t, y^{(t)} \left\langle \mathbf{w}^{*}, \mathbf{x}^{(t)} \right\rangle \geq 1)$$

Т

• Connecting the two inequalities yields $m \leq \frac{1}{2\eta} \| \mathbf{w}^* \|_2^2 + \eta m R^2$

■ ()ı

Proof of perceptron mistake bound (2/2): Optimize the bound

• We have
$$m \leq \frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \eta m R^2$$

• Minimizing the r.h.s. finds
$$\eta = \frac{\|\mathbf{w}^*\|_2}{R\sqrt{2m}}$$
, which results in $m \le R\sqrt{2m} \|\mathbf{w}^*\|_2$

- -Remember we do not have to determine η actually
- $m \le 2R^2 \|\mathbf{w}^*\|_2^2$