http://goo.gl/XIINMN

Course website

KYOTO UNIVERSITY

Statistical Machine Learning Theory

Sparsity

Hisashi Kashima kashima@i.Kyoto-u.ac.jp

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Topics:

Learning with sparsity

- L₁ regularization & Lasso
- Reduced rank regression

Lasso

Regression:

Prediction of a continuous target variable

- Training dataset $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$
 - $-\mathbf{x}^{(i)} \in \mathbb{R}^D$: feature vector
 - $-y^{(i)} \in \mathbb{R}$: real-valued target value
- Linear regression model: $y = \mathbf{w}^{\mathsf{T}} \mathbf{x}$
- Least square solution:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})^2$$

$$= \operatorname{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2 \qquad \mathbf{X} = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)})^{\mathsf{T}}$$

$$= (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y} \qquad \mathbf{y} = (y^{(1)}, y^{(2)}, \dots, y^{(N)})^{\mathsf{T}}$$

Ridge regression:

L₂-Regularization for avoiding overfitting

- Overfitting to the training data
 - Especially when the training data is small compared with the input space dimensionality
- Regularized least square solution:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \gamma \|\mathbf{w}\|_2^2$$
$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 $- \|\mathbf{w}\|_{2}^{2} = w_{1}^{2} + w_{2}^{2} + \dots + w_{D}^{2}$: L₂-regularization term

L₁-regularization:

A sparsity-inducing regularization

- Over-fitting sometimes occurs even with L₂-regularization
 - when the dimensionality is extremely large
 - when the true model uses only a small number of features
- L₁-regularization
 - $\|\mathbf{w}\|_1 = |w_1| + |w_2| + \cdots + |w_D|$: L₁-regularization term leads to sparse solutions
 - Sparse: Many w_d becomes 0 in the solutions
 - High interpretability and easy-to-implementability
 - L₁-regularized least square linear regression (LASSO):

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \gamma \|\mathbf{w}\|_1$$

Why does L₁-regularization induce sparse solutions?: Some intuitive explanations

- L₁-regularization is equivalent to L₁-norm constraint: $\operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}) + \gamma \|\mathbf{w}\|_1 \Leftrightarrow \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}) \text{ s.t. } \|\mathbf{w}\|_1 \leq \lambda$
- Some intuitive explanations for sparsity:
 - 1. L₁-norm is a convex alternative to L₀-norm
 - 2. Level curves of norms

L₁-regularized least square linear regression: No closed-form solutions

L₁-regularized least square linear regression (LASSO):

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \gamma \|\mathbf{w}\|_1$$

- L₁-regularization with a convex loss function is a convex optimization problem
- LASSO has no closed form solution...
 - ⇒ needs iterative solutions, e.g.:
 - 1. Optimization with respect to only one dimension
 - 2. Reduction to L₂-regularization

we will discuss this

An algorithm for lasso:

Repeat optimization w.r.t only one dimension

- L₁-regularization term is cumbersome since:
 - it is not differentiable at $w_d = 0$
 - $w_d = 0$ tends to be a solution
- Observation: The objective function is easy to optimize if we focus only on a single dimension (e.g. w_d)
- Iterative algorithm:
 - 1. Choose an arbitrary *d*
 - 2. Optimize w_d (has a closed form solution)
 - 3. Repeat steps 1&2 until convergence

One dimensional optimization problem for LASSO: Sum of a quadratic function & an absolute value function

L₁-regularized least square linear regression (LASSO):

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \gamma \|\mathbf{w}\|_1$$

- Consider optimization w.r.t. only w_d :
 - $w_d^* = \operatorname{argmin}_{w_d} q(w_d) + \gamma |w_d|$
 - $q(w_d) = a(w_d \widetilde{w}_d)^2 + b$ (a > 0): quadratic function
 - \widetilde{w}_d is the minimizer of $q(w_d)$ i.e. the solution of the one-variable optimization when $\gamma |w_d|$ is neglected
- Finally what we want is

$$w_d^* = \operatorname{argmin}_{w_d} \frac{1}{2} (w_d - \tilde{w}_d)^2 + \lambda |w_d| \quad (\lambda = \frac{1}{2a} \gamma)$$

Solution of the one-dimensional optimization: Find the stationary point

- Find the minimizer of $l(w_d) = \frac{1}{2}(w_d \widetilde{w}_d)^2 + \lambda |w_d|$
- Taking the derivative of $l(w_d)$,

$$\frac{\partial l(w_d)}{\partial w_d} = \begin{cases} w_d - \widetilde{w}_d + \lambda & (\text{if } w_d > 0) \\ w_d - \widetilde{w}_d - \lambda & (\text{if } w_d < 0) \\ \text{undefined (otherwise)} \end{cases}$$

- Solution: $w_d = w_d^*$ s.t. $\frac{\partial l(w_d)}{\partial w_d}\Big|_{w_d = w_d^*} = 0$
 - lies at $\frac{\partial l(w_d)}{\partial w_d}$ hits the x-axis

Sparsity of lasso solutions:

Solutions close to zero are rounded to zero

- We have 3 cases:
 - 1. $-\widetilde{w}_d + \lambda < 0$ (i.e. $\widetilde{w}_d > \lambda$),
 - Solution: $w_d^* = \widetilde{w}_d \lambda$
 - 2. $-\widetilde{w}_d \lambda > 0$ (i.e. $\widetilde{w}_d < -\lambda$),
 - Solution: $w_d^* = \widetilde{w}_d + \lambda$
 - 3. $-\lambda \leq \widetilde{w}_d \leq \lambda$
 - Solution: $w_d^* = 0$
- sparse solution

Similarly, assuming $w_d^* < 0$ yields a contradiction $w_d^* \ge 0$

Dimension Reduction

Multivariate regression:

Prediction of multiple continuous variables

- Multivariate regression is a regression problem to predict multiple output variables
 - $f: \mathbb{R}^D \Rightarrow \mathbb{R}^{D'}$
- Training dataset $\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$
 - $-\mathbf{x}^{(i)} \in \mathbb{R}^D$: feature vector
 - $-\mathbf{y}^{(i)} \in \mathbb{R}^{D'}$: real-valued target values
- Multivariate linear regression model: $y = W^T x$
 - $W \in \mathbb{R}^{D' \times D}$: Matrix parameter

Solution of multivariate regression: Closed form least square solution

Least square solution:

$$\begin{aligned} \boldsymbol{W}^* &= \operatorname{argmin}_{\boldsymbol{W} \in \mathbb{R}^{D' \times D}} \sum_{i=1}^{N} \left\| \mathbf{y}^{(i)} - \boldsymbol{W}^{\mathsf{T}} \mathbf{x}^{(i)} \right\|_{2}^{2} \\ &= \operatorname{argmin}_{\boldsymbol{W}} \left\| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{W} \right\|_{F}^{2} \qquad \boldsymbol{X} = \left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)} \right)^{\mathsf{T}} \\ &= (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{Y} \qquad \boldsymbol{Y} = \left(\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(N)} \right)^{\mathsf{T}} \\ &\frac{\partial \operatorname{tr}(\boldsymbol{A} \boldsymbol{B})}{\partial \boldsymbol{A}} = \boldsymbol{B}^{\mathsf{T}} \end{aligned}$$

- Regularized version
 - $\|\mathbf{W}\|_{\mathrm{F}}^2 = \sum_{(i,j)} w_{ij}^2$: L₂-regularization term

$$- W^* = (X^\top X + \gamma I)^{-1} X^\top Y$$

Reduced rank regression: Multivariate regression with rank constraint

- Multivariate regression is equivalent to D'-independent univariate regressions
 - exploits no shared information
- Low-rank assumption $\boldsymbol{W} = \boldsymbol{U} \boldsymbol{V}^{\mathsf{T}}$
 - $U \in \mathbb{R}^{D \times K}$, $V \in \mathbb{R}^{D' \times K}$ i.e. rank of W is K
 - $K < \min(D, D')$
 - D' output variables share K-dimensional latent space
- Reduced rank regression:

$$W^* = \operatorname{argmin}_W ||Y - XW||_F^2 \text{ s.t. } \operatorname{rank}(W) \le K$$

Sparsity in reduced rank regression: Sparse parameters in terms of matrix singular values

- Parameter W in the reduced rank regression $y = W^T x$ is dense in terms of matrix elements
- W is sparse in terms of singular values
 - $W = UV^{\mathsf{T}}$ is low-rank
 - $\boldsymbol{U} \in \mathbb{R}^{D \times K}, \boldsymbol{V} \in \mathbb{R}^{D' \times K}, K < \min(D, D')$
 - Rank = L_0 norm of singular values: $rank(\mathbf{W}) = ||\mathbf{\sigma}(\mathbf{W})||_0$

Solution of reduced rank regression (1/2):

Best rank-*K* approximation of a matrix

Objective function to be minimized:

$$||Y - XW||_F^2 = \operatorname{tr}\{(Y - XW)^\top (Y - XW)\}$$

$$= \operatorname{tr}\{Y^\top Y - 2W^\top X^\top Y + W^\top X^\top XW\}$$
(Let $X^\top X = P^\top \Lambda P$ be the eigendecomposition)

Find the best rank-K approximation of $\mathbf{\Lambda}^{-\frac{1}{2}} \mathbf{P} \mathbf{X}^{\mathsf{T}} \mathbf{Y}$

Solution of reduced rank regression (2/2): Closed form solution using SVD

- The best rank-K approximation of $\Lambda^{-\frac{1}{2}}PX^{\top}Y$ is given as $\widetilde{W}^* = U^*\Sigma^*V^{*\top}$
 - V^* is top-K eigenvectors of

$$\boldsymbol{Y}^{\top} \boldsymbol{X} \boldsymbol{P}^{\top} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P} \boldsymbol{X}^{\top} \boldsymbol{Y} = \boldsymbol{Y}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$$

- Σ^* : a diagonal matrix with K largest singular values
- $\boldsymbol{U}^* = \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{P} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{Y} \boldsymbol{V}^* \boldsymbol{\Sigma}^{*-1}$
- The solution is $W^* = P^\top \Lambda^{-\frac{1}{2}} \widetilde{W}^* = P^\top \Lambda^{-\frac{1}{2}} U^* \Sigma^* V^{*\top} = (X^\top X)^{-1} X^\top Y V^* V^{*\top}$

[Supplement 1] Eigenvalue decomposition of symmetric matrix

- $A = P^{\top} \Lambda P$: eigen-decomposition of symmetric matrix A
 - Λ : diagonal matrix $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_D)$, where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D \geq 0$ (eigenvalues)
 - P: orthogonal matrix $P^{T}P = PP^{T} = I$

[Supplement 2] Singular value decomposition (SVD) and best rank-K approximation :

- $B = U\Sigma V^{\top}$: SVD of rank- R real matrix B
 - Σ : diagonal matrix $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, ..., \sigma_R, 0, ..., 0)$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_D \geq 0$ (singular values)
 - Σ is sqrt of eigenvalues of BB^{\top} or $B^{\top}B$
 - U, V: orthogonal matrices
 - $m{U}$ is eig.vecs of $m{B}m{B}^{ op}$, $m{V}$ is eig.vecs of $m{B}^{ op}m{B}$, $m{u}_i = rac{1}{\sigma_i}m{B}^{ op}m{v}_i$
- Best rank-K approximation problem of matrix B:

$$\widehat{B}^* = \operatorname{argmin}_{\widehat{B}} \|B - \widehat{B}\|_{F}^2 \text{ s.t. } \operatorname{rank}(\widehat{B}) \leq K$$

- Find K largest singular values $\Sigma^* = \operatorname{diag}(\sigma_1, ..., \sigma_K)$, and corresponding vectors $U^* = (\mathbf{u}_1, ..., \mathbf{u}_K)$, $V^* = (\mathbf{v}_1, ..., \mathbf{v}_K)$, and let $\widehat{B}^* = U^* \Sigma^* V^{* \top}$

Dimension reduction:

Find low-dimensional representations of high-dim. data

- Dimension reduction:
 - Find a low-dimensional mapping $f: \mathbb{R}^D \Rightarrow \mathbb{R}^K (D > K)$
 - for interpretability, computational/space efficiency, generalization abilities, ...
 - (Lossy) compression: keep the original information as much as possible
- Linear dimension reduction: $\mathbf{h} = \mathbf{U}^{\mathsf{T}} \mathbf{x}$
 - $U: D \times K$ matrix

Basic idea behind dimension reduction: Find a coding & decoding function for lossy compression

Coding and decoding process:

$$\mathbf{x} \xrightarrow{f} \mathbf{h} \xrightarrow{g} \widetilde{\mathbf{x}}$$

- If f and g are appropriately designed so that $\mathbf{x} = \tilde{\mathbf{x}}$, \mathbf{h} must be a good low-dimensional representation of \mathbf{x}
- Optimization problem

$$- (f,g) = \operatorname{argmin}_{f,g} \sum_{i=1}^{N} \operatorname{loss}(\mathbf{x}^{(i)}, g(f(\mathbf{x}^{(i)})))$$

Principal component analysis: Dimension reduction using reduced rank regression

- Linear dimension reduction with coding & decoding functions
 - linear coding function $f : \mathbf{h} = \mathbf{U}^{\mathsf{T}} \mathbf{x} \ (\mathbf{U} : D \times K \text{ matrix})$
 - linear decoding function $g: \tilde{\mathbf{x}} = V\mathbf{h}$ ($V: K \times D$ matrix)
 - $-\tilde{\mathbf{x}} = \mathbf{V}\mathbf{U}^{\mathsf{T}}\mathbf{x}$
- Reduced rank regression finds the solution by taking the training dataset as $\{(\mathbf{x}^{(1)},\mathbf{x}^{(1)}),...,(\mathbf{x}^{(N)},\mathbf{x}^{(N)})\}$
 - Solution will be $V = U^{\top}$

