http://goo.gl/XIlNMN

Course website

Statistical Machine Learning Theory

Sparsity

Hisashi Kashima
kashima@i.Kyoto-u.ac.jp

Topics:

Learning with sparsity

- L_{1} regularization \& Lasso
- Reduced rank regression

Lasso

Regression:

Prediction of a continuous target variable

- Training dataset $\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right), \ldots,\left(\mathbf{x}^{(N)}, y^{(N)}\right)\right\}$
- $\mathbf{x}^{(i)} \in \mathbb{R}^{D}$: feature vector
- $y^{(i)} \in \mathbb{R}$: real-valued target value
- Linear regression model: $y=\mathbf{w}^{\top} \mathbf{x}$
- Least square solution:

$$
\begin{aligned}
\mathbf{w}^{*} & =\operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N}\left(y^{(i)}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)^{2} \\
& =\operatorname{argmin}_{\mathbf{w}}\|\mathbf{y}-\boldsymbol{X} \mathbf{w}\|_{2}^{2} \quad \begin{array}{l}
\boldsymbol{X}=\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(N)}\right)^{\top} \\
\mathbf{y}=\left(y^{(1)}, y^{(2)}, \ldots, y^{(N)}\right)^{\top}
\end{array} \\
& =\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \mathbf{y}
\end{aligned}
$$

Ridge regression:
L_{2}-Regularization for avoiding overfitting

- Overfitting to the training data
- Especially when the training data is small compared with the input space dimensionality
- Regularized least square solution:

$$
\begin{aligned}
\mathbf{w}^{*} & =\operatorname{argmin}_{\mathbf{w}}\|\mathbf{y}-\boldsymbol{X} \mathbf{w}\|_{2}^{2}+\gamma\|\mathbf{w}\|_{2}^{2} \\
& =\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\gamma \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\top} \mathbf{y}
\end{aligned}
$$

$-\|\mathbf{w}\|_{2}^{2}=w_{1}^{2}+w_{2}^{2}+\cdots+w_{D}^{2}: \mathrm{L}_{2}$-regularization term
L_{1}-regularization:
A sparsity-inducing regularization

- Over-fitting sometimes occurs even with L_{2}-regularization
- when the dimensionality is extremely large
- when the true model uses only a small number of features
- L_{1}-regularization
$-\|\mathbf{w}\|_{1}=\left|w_{1}\right|+\left|w_{2}\right|+\cdots+\left|w_{D}\right|: L_{1}$-regularization term leads to sparse solutions
- Sparse: Many w_{d} becomes 0 in the solutions
- High interpretability and easy-to-implementability
- L_{1}-regularized least square linear regression (LASSO):

$$
\mathbf{w}^{*}=\operatorname{argmin}_{\mathbf{w}}\|\mathbf{y}-\boldsymbol{X} \mathbf{w}\|_{2}^{2}+\gamma\|\mathbf{w}\|_{1}
$$

Why does L_{1}-regularization induce sparse solutions?:

Some intuitive explanations

- L_{1}-regularization is equivalent to L_{1}-norm constraint: $\operatorname{argmin}_{\mathbf{w}} f(\mathbf{w})+\gamma\|\mathbf{w}\|_{1} \Leftrightarrow \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w})$ s.t. $\|\mathbf{w}\|_{1} \leq \lambda$
- Some intuitive explanations for sparsity:

1. L_{1}-norm is a convex alternative to L_{0}-norm
2. Level curves of norms

L_{1}-regularized least square linear regression:
No closed-form solutions

- L_{1}-regularized least square linear regression (LASSO):

$$
\mathbf{w}^{*}=\operatorname{argmin}_{\mathbf{w}}\|\mathbf{y}-\boldsymbol{X} \mathbf{w}\|_{2}^{2}+\gamma\|\mathbf{w}\|_{1}
$$

- L_{1}-regularization with a convex loss function is a convex optimization problem
- LASSO has no closed form solution...
\Rightarrow needs iterative solutions, e.g.:

1. Optimization with respect to only one dimension
2. Reduction to L_{2}-regularization
we will discuss this

An algorithm for lasso:

Repeat optimization w.r.t only one dimension

- L_{1}-regularization term is cumbersome since:
- it is not differentiable at $w_{d}=0$
- $w_{d}=0$ tends to be a solution
- Observation: The objective function is easy to optimize if we focus only on a single dimension (e.g. w_{d})
- Iterative algorithm:

1. Choose an arbitrary d
2. Optimize w_{d} (has a closed form solution)
3. Repeat steps $1 \& 2$ until convergence

One dimensional optimization problem for LASSO:

Sum of a quadratic function \& an absolute value function

- L_{1}-regularized least square linear regression (LASSO):

$$
\mathbf{w}^{*}=\operatorname{argmin}_{\mathbf{w}}\|\mathbf{y}-\boldsymbol{X} \mathbf{w}\|_{2}^{2}+\gamma\|\mathbf{w}\|_{1}
$$

- Consider optimization w.r.t. only w_{d} :
$-w_{d}{ }^{*}=\operatorname{argmin}_{w_{d}} q\left(w_{d}\right)+\gamma\left|w_{d}\right|$
- $q\left(w_{d}\right)=a\left(w_{d}-\widetilde{w}_{d}\right)^{2}+b(a>0)$: quadratic function
- \widetilde{w}_{d} is the minimizer of $q\left(w_{d}\right)$ i.e. the solution of the one-variable optimization when $\gamma\left|w_{d}\right|$ is neglected
- Finally what we want is

$$
w_{d}^{*}=\operatorname{argmin}_{w_{d}} \frac{1}{2}\left(w_{d}-\widetilde{w}_{d}\right)^{2}+\lambda\left|w_{d}\right| \quad\left(\lambda=\frac{1}{2 a} \gamma\right)
$$

Solution of the one-dimensional optimization:

Find the stationary point

- Find the minimizer of $l\left(w_{d}\right)=\frac{1}{2}\left(w_{d}-\widetilde{w}_{d}\right)^{2}+\lambda\left|w_{d}\right|$
- Taking the derivative of $l\left(w_{d}\right)$,
$\frac{\partial l\left(w_{d}\right)}{\partial w_{d}}=\left\{\begin{array}{cc}w_{d}-\widetilde{w}_{d}+\lambda & \left(\text { if } w_{d}>0\right) \\ w_{d}-\widetilde{w}_{d}-\lambda & \left(\text { if } w_{d}<0\right) \\ \text { undefined } & \text { (otherwise) }\end{array}\right.$

$$
\frac{\partial l\left(w_{d}\right)}{\partial w_{d}}
$$

solution

Sparsity of lasso solutions:

Solutions close to zero are rounded to zero

- We have 3 cases:

1. $-\widetilde{w}_{d}+\lambda<0$ (i.e. $\widetilde{w}_{d}>\lambda$),

- Solution: $w_{d}^{*}=\widetilde{w}_{d}-\lambda$

2. $-\widetilde{w}_{d}-\lambda>0$ (i.e. $\widetilde{w}_{d}<-\lambda$),

- Solution: $w_{d}^{*}=\widetilde{w}_{d}+\lambda$

3. $-\lambda \leq \widetilde{w}_{d} \leq \lambda$

- Solution: $w_{d}^{*}=0$

sparse solution
- if $w_{d}^{*}>0$, we have a contradiction

$$
\left.\frac{\partial l\left(w_{d}\right)}{\partial w_{d}}\right|_{w_{d}=w_{d}^{*}}=w_{d}^{*}-\widetilde{w}_{d}+\lambda=0 \Rightarrow w_{d}^{*}=\widetilde{w}_{d}-\lambda \leq 0
$$

- Similarly, assuming $w_{d}{ }^{*}<0$ yields a contradiction $w_{d}^{*} \geq 0$

Dimension Reduction

Multivariate regression:

Prediction of multiple continuous variables

- Multivariate regression is a regression problem to predict multiple output variables
$-f: \mathbb{R}^{D} \Rightarrow \mathbb{R}^{D^{\prime}}$
- Training dataset $\left\{\left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}\right), \ldots,\left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)}\right)\right\}$
- $\mathbf{x}^{(i)} \in \mathbb{R}^{D}$: feature vector
- $\mathbf{y}^{(i)} \in \mathbb{R}^{D^{\prime}}$: real-valued target values
- Multivariate linear regression model: $\mathbf{y}=\boldsymbol{W}^{\top} \mathbf{x}$
- $\boldsymbol{W} \in \mathbb{R}^{D^{\prime} \times D}:$ Matrix parameter

Solution of multivariate regression:

Closed form least square solution

- Least square solution:

$$
\begin{aligned}
& \qquad \begin{array}{ll}
\boldsymbol{W}^{*} & =\operatorname{argmin}_{\boldsymbol{W} \in \mathbb{R}^{D^{\prime} \times D}} \sum_{i=1}^{N}\left\|\mathbf{y}^{(i)}-\boldsymbol{W}^{\top} \mathbf{x}^{(i)}\right\|_{2}^{2} \\
& =\operatorname{argmin}_{\boldsymbol{W}}\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{W}\|_{\mathbf{F}}^{2} \\
& =\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}
\end{array} \begin{array}{r}
\boldsymbol{X}=\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(N)}\right)^{\top} \\
\boldsymbol{Y}=\left(\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \ldots, \mathbf{y}^{(N)}\right)^{\top} \\
\frac{\partial \operatorname{tr}(\boldsymbol{A B})}{\partial \boldsymbol{A}}=\boldsymbol{B}^{\top}
\end{array} \\
& \text { Regularized version }
\end{aligned}
$$

- $\|\boldsymbol{W}\|_{\mathrm{F}}^{2}=\sum_{(i, j)} w_{i j}^{2}: \mathrm{L}_{2}$-regularization term

$$
-\quad \boldsymbol{W}^{*}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\gamma \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}
$$

Reduced rank regression:

Multivariate regression with rank constraint

- Multivariate regression is equivalent to D^{\prime}-independent univariate regressions
- exploits no shared information
- Low-rank assumption $\boldsymbol{W}=\boldsymbol{U} \boldsymbol{V}^{\top}$
- $\boldsymbol{U} \in \mathbb{R}^{D \times K}, \boldsymbol{V} \in \mathbb{R}^{D^{\prime} \times K}$ i.e. rank of \boldsymbol{W} is K
- $K<\min \left(D, D^{\prime}\right)$
- D^{\prime} output variables share K-dimensional latent space
- Reduced rank regression:

$$
\boldsymbol{W}^{*}=\operatorname{argmin}_{\boldsymbol{W}}\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{W}\|_{\mathrm{F}}^{2} \text { s.t. } \operatorname{rank}(\boldsymbol{W}) \leq K
$$

Sparsity in reduced rank regression:

Sparse parameters in terms of matrix singular values

- Parameter \boldsymbol{W} in the reduced rank regression $\mathbf{y}=\boldsymbol{W}^{\top} \mathbf{x}$ is dense in terms of matrix elements
- \boldsymbol{W} is sparse in terms of singular values
- $\boldsymbol{W}=\boldsymbol{U} \boldsymbol{V}^{\top}$ is low-rank
- $\boldsymbol{U} \in \mathbb{R}^{D \times K}, \boldsymbol{V} \in \mathbb{R}^{D^{\prime} \times K}, K<\min \left(D, D^{\prime}\right)$
$-\quad$ Rank $=L_{0}$ norm of singular values: $\operatorname{rank}(\boldsymbol{W})=\|\boldsymbol{\sigma}(\boldsymbol{W})\|_{0}$

- Objective function to be minimized:

$$
\begin{aligned}
\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{W}\|_{\mathrm{F}}^{2} & =\operatorname{tr}\left\{(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{W})^{\top}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{W})\right\} \\
& =\operatorname{tr}\left\{\boldsymbol{Y}^{\top} \boldsymbol{Y}-2 \boldsymbol{W}^{\top} \boldsymbol{X}^{\top} \boldsymbol{Y}+\boldsymbol{W}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{W}\right\}
\end{aligned}
$$

(Let $\boldsymbol{X}^{\top} \boldsymbol{X}=\boldsymbol{P}^{\top} \boldsymbol{\Lambda} \boldsymbol{P}$ be the eigendecomposition)
$\boldsymbol{P}^{\top} \boldsymbol{P}=\boldsymbol{P} \boldsymbol{P}^{\top}=\boldsymbol{I}=\operatorname{tr}\left\{\boldsymbol{Y}^{\top} \boldsymbol{Y}-2 \widetilde{\boldsymbol{W}}^{\top} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P} \boldsymbol{X}^{\top} \boldsymbol{Y}+\widetilde{\boldsymbol{W}}^{\top} \widetilde{\boldsymbol{W}}\right\}$
(\boldsymbol{P} : orthogonal)

$$
\text { where } \widetilde{\boldsymbol{W}}=\Lambda^{\frac{1}{2}} \boldsymbol{P} \boldsymbol{W}
$$

$$
=\left\|\widetilde{\boldsymbol{W}}-\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P} \boldsymbol{X}^{\top} \boldsymbol{Y}\right\|_{\mathrm{F}}^{2}+\text { const. }
$$

- Find the best rank-K approximation of $\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P} \boldsymbol{X}^{\top} \boldsymbol{Y}$
- The best rank- K approximation of $\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P} \boldsymbol{X}^{\top} \boldsymbol{Y}$ is given as $\widetilde{\boldsymbol{W}}^{*}=\boldsymbol{U}^{*} \boldsymbol{\Sigma}^{*} \boldsymbol{V}^{* \top}$
- \boldsymbol{V}^{*} is top- K eigenvectors of

$$
\boldsymbol{Y}^{\top} \boldsymbol{X} \boldsymbol{P}^{\top} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P} \boldsymbol{X}^{\top} \boldsymbol{Y}=\boldsymbol{Y}^{\top} \boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}
$$

- $\boldsymbol{\Sigma}^{*}$: a diagonal matrix with K largest singular values
$-\boldsymbol{U}^{*}=\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P} \boldsymbol{X}^{\top} \boldsymbol{Y} \boldsymbol{V}^{*} \boldsymbol{\Sigma}^{*-1}$
- The solution is $\boldsymbol{W}^{*}=\boldsymbol{P}^{\top} \boldsymbol{\Lambda}^{-\frac{1}{2}} \widetilde{\boldsymbol{W}}^{*}=\boldsymbol{P}^{\top} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{U}^{*} \boldsymbol{\Sigma}^{*} \boldsymbol{V}^{* \top}=$ $\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y} \boldsymbol{V}^{*} \boldsymbol{V}^{* \top}$
[Supplement 1] Eigenvalue decomposition of symmetric matrix
- $\boldsymbol{A}=\boldsymbol{P}^{\top} \boldsymbol{\Lambda} \boldsymbol{P}$: eigen-decomposition of symmetric matrix \boldsymbol{A}
$-\Lambda$: diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{D}\right)$, where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{D} \geq 0$ (eigenvalues)
- \boldsymbol{P} : orthogonal matrix $\boldsymbol{P}^{\top} \boldsymbol{P}=\boldsymbol{P} \boldsymbol{P}^{\top}=\boldsymbol{I}$

[Supplement 2] Singular value decomposition (SVD) and best rank- K approximation :

- $\boldsymbol{B}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$: SVD of rank- R real matrix \boldsymbol{B}
- $\boldsymbol{\Sigma}$: diagonal matrix $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{R}, 0, \ldots, 0\right)$, where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{D} \geq 0$ (singular values)
- $\quad \boldsymbol{\Sigma}$ is sqrt of eigenvalues of $\boldsymbol{B} \boldsymbol{B}^{\top}$ or $\boldsymbol{B}^{\top} \boldsymbol{B}$
- $\boldsymbol{U}, \boldsymbol{V}$: orthogonal matrices
- \boldsymbol{U} is eig.vecs of $\boldsymbol{B} \boldsymbol{B}^{\top}, \boldsymbol{V}$ is eig.vecs of $\boldsymbol{B}^{\top} \boldsymbol{B}, \mathbf{u}_{i}=\frac{1}{\sigma_{i}} \boldsymbol{B}^{\top} \mathbf{v}_{i}$
- Best rank-K approximation problem of matrix \boldsymbol{B} :

$$
\widehat{\boldsymbol{B}}^{*}=\operatorname{argmin}_{\widehat{\boldsymbol{B}}}\|\boldsymbol{B}-\widehat{\boldsymbol{B}}\|_{\mathrm{F}}^{2} \text { s.t. } \operatorname{rank}(\widehat{\boldsymbol{B}}) \leq K
$$

- Find K largest singular values $\boldsymbol{\Sigma}^{*}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{K}\right)$, and corresponding vectors $\boldsymbol{U}^{*}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}\right), \boldsymbol{V}^{*}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{K}\right)$, and let $\widehat{\boldsymbol{B}}^{*}=\boldsymbol{U}^{*} \boldsymbol{\Sigma}^{*} \boldsymbol{V}^{* \top}$

Dimension reduction:

Find low-dimensional representations of high-dim. data

- Dimension reduction:
- Find a low-dimensional mapping $f: \mathbb{R}^{D} \Rightarrow \mathbb{R}^{K}(D>K)$
- for interpretability, computational/space efficiency, generalization abilities, ...
- (Lossy) compression: keep the original information as much as possible
- Linear dimension reduction: $\mathbf{h}=\boldsymbol{U}^{\top} \mathbf{x}$
- $\boldsymbol{U}: D \times K$ matrix

Basic idea behind dimension reduction:
Find a coding \& decoding function for lossy compression

- Coding and decoding process:

$$
\mathbf{x} \xrightarrow[\text { coding }]{f} \mathbf{h} \underset{\text { decoding }}{g} \tilde{\mathbf{x}}
$$

- If f and g are appropriately designed so that $\mathbf{x} \fallingdotseq \tilde{\mathbf{x}}$,
\mathbf{h} must be a good low-dimensional representation of \mathbf{x}
- Optimization problem
$-(f, g)=\operatorname{argmin}_{f, g} \sum_{i=1}^{N} \operatorname{loss}\left(\mathbf{x}^{(i)}, g\left(f\left(\mathbf{x}^{(i)}\right)\right)\right)$

Principal component analysis:

Dimension reduction using reduced rank regression

- Linear dimension reduction with coding \& decoding functions
- linear coding function $f: \mathbf{h}=\boldsymbol{U}^{\top} \mathbf{x}(\boldsymbol{U}: D \times K$ matrix)
- linear decoding function $g: \tilde{\mathbf{x}}=\boldsymbol{V h}(\boldsymbol{V}: K \times D$ matrix $)$
- $\tilde{\mathbf{x}}=\boldsymbol{V} \boldsymbol{U}^{\top} \mathbf{x}$
- Reduced rank regression finds the solution by taking the training dataset as $\left\{\left(\mathbf{x}^{(1)}, \mathbf{x}^{(1)}\right), \ldots,\left(\mathbf{x}^{(N)}, \mathbf{x}^{(N)}\right)\right\}$
- Solution will be $\boldsymbol{V}=\boldsymbol{U}^{\top}$

