# http://goo.gl/Jv7Vj9

**Course website** 

**KYOTO UNIVERSITY** 

Statistical Machine Learning Theory

# From Multi-class Classification to Structured Output Prediction

Hisashi Kashima kashima@i.Kyoto-u.ac.jp



### Topics of the 2nd half of this course: Advanced supervised learning and unsupervised learning

- Multi-class classification and structured output prediction
- Other variants of supervised learning problems:
  - Semi-supervised learning, active learning, & transfer learning
- On-line learning:
  - Follow the leader, on-line gradient descent, perceptron
  - Regret analysis
- Sparse modeling:
  - -L<sub>1</sub> regularization, Lasso, & reduced rank regression
- Model evaluation

# Homework

#### **KYOTO UNIVERSITY**

#### Homework: Supervised regression

- Work on a supervised regression problem:
  - 1. Implement at least one linear regression by yourself
  - 2. Use publicly available nonlinear regression implementations
- Participate into a competition at http//universityofbigdata.net
  - Register with your Google account (if you have not yet)



- -The competition will last until Dec. 31th
- -Submit your predictions at least twice

(once with your implementation; once with another)

### Submitting your prediction: http://goo.gl/3BMpf4

See the instructions at http//universityofbigdata.net/ competition/5757948332605440?lang=en

| BIG DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mpetitions Enroll                                                                                         | Symup with Google Account Syn in 🕸 💌                                                                                                     |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Geographical spatial temperature prediction                                                                                                                                                                                                                                                                                                                                                                                                                           | Submission                                                                                                |                                                                                                                                          |                      |
| In this competition, the weather information of some new<br>target place at the same timestamp.<br>Number of Target Place: 1<br>Number of Nearby Place: 10<br>Types of Observation Data at a Timestamp: Temperature<br>Time Interval of Observation: Hour<br>Geographical Information:<br>- Location (Cartesian coordinate system): target place (0<br>- Altitude<br>Problem type Regression<br>Evaluation metric Root mean squared error<br>Competition scaus Coming | 管理者アカウントには提出回款制度は<br>You can upload a file of up to 20M<br>the aip compression format.<br>Note (optional) | Select file Submit<br>최당ません<br>B. You can compress your submission using<br>sion. Notes are shown in the bottom of this page and only yo | u can see your note. |
| Started 2015/12/01-00:00 (Japan Stand:<br>Ends 2015/12/31-23:59 (Japan Stand:<br>Public/Private Public<br>Invitation setting Open to everyone                                                                                                                                                                                                                                                                                                                         | Intermediate ranking                                                                                      |                                                                                                                                          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intermediate rank                                                                                         | Nickname                                                                                                                                 | Intermediate score   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 C                                                                                                       | Hatwards of Dis Data                                                                                                                     | 0.0240               |

The intermediate scores are calculated using 50% of the test dataset, and the final scores are calculated using the other 50%. Final ranks are determined according to the final scores.

### Report submission: Submit a report summarizing your work

- Submission:
  - -Due: Jan. 7th noon, 2016
  - –Send your report to kashipong+report@gmail.com with subject "SML2015 competition report" and confirm you receive an ack before 8th
- Report format:
  - -Must include:
    - Brief description of your implementation (not sourcecode)
    - Your approach, analysis pipeline, results, and discussions
  - -At least 3 pages, but do not exceed 6 pages in LNCS format

#### Topics of the 2nd half of this course: Advanced supervised learning and unsupervised learning

#### Multi-class classification and structured output prediction

- Other variants of supervised learning problems:
  - Semi-supervised learning, active learning, & transfer learning
- On-line learning:
  - Follow the leader, on-line gradient descent, perceptron
  - Regret analysis
- Sparse modeling:
  - -L<sub>1</sub> regularization, Lasso, & reduced rank regression
- Model evaluation

# **Multi-class Classification**

#### **KYOTO UNIVERSITY**

### Multi-class classification: Generalization of supervised two-class classification

- Training dataset: {  $(x^{(1)}, y^{(1)}), \dots, (x^{(i)}, y^{(i)}), \dots, (x^{(N)}, y^{(N)})$  }
  - -input  $\mathbf{x}^{(i)} \in \mathcal{X} = \mathbb{R}^D$ : *D*-dimensional real vector
  - -output  $y^{(i)} \in \mathcal{Y}$ : one-dimensional scalar
- Estimate a *deterministic mapping*  $f: \mathcal{X} \to \mathcal{Y}$  (often with a confidence value) or a *conditional probability*  $P(y|\mathbf{x})$

Classification

- $-\mathcal{Y} = \{+1, -1\}$ : Two-class classification
- $-\mathcal{Y} = \{1, 2, \dots, K\}$ : *K*-class classification
  - hand-written digit recognition, text classification, ...

### Two-class classification model: One model with one model parameter vector

- Two-class classification model
  - -Linear classifier:  $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) \in \{+1, -1\}$
  - -Logistic regression:  $P(y|\mathbf{x}) = \frac{1}{1 + \exp(-w^{T}\mathbf{x})}$



- -The model is specified by the parameter vector  $\boldsymbol{w} = (w_1, w_2, ..., w_D)^T$
- Our goal is find the parameter  $\hat{w}$  by using the training dataset  $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)})\}$ 
  - –Generalization: accurate prediction for future data sampled from some underlying distribution  $\mathcal{D}_{x,y}$

#### Simple approaches to multi-class classification: Reduction to two-class classification

- Reduction to a set of two-class classification problems
- Approach 1: One-versus-rest
  - -Construct K two-class classifiers; each classifier sign $(w^{(k)T}x)$  discriminates class k from the others
  - -Prediction: the most probable class with the highest  $w^{(k)} x$
- Approach 2: One-versus-one

confidence

- -Construct K(K 1)/2 two-class classifiers, each of which discriminates between a pair of two classes
- -Prediction by voting

#### Error Correcting Output Code (ECOC) : An approach inspired by error correcting coding

- Approach 3: Error correcting output code (ECOC)
  - -Construct a set of two-class classifiers, each of which discriminates between two groups of classes, e.g. AB vs. CD
  - Prediction by finding the nearest code in terms of Hamming distance codes

| two-class classificat |            |    | cation | ion problems |    |    |    |                  |
|-----------------------|------------|----|--------|--------------|----|----|----|------------------|
|                       | Class      | 1  | 2      | 3            | 4  | 5  | 6  |                  |
|                       | А          | 1  | 1      | 1            | 1  | 1  | 1  | code for class A |
|                       | В          | 1  | -1     | 1            | -1 | -1 | -1 |                  |
|                       | С          | -1 | -1     | -1           | 1  | -1 | 1  |                  |
|                       | D          | -1 | 1      | 1            | -1 | -1 | 1  |                  |
|                       | prediction | 1  | 1      | 1            | 1  | 1  | -1 |                  |

#### **Kyoto University**

#### Design of ECOC : Code design is the key for good classification

 Codes (row) should be apart from each other in terms of Hamming distance



#### codes

#### Hamming distances between codes

| class | А | В | С | D |
|-------|---|---|---|---|
| Α     | 0 | 4 | 4 | 3 |
| В     |   | 0 | 4 | 3 |
| С     |   |   | 0 | 3 |
| D     |   |   |   | 0 |

#### Multi-class classification model: One model parameter vector for each class

- More direct modeling of multi-class classification
  - -One parameter vector  $w^{(k)}$  for each class k

-Multi-class linear classifier: 
$$f(\mathbf{x}) = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{(k)^{\intercal}} \mathbf{x}$$

-Multi-class logistic regression:  $P(k|\mathbf{x}) = \frac{\exp(w^{(k)^{\mathsf{T}}}\mathbf{x})}{\sum_{k'\in\mathcal{Y}}\exp(w^{(k')^{\mathsf{T}}}\mathbf{x})}$ 

 converts real values into positive values, and then normalizes them to obtain a probability value ∈ [0,1]

#### Training multi-class classifier: Constraints for correct classification

- Training multiclass linear classifier:  $f(\mathbf{x}) = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{(k)^{\intercal}} \mathbf{x}$ 
  - -can use the one-versus-rest method, but not perfect
- Constraints for correct classification of training data  $w^{(y^{(i)})^{\intercal}} x^{(i)} > w^{(k)^{\intercal}} x^{(i)}$  for  $\forall k \neq y^{(i)}$ i.e.  $w^{(y^{(i)})^{\intercal}} x^{(i)} > \underset{k \in \mathcal{Y}, k \neq y^{(i)}}{\operatorname{argmax}} w^{(k)^{\intercal}} x^{(i)}$ 
  - Learning algorithms find solutions satisfying (almost all) these constraints
    - Multi-class perceptron, multi-class SVM, ...

### Multi-class perceptron: Incremental learning algorithm of linear classifier

- Multi-class linear perceptron trains a classifier to meet the constraints  $w^{(y^{(i)})^{\intercal}}x^{(i)} > \max_{k \in \mathcal{Y}, y \neq y^{(i)}} w^{(k)^{\intercal}}x^{(i)}$
- Algorithm:

1. Given 
$$(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$$
, make a prediction with :  

$$f(\mathbf{x}^{(i)}) = \operatorname*{argmax}_{k \in \mathcal{Y}} \mathbf{w}^{(k)^{\intercal}} \mathbf{x}^{(i)}$$

- 2. Update parameters only when the prediction is wrong:
  - 1.  $w^{(y^{(i)})} \leftarrow w^{(y^{(i)})} + x^{(i)}$ : reinforces correct prediction

2.  $w^{(f(x^{(i)}))} \leftarrow w^{(f(x^{(i)}))} - x^{(i)}$ : discourages wrong prediction

### Training multi-class logistic regression: (Regularized) maximum likelihood estimation

Find the parameters that minimizes the negative log-likelihood

$$J(\{\boldsymbol{w}^{(y)}\}_{y}) = -\sum_{i=1,...,N} \log p(y^{(i)} | \boldsymbol{x}^{(i)}) + \gamma \sum_{y \in \mathcal{Y}} \| \boldsymbol{w}^{(y)} \|_{2}^{2}$$

 $- \| \mathbf{w}^{(y)} \|_{2}^{2}$ : a regularizer to avoid overfitting

• For multi-class logistic regression  $P(k|\mathbf{x}) = \frac{\exp(\mathbf{w}^{(k)^{T}}\mathbf{x})}{\sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k')^{T}}\mathbf{x})}$ 

$$J = -\sum_{i} \mathbf{w}^{(k)} \mathbf{x}^{(i)} + \sum_{i} \log \sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k)} \mathbf{x}^{(i)}) + reg.$$

-Minimization using gradient-based optimization methods

Difference of perceptron and ML estimation: Perceptron needs only max operation; ML needs sum

Perceptron

-Training & prediction need only  $\underset{k \in \mathcal{Y}}{\operatorname{argmax}}$  operation

-SVM also does

- Regularized) maximum likelihood estimation
  - -Training: needs  $\sum_{k' \in \mathcal{Y}}$  operation
  - -Prediction: needs  $\underset{k \in \mathcal{Y}}{\operatorname{argmax}}$  operation

Equivalent form of multi-class logistic regression: Representation with one (huge) parameter vector

Consider a joint feature space of x and y:

$$-\boldsymbol{\varphi}(\boldsymbol{x},\boldsymbol{y}) = (\delta(\boldsymbol{y}=1)\boldsymbol{x}^{\mathsf{T}}, \delta(\boldsymbol{y}=2)\boldsymbol{x}^{\mathsf{T}}, \dots, \delta(\boldsymbol{y}=K)\boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}$$

-Corresponding parameter vector:

$$\boldsymbol{w} = (\boldsymbol{w}^{(1)^{\intercal}}, \boldsymbol{w}^{(2)^{\intercal}}, \dots, \boldsymbol{w}^{(K)^{\intercal}})^{\intercal}$$

-*KD*-dimensional feature space

• Multiclass LR model: 
$$P(y|\mathbf{x}) = \frac{\exp(w^{\mathsf{T}}\varphi(x,y))}{\sum_{k'\in\mathcal{Y}}\exp(\varphi(x,k'))}$$

-Equivalent to the previous model  $P(k|x) = \frac{\exp(w^{(k)T}x)}{\sum_{k' \in \mathcal{Y}} \exp(w^{(k')T}x)}$ 

-Useful when we consider structured output prediction

# **Structured Output Prediction**

#### **KYOTO UNIVERSITY**

### Ultimate predictive modeling: Learn a mapping between general sets

• In supervised learning, what we want is a mapping  $f: \mathcal{X} \to \mathcal{Y}$ 

 $-\mathcal{X} = \mathbb{R}^{D}$ ,  $\mathcal{Y} = \mathbb{R}$  (regression) or a discrete set (classification)

 ${\ }$  Ultimate predictor should take arbitrary  ${\mathcal X}{\rm and}\ {\mathcal Y}{\rm sets}$ 



- ${\ensuremath{\,^{\bullet}}}$  We have to restrict the classes of  ${\mathcal X}$  and  ${\mathcal Y}$  in practice
  - Especially, cases with general output spaces are difficult to consider in the current framework
    - Classification with an infinite number of classes

### Structured output prediction: Outputs are sequences, trees, and graphs

- (Inputs and) outputs have complex structures such as sequences, trees, and graphs in many applications
  - -Natural language processing: texts, parse trees, ...
  - -Bioinformatics: sequences and structures of DNA/RNA/proteins
- Structured output prediction tasks:
  - -Syntactic parsing: sequences to trees
    - *x* = (*John*, *loves*, *Mary*): sequence
    - y = (S(NP(NNP))(VP(VPZ)(NP(NNP))))
      - : tree

22



### Sequence labeling: Structured prediction with sequential input & output

Sequence labeling gives a label to each element of a sequence

 $-x = (x_1, x_2, ..., x_T)$ : input sequence of length T

 $-y = (y_1, y_2, ..., y_T)$ : output sequence with the same length

-Simplest structured prediction problem

| $x_1$ | $x_2$ | ••• | $x_T$ |
|-------|-------|-----|-------|
| $y_1$ | $y_2$ | ••• | $y_T$ |

- Example. Part-of-speech tagging gives a part-of-speech tag to each word in a sentence
  - -x: sentence (a sequence of words)
  - -y: Part-of-speech tags (e.g. noun, verb,...)

#### Sequence labeling as multi-class classification: Impossible to work with exponentially many parameters

Formulation as T independent classification problems

-Predict  $y_t$  using surrounding words (...,  $x_{t-1}$ ,  $x_t$ ,  $x_{t+1}$ , ...)

Sometimes quite works well and efficient

24

- -No guarantee of consistence among predicted labels
  - Might want to include dependencies among labels such as "a verb is likely to follow nouns"
- This problem can also be considered as one multi-class classification problem with K<sup>T</sup> classes

 $-f(x) = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} w^{(k)^{\intercal}} x$  is almost impossible to work with exponentially many parameters

Key for solving structured output prediction: Formulation as a validation problem of in/output pairs

Remember another form of multi-class classifier using the joint feature space

$$-P(y|x) = \frac{\exp(w^{\mathsf{T}}\varphi(x,y))}{\sum_{k'\in\mathcal{Y}}\exp(\varphi(x,k'))} \text{ or } f(x) = \underset{y\in\mathcal{Y}}{\operatorname{argmax}} w^{\mathsf{T}}\varphi(x,y)$$

-They evaluate the affinity of an input-output pair

• Still the problem is not solved.... but we can consider reducing the dimensionality of  $\varphi(x, y)$ 

-Because the dimensionality of  $\boldsymbol{\varphi}(x, y)$  is still huge

#### Features for sequence labeling: First-order Markov assumption gives two feature types

- Two types of features for sequence labeling
  - 1. Combination of one input label  $x_t$  and one output label  $y_t$ 
    - Standard feature for multi-class classification

• e.g. 
$$x_t$$
="loves"  $\land y_t$ ="verb"

- 2. Combination of two consecutive labels  $y_{t-1}$  and  $y_t$ 
  - Markov assumption of output labels

• e.g. 
$$y_{t-1}$$
="noun"  $\land y_t$ ="verb"

#### **KYOTO UNIVERSITY**

### Feature vector definition: The numbers of appearance of each pattern

• Each dimension of  $\boldsymbol{\varphi}(x, y)$  is defined as the number of appearance of each pattern in the joint sequence (x, y), e.g.

$$-\varphi(x, y)_1 =$$
#appearance of [ $x_t = "loves" \land y_t = "verb"$ ]

$$-\varphi(x, y)_2 =$$
#appearance of [ $y_{t-1}$ ="noun"  $\land y_t$ ="verb"]

-Features for all possible combination of POS tags and words





noun

#### Impact of first-order Markov assumption: Reduced dimensionality of feature space

- Dimensionality of a feature vector was decreased from O(K<sup>T</sup>) to O(K<sup>2</sup>) (K is the number of labels for each position)
- Space problem was solved; we can calculate  $w^{T} \varphi(x, y)$ 
  - -Prediction problem (i.e.  $\operatorname{argmax}_{y \in \mathcal{Y}} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\varphi}(x, y)$ ) has not been solved
  - For sequential labeling, this can be done by using dynamic programming

#### Structured perceptron :

Simple structured output learning algorithm

- Structured perceptron learns  $\boldsymbol{w}$  satisfying  $\boldsymbol{w}^{\mathsf{T}} \boldsymbol{\varphi}(x^{(i)}, y^{(i)}) > \max_{y \in \mathcal{Y}, y \neq y^{(i)}} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\varphi}(x^{(i)}, y)$
- Algorithm:

1. Given 
$$(x^{(i)}, y^{(i)})$$
, make a prediction with :  

$$f(\mathbf{x}^{(i)}) = \operatorname*{argmax}_{y \in \mathcal{Y}} \mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(x^{(i)}, y)$$

- 2. Update parameters only when the prediction is wrong  $w^{\text{NEW}} \leftarrow w^{\text{OLD}} + \varphi(x^{(i)}, y^{(i)}) - \varphi(x^{(i)}, f(x^{(i)}))$
- Prediction can be done in polynomial time by using dynamic programming for sequence labeling

### Conditional random field: Conditional probabilistic model for structured prediction

Conditional random filed: conditional probabilistic model

$$P(y|x) = \frac{\exp(\mathbf{w}^{\mathsf{T}}\boldsymbol{\varphi}(x,y))}{\sum_{k'\in\mathcal{Y}}\exp(\boldsymbol{\varphi}(x,k'))}$$

ML estimation needs the sum over all possible outputs

$$J = \sum_{i} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\varphi} (x^{(i)}, y^{(i)}) - \sum_{i} \log \sum_{y \in \mathcal{Y}} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\varphi} (x^{(i)}, y) + reg.$$

-The sum can be taken with dynamic programming

### Perceptron vs. CRF: Perceptron needs only max operation; ML needs sum

- Just like in multi-class classification,
  - -Structured perceptron can work only with argmax operation
  - -Maximum likelihood estimation also needs sum operation
- There are some structured output problems where argmax operation is easy but sum operation is difficult
  - -e.g. bipartite matching