http://goo.gl/XIINMN

Course website

KYOTO UNIVERSITY

Statistical Machine Learning Theory

From Multi-class Classification to Structured Output Prediction

Hisashi Kashima kashima@i.Kyoto-u.ac.jp

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Topics of the 2nd half of this course: Advanced supervised learning and unsupervised learning

- Multi-class classification and structured output prediction
- Other variants of supervised learning problems:
 - Semi-supervised learning, active learning, & transfer learning
- On-line learning:
 - Follow the leader, on-line gradient descent, perceptron
 - Regret analysis
- Sparse modeling:
 - −L₁ regularization, Lasso, & reduced rank regression
- Model evaluation

Multi-class Classification

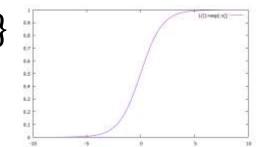
Multi-class classification:

Generalization of supervised two-class classification

- Training dataset: $\{(x^{(1)}, y^{(1)}), ..., (x^{(i)}, y^{(i)}), ..., (x^{(N)}, y^{(N)})\}$
 - -input $\mathbf{x}^{(i)} \in \mathcal{X} = \mathbb{R}^D$: D-dimensional real vector
 - -output $y^{(i)} \in \mathcal{Y}$: one-dimensional scalar
- Estimate a deterministic mapping $f: \mathcal{X} \to \mathcal{Y}$ (often with a confidence value) or a conditional probability P(y|x)
- Classification
 - $-\mathcal{Y} = \{+1, -1\}$: Two-class classification
 - $-\mathcal{Y} = \{1, 2, \dots, K\}$: K-class classification
 - hand-written digit recognition, text classification, ...

Two-class classification model: One model with one model parameter vector

- Two-class classification model
 - -Linear classifier: $f(x) = \text{sign}(w^T x) \in \{+1, -1\}$
 - -Logistic regression: $P(y|x) = \frac{1}{1 + \exp(-w^{T}x)}$



- The model is specified by the parameter vector $\mathbf{w} = (w_1, w_2, ..., w_D)^T$
- Our goal is find the parameter \hat{w} by using the training dataset $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(N)},y^{(N)})\}$
 - -Generalization: accurate prediction for future data sampled from some underlying distribution $\mathcal{D}_{x,v}$

Simple approaches to multi-class classification: Reduction to two-class classification

- Reduction to a set of two-class classification problems
- Approach 1: One-versus-rest
 - -Construct K two-class classifiers; each classifier $sign(\mathbf{w}^{(k)^{\intercal}}\mathbf{x})$ discriminates class k from the others
 - -Prediction: the most probable class with the highest $w^{(k)\intercal}x$
- Approach 2: One-versus-one
 - -Construct K(K-1)/2 two-class classifiers, each of which discriminates between a pair of two classes
 - Prediction by voting

confidence

Error Correcting Output Code (ECOC): An approach inspired by error correcting coding

- Approach 3: Error correcting output code (ECOC)
 - Construct a set of two-class classifiers, each of which discriminates between two groups of classes, e.g. AB vs. CD
 - Prediction by finding the nearest code in terms of Hamming distance

codes

								_
	class	two-class classification problems						
		1	2	3	4	5	6	
	Α	1	1	1	1	1	1	code for class A
	В	1	-1	1	-1	-1	-1	
	С	-1	-1	-1	1	-1	1	
	D	-1	1	1	-1	-1	1	
	prediction	1	1	1	1	1	-1	

Design of ECOC:

Code design is the key for good classification

 Codes (row) should be apart from each other in terms of Hamming distance

codes

class	two-class classification problems							
class	1	2	3	4	5	6		
Α	1	1	1	1	1	1		
В	1	-1	1	-1	-1	-1		
С	-1	-1	-1	1	-1	1		
D	-1	1	1	-1	-1	1		

Hamming distances between codes

class	Α	В	С	D
Α	0	4	4	3
В		0	4	3
С			0	3
D				0

Multi-class classification model: One model parameter vector for each class

- More direct modeling of multi-class classification
 - -One parameter vector $oldsymbol{w}^{(k)}$ for each class k
 - -Multi-class linear classifier: $f(\mathbf{x}) = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{(k)\intercal} \mathbf{x}$
 - -Multi-class logistic regression: $P(k|\mathbf{x}) = \frac{\exp(\mathbf{w}^{(k)\intercal}\mathbf{x})}{\sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k')\intercal}\mathbf{x})}$
 - converts real values into positive values, and then normalizes them to obtain a probability value $\in [0,1]$

Training multi-class classifier: Constraints for correct classification

- Training multiclass linear classifier: $f(x) = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{(k)\intercal} \mathbf{x}$
 - —can use the one-versus-rest method, but not perfect
- Constraints for correct classification of training data

$$\mathbf{w}^{(y^{(i)})^{\intercal}} \mathbf{x}^{(i)} > \mathbf{w}^{(k)^{\intercal}} \mathbf{x}^{(i)} \text{ for } {}^{\forall} k \neq y^{(i)}$$

i.e. $\mathbf{w}^{(y^{(i)})^{\intercal}} \mathbf{x}^{(i)} > \underset{k \in \mathcal{Y}, k \neq y^{(i)}}{\operatorname{argmax}} \mathbf{w}^{(k)^{\intercal}} \mathbf{x}^{(i)}$

- Learning algorithms find solutions satisfying (almost all) these constraints
 - Multi-class perceptron, multi-class SVM, ...

Multi-class perceptron: Incremental learning algorithm of linear classifier

• Multi-class linear perceptron trains a classifier to meet the constraints $\mathbf{w}^{(y^{(i)})^{\intercal}} \mathbf{x}^{(i)} > \max_{k \in \mathcal{U}, \mathbf{y} \neq \mathbf{y}^{(i)}} \mathbf{w}^{(k)^{\intercal}} \mathbf{x}^{(i)}$

• Algorithm:

- 1. Given $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$, make a prediction with : $f(\mathbf{x}^{(i)}) = \operatorname*{argmax}_{k \in \mathcal{Y}} \mathbf{w}^{(k)\intercal} \mathbf{x}^{(i)}$
- 2. Update parameters only when the prediction is wrong:
 - 1. $\mathbf{w}^{(y^{(i)})} \leftarrow \mathbf{w}^{(y^{(i)})} + \mathbf{x}^{(i)}$: reinforces correct prediction
 - 2. $\mathbf{w}^{(f(\mathbf{x}^{(i)}))} \leftarrow \mathbf{w}^{(f(\mathbf{x}^{(i)}))} \mathbf{x}^{(i)}$: discourages wrong prediction

Training multi-class logistic regression: (Regularized) maximum likelihood estimation

• Find the parameters that minimizes the negative log-likelihood

$$J(\{\boldsymbol{w}^{(y)}\}_{y}) = -\sum_{i=1,\dots,N} \log p(y^{(i)}|\boldsymbol{x}^{(i)}) + \gamma \sum_{y \in \mathcal{Y}} \|\boldsymbol{w}^{(y)}\|_{2}^{2}$$

- $\| \mathbf{w}^{(y)} \|_{2}^{2}$: a regularizer to avoid overfitting
- For multi-class logistic regression $P(k|x) = \frac{\exp(w^{(\kappa)}|x)}{\sum_{k' \in \mathcal{Y}} \exp(w^{(k')}|x)}$

$$J = -\sum_{i} \mathbf{w}^{(k)\intercal} \mathbf{x}^{(i)} + \sum_{i} \log \sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k)\intercal} \mathbf{x}^{(i)}) + reg.$$

-Minimization using gradient-based optimization methods

Difference of perceptron and ML estimation: Perceptron needs only max operation; ML needs sum

- Perceptron
 - -Training & prediction need only argmax operation $k \in \mathcal{Y}$
 - -SVM also does
- (Regularized) maximum likelihood estimation
 - -Training: needs $\sum_{k' \in \mathcal{U}}$ operation
 - -Prediction: needs argmax operation $k \in \mathcal{Y}$

Equivalent form of multi-class logistic regression: Representation with one (huge) parameter vector

• Consider a joint feature space of x and y:

$$-\boldsymbol{\varphi}(\boldsymbol{x},y) = (\delta(y=1)\boldsymbol{x}^{\mathsf{T}}, \delta(y=2)\boldsymbol{x}^{\mathsf{T}}, ..., \delta(y=K)\boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}$$

–Corresponding parameter vector:

$$\mathbf{w} = (\mathbf{w}^{(1)^{\intercal}}, \mathbf{w}^{(2)^{\intercal}}, ..., \mathbf{w}^{(K)^{\intercal}})^{\intercal}$$

-KD-dimensional feature space

- Multiclass LR model: $P(y|x) = \frac{\exp(w^{\mathsf{T}}\varphi(x,y))}{\sum_{k'\in\mathcal{Y}}\exp(\varphi(x,k'))}$
 - -Equivalent to the previous model $P(k|x) = \frac{\exp(\mathbf{w}^{(k)T}x)}{\sum_{k' \in \mathcal{U}} \exp(\mathbf{w}^{(k')T}x)}$
 - -Useful when we consider structured output prediction

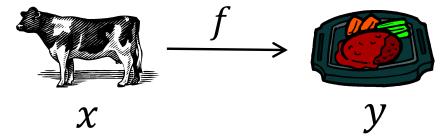
Structured Output Prediction

Generalized supervised learning problem: Learn a mapping between general sets

lacktriangledown In supervised learning, what we want is a mapping $f\colon \mathcal{X} o \mathcal{Y}$

$$-\mathcal{X}=\mathbb{R}^D$$
, $\mathcal{Y}=\mathbb{R}$ (regression) or a discrete set (classification)

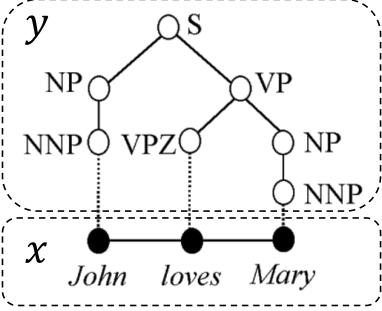
lacktriangle More general problem setting takes arbitrary ${\mathcal X}$ and ${\mathcal Y}$ sets



- lacktriangle But, we have to restrict the classes of ${\mathcal X}$ and ${\mathcal Y}$ in practice
 - Especially, cases with general output spaces are difficult to consider in the current framework
 - Classification with an infinite number of classes

Structured output prediction: Outputs are sequences, trees, and graphs

- (Inputs and) outputs have complex structures such as sequences, trees, and graphs in many applications
 - Natural language processing: texts, parse trees, ...
 - Bioinformatics: sequences and structures of DNA/RNA/proteins
- Structured output prediction tasks:
 - —Syntactic parsing: sequences to trees
 - x = (John, loves, Mary): sequence
 - y = (S(NP(NNP))(VP(VPZ)(NP(NNP)))): tree



Sequence labeling:

Structured prediction with sequential input & output

Sequence labeling gives a label to each element of a sequence

$$-x = (x_1, x_2, ..., x_T)$$
: input sequence of length T

$$-y = (y_1, y_2, ..., y_T)$$
: output sequence with the same length

-Simplest structured prediction problem

x_1	x_2	•••	x_T
y_1	y_2	•••	y_T

- Example. Part-of-speech tagging gives a part-of-speech tag to each word in a sentence
 - -x: sentence (a sequence of words)
 - -y: Part-of-speech tags (e.g. *noun*, *verb*,...)

Sequence labeling as multi-class classification: Impossible to work with exponentially many parameters

- Formulation as T independent classification problems
 - -Predict y_t using surrounding words $(..., x_{t-1}, x_t, x_{t+1}, ...)$
 - Sometimes quite works well and efficient
 - No guarantee of consistence among predicted labels
 - Might want to include dependencies among labels such as "a verb is likely to follow nouns"
- ullet This problem can also be considered as one multi-class classification problem with K^T classes
 - $-f(x) = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{(k)\intercal} \mathbf{x}$ is almost impossible to work with exponentially many parameters

Key for solving structured output prediction: Formulation as a validation problem of in/output pairs

 Remember another form of multi-class classifier using the joint feature space

$$-P(y|x) = \frac{\exp(\mathbf{w}^{\mathsf{T}}\boldsymbol{\varphi}(x,y))}{\sum_{k'\in\mathcal{Y}} \exp(\boldsymbol{\varphi}(x,k'))} \text{ or } f(x) = \underset{y\in\mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{\mathsf{T}}\boldsymbol{\varphi}(x,y)$$

- -They evaluate the affinity of an input-output pair
- Still the problem is not solved.... but we can consider reducing the dimensionality of $\varphi(x,y)$
 - -Because the dimensionality of $\varphi(x,y)$ is still huge

Features for sequence labeling: First-order Markov assumption gives two feature types

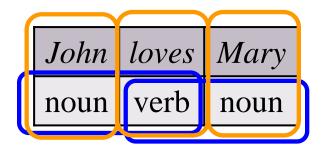
- Two types of features for sequence labeling
 - 1. Combination of one input label x_t and one output label y_t
 - Standard feature for multi-class classification
 - e.g. x_t ="loves" $\land y_t$ ="verb"
 - 2. Combination of two consecutive labels y_{t-1} and y_t
 - Markov assumption of output labels
 - e.g. y_{t-1} ="noun" $\land y_t$ ="verb"

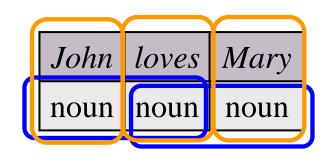
x_1	x_2	•••	x_{t-1}	x_t	•••	x_T
y_1	y_2		y_{t-1}	y_t		y_T

Feature vector definition:

The numbers of appearance of each pattern

- Each dimension of $\varphi(x, y)$ is defined as the number of appearance of each pattern in the joint sequence (x, y), e.g.
 - $-\varphi(x,y)_1$ = #appearance of [x_t ="loves" $\land y_t$ ="verb"]
 - $-\varphi(x,y)_2$ = #appearance of [y_{t-1} ="noun" $\land y_t$ ="verb"]
 - -Features for all possible combination of POS tags and words





Impact of first-order Markov assumption: Reduced dimensionality of feature space

- Dimensionality of a feature vector was decreased from $O(K^T)$ to $O(K^2)$ (K is the number of labels for each position)
- Space problem was solved; we can calculate $\boldsymbol{w}^{\mathsf{T}}\boldsymbol{\varphi}(x,y)$
 - -Prediction problem (i.e. $\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\varphi}(x, y)$) has not been solved
 - For sequential labeling, this can be done by using dynamic programming

Structured perceptron: Simple structured output learning algorithm

Structured perceptron learns w satisfying

$$\mathbf{w}^{\mathsf{T}}\boldsymbol{\varphi}(x^{(i)}, y^{(i)}) > \max_{y \in \mathcal{Y}, y \neq y^{(i)}} \mathbf{w}^{\mathsf{T}}\boldsymbol{\varphi}(x^{(i)}, y)$$

- Algorithm:
 - 1. Given $(x^{(i)}, y^{(i)})$, make a prediction with : $f(\mathbf{x}^{(i)}) = \operatorname*{argmax} \mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(x^{(i)}, y)$ $y \in \mathcal{Y}$
 - 2. Update parameters only when the prediction is wrong

$$\boldsymbol{w}^{\text{NEW}} \leftarrow \boldsymbol{w}^{\text{OLD}} + \boldsymbol{\varphi}(x^{(i)}, y^{(i)}) - \boldsymbol{\varphi}(x^{(i)}, f(x^{(i)}))$$

Prediction can be done in polynomial time by using dynamic programming for sequence labeling

Conditional random field:

Conditional probabilistic model for structured prediction

Conditional random filed: conditional probabilistic model

$$P(y|x) = \frac{\exp(\mathbf{w}^{\mathsf{T}}\boldsymbol{\varphi}(x,y))}{\sum_{k' \in \mathcal{Y}} \exp(\boldsymbol{\varphi}(x,k'))}$$

• ML estimation needs the sum over all possible outputs

$$J = \sum_{i} \mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(x^{(i)}, y^{(i)}) - \sum_{i} \log \sum_{y \in \mathcal{Y}} \mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(x^{(i)}, y) + reg.$$

-The sum can be taken with dynamic programming

Perceptron vs. CRF: Perceptron needs only max operation; ML needs sum

- Just like in multi-class classification,
 - -Structured perceptron can work only with argmax operation
 - -Maximum likelihood estimation also needs sum operation
- There are some structured output problems where argmax operation is easy but sum operation is difficult
 - -e.g. bipartite matching

Homework

Homework:

Supervised regression

- Work on a supervised regression problem:
 - 1. Implement at least one method by yourself
 - 2. Use publicly available implementations (e.g. scikit.learn)
- Participate into a competition at http//universityofbigdata.net
 - -Temperature prediction problem
 - -Starts at Jun. 3th
 - -Ends at Jul. 10th
- Submit a report summarizing your work
 - -Due: Jul. 20th noon

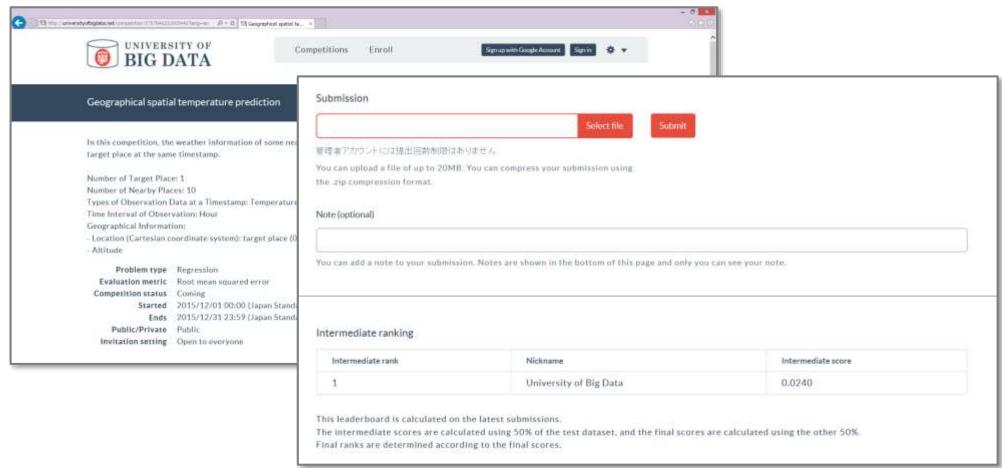
How to participate: Register to University Of Big Data

- We use our educational competition platform: http://universityofbigdata.net/?lang=en
- Register with your Google account (if you have not)
 - -with registration code "SML2016"

- If you already have an account, send an email to universityofbigdata@gmail.com to give you a permission
 - This is a closed competition and hence we have to give you a permission

Submitting your prediction: http://goo.gl/a2LiUZ

See the instructions at http://universityofbigdata.net/ competition/5500001?lang=en



Report submission: Submit a report summarizing your work

- Submission:
 - -Due: Jul. 20th noon
 - –Send your report to kashipong+report@gmail.com with subject "SML2016 competition report" and confirm you receive an ack before 21th
- Report format:
 - -Must include:
 - Brief description of your implementation (not source codes)
 - Your approach, analysis pipeline, results, and discussions
 - At least 3 pages, but do not exceed 6 pages in LNCS format