https://goo.gl/kfxwEg

KYOTO UNIVERSITY

Statistical Learning Theory - Classification -

Hisashi Kashima

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Classification

Classification:

Supervised learning for predicting discrete variable

- Goal: Obtain a function $f: X \to Y$ (Y: discrete domain)
 - -E.g. $x \in \mathcal{X}$ is an image and $y \in \mathcal{Y}$ is the type of object appearing in the image
 - -Two-class classification: $\mathcal{Y} = \{+1, -1\}$
- Training dataset:

 N pairs of an input and an output $\{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(N)}, y^{(N)})\}$

http://www.vision.caltech.edu/Image Datasets/Caltech256/

Some applications of classification:

From binary to multi-class classification

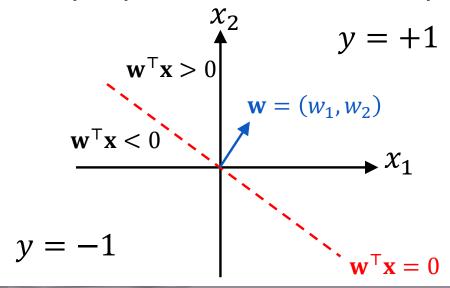
- Binary (two-class)classification:
 - Purchase prediction: Predict if a customer ${\bf x}$ will buy a particular product (+1) or not (-1)
 - Credit risk prediction: Predict if a obligor ${\bf x}$ will pay back a debt (+1) or not (-1)
- Multi-class classification:
 - Text classification: Categorize a document x into one of several categories, e.g., {politics, economy, sports, ...}
 - Image classification: Categorize the object in an image x into one of several object names, e.g., {AK5, American flag, backpack, ...}
 - Action recognition: Recognize the action type ($\{running, walking, sitting, ...\}$) that a person is taking from sensor data x

Model for classification: Linear classifier

Linear classification: Liner regression model

$$y = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}(w_1x_1 + w_2x_2 + \dots + w_Dx_D)$$

- $-|\mathbf{w}^{\mathsf{T}}\mathbf{x}|$ indicates the intensity of belief
- $-\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$ gives a separating hyperplane
- $-\mathbf{w}$: normal vector perpendicular to the separating hyperplace



Learning framework: Loss minimization and statistical estimation

- Two learning frameworks
 - 1. Loss minimization: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}; \mathbf{w})$
 - Loss function $\ell^{(i)}$: directly handles utility of predictions
 - Regularization term $R(\mathbf{w})$
 - 2. Statistical estimation (likelihood maximization): $L(\mathbf{w}) = \prod_{i=1}^{N} f(y^{(i)}|\mathbf{x}^{(i)},\mathbf{w})$
 - Probabilistic model: Noise assumptions are clear
 - Prior distribution $P(\mathbf{w})$
 - -They are often equivalent : {
 Loss = Probabilistic model Regularization = Prior

Classification problem in loss minimization framework: Minimize loss function + regularization term

- Minimization problem: $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} L(\mathbf{w}) + R(\mathbf{w})$
 - -Loss function $L(\mathbf{w})$: Fitness to training data
 - -Regularization term $R(\mathbf{w})$: Penalty on the model complexity to avoid overfitting to training data (usually norm of \mathbf{w})
- Loss function should reflect the number of misclassifications on training data

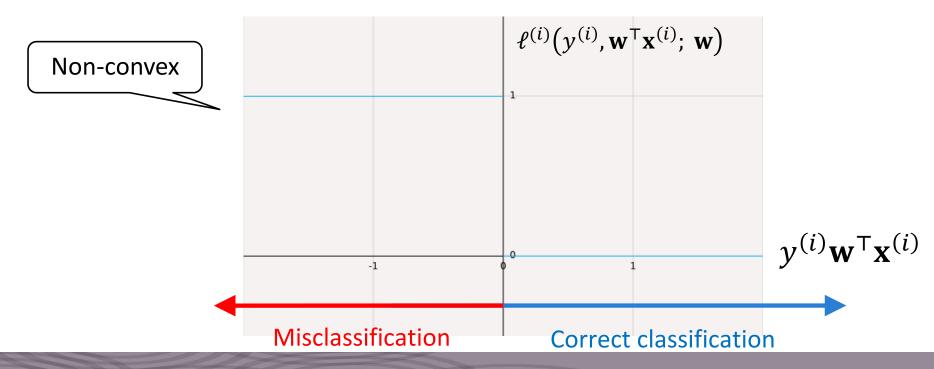
-Zero-one loss:
$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}; \mathbf{w}) = \begin{cases} 0 & (y^{(i)} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})) \\ 1 & (y^{(i)} \neq \operatorname{sign}(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})) \end{cases}$$
incorrect

Zero-one loss:

Number of misclassification is hard to minimize

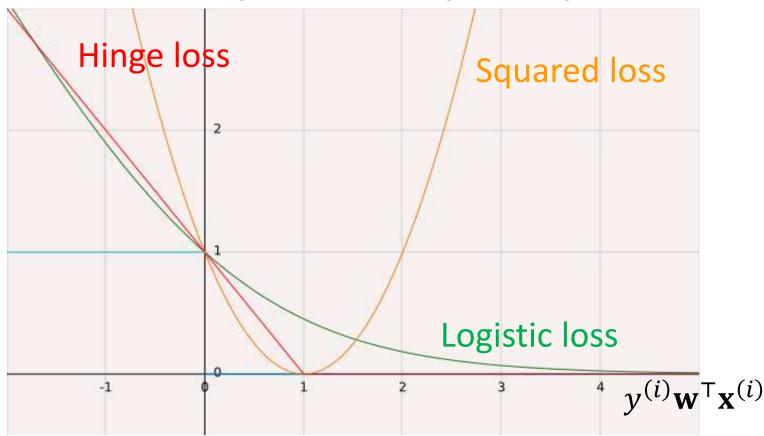
■ Zero-one loss:
$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \begin{cases} 0 & (y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} > 0) \\ 1 & (y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} \leq 0) \end{cases}$$

Non-convex function is hard to optimize directly



Convex surrogates of zero-one loss: Different functions lead to different learning machines

- Convex surrogates: Upper bounds of zero-one loss
 - –Hinge loss = SVM, Logistic loss = logistic regression, ...



Logistic regression

Logistic regression:

Minimization of logistic loss is a convex optimization

Logistic loss:

$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \frac{1}{\ln 2} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

(Regularized) Logistic regression:

Convex

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w}\|_2^2$$

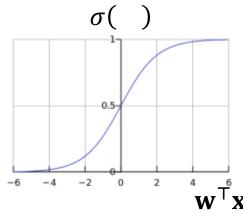
Statistical interpretation:

Logistic loss min. as MLE of logistic regression model

- Minimization of logistic loss is equivalent to maximum likelihood estimation of logistic regression model
- Logistic regression model (conditional probability):

$$f(y = 1|\mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}$$

 $-\sigma$: Logistic function $(\sigma: \Re \to (0,1))$



Log likelihood:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \log f(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w}) = -\sum_{i=1}^{N} \log(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}))$$

$$\left(=\sum_{i=1}^{N} \delta(y^{(i)}=1) \log \frac{1}{1+\exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})} + \delta(y^{(i)}=-1) \log \left(1-\frac{1}{1+\exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}\right)\right)$$

Parameter estimation of logistic regression: Numerical nonlinear optimization

Objective function of (regularized) logistic regression:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda ||\mathbf{w}||_{2}^{2}$$

- Minimization of logistic loss / MLE of logistic regression model has no closed form solution
- Numerical nonlinear optimization methods are used
 - -Iterate parameter updates: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$

Parameter update:

Find the best update minimizing the objective function

■ By update $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$, the objective function will be:

$$L_{\mathbf{w}}(\mathbf{d}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}(\mathbf{w} + \mathbf{d})^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w} + \mathbf{d}\|_{2}^{2}$$

• Find \mathbf{d}^* that minimizes $L_{\mathbf{w}}(\mathbf{d})$:

$$-\mathbf{d}^* = \operatorname{argmin}_{\mathbf{d}} L_{\mathbf{w}}(\mathbf{d})$$

Finding the best parameter update: Approximate the objective with Taylor expansion

Taylor expansion:

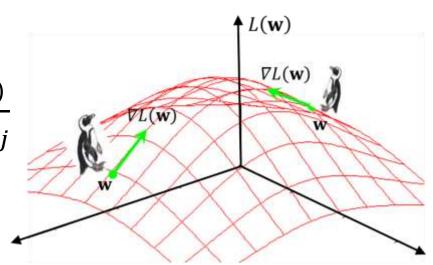
3rd-order term

$$L_{\mathbf{w}}(\mathbf{d}) = L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^{3})$$

-Gradient vector:
$$\nabla L(\mathbf{w}) = \left(\frac{\partial L(\mathbf{w})}{\partial w_1}, \frac{\partial L(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial L(\mathbf{w})}{\partial w_D}\right)^{\mathsf{T}}$$

Steepest direction

-Hessian matrix: $[H(\mathbf{w})]_{i,j} = \frac{\partial^2 L(\mathbf{w})}{\partial w_i \partial w_j}$



Newton update:

Minimizes the second order approximation

Approximated Taylor expansion (neglecting the 3rd order term):

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^{3})$$

- Derivative w.r.t. w: $\frac{\partial L_{\mathbf{w}}(\mathbf{d})}{\partial \mathbf{d}} \approx \nabla L(\mathbf{w}) + \mathbf{H}(\mathbf{w})\mathbf{d}$
- Setting it to be **0**, $\mathbf{d} = -\mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$
- Newton update formula:

$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$$

$$\mathbf{W} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w}) \qquad \mathbf{W} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$$

Modified Newton update: Second order approximation + linear search

■ The correctness of the update $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$ depends on the second-order approximation:

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d}$$

- This is not actually true for most cases
- Use only the direction of $H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ and update with $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \eta H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$
- Learning rate $\eta > 0$ is determined by linear search:

$$\eta^* = \operatorname{argmax}_{\eta} L(\mathbf{w} - \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w}))$$

Steepest gradient descent: Simple update without computing inverse Hessian

- Computing the inverse of Hessian matrix is costly
 - -Newton update: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$
- Steepest gradient descent:
 - -Replacing $H(\mathbf{w})^{-1}$ with I will give $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \eta \nabla L(\mathbf{w})$
 - $\nabla L(\mathbf{w})$ is the steepest direction
 - ullet Learning rate η is determined by line search

$$\mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{w} - \eta \nabla L(\mathbf{w})$$

Gradient of

objective function

(Supplement):

Computing the gradient of logistic regression

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

$$= -\sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) y^{(i)}\mathbf{x}^{(i)}$$

$$= -\sum_{i=1}^{n} (1 - f(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w})) y^{(i)} \mathbf{x}^{(i)}$$

Can be easily computed with the current prediction probabilities

Mini batch:

Efficient training using data subsets

Objective function for N instances:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda R(\mathbf{w})$$

- Its derivative $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{\partial \ell(\mathbf{w}^{\top} \mathbf{x}^{(i)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$ needs O(N) computation
- Approximate this with only one instance:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx N \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}} \quad \text{(Stochastic approximation)}$$

• Also we can do this with 1 < M < N instances:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{N}{M} \sum_{j \in \text{MiniBatch}} \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}} \quad \text{(Mini batch)}$$

Support Vector Machine and Kernel Methods

Support vector machine: One of the most successful learning methods

- One of the most important achievements in machine learning
 - -Proposed in 1990s
 - -Suitable for small to middle sized data
- Learning algorithm of linear classifiers
 - -Based on "margin maximization" principle
 - –Understood as hinge loss + L2-regularization
- Kernel methods: Capable of non-linear classification through kernel functions

Loss function of support vector machine: Hinge loss

■ In SVM, we use hinge loss as a convex upper bound of 0-1 loss

$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \max\{1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\}$$

Sometimes, squared hinge loss is used

Two formulations of SVM training: Soft-margin SVM and hard margin SVM

■ When we use L2 regularization, we have "soft-margin" SVM:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \max\{1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\} + \lambda \|\mathbf{w}\|_2^2$$

- Convex optimization problem
- With constraint on the loss, we have "hard-margin" SVM:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_2^2 \text{ s.t. } \sum_{i=1}^N \max\{1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}, 0\} = 0$$

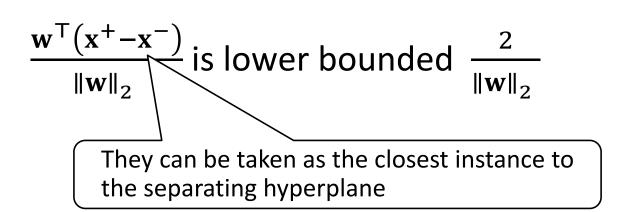
Equivalently, the constraint is written as

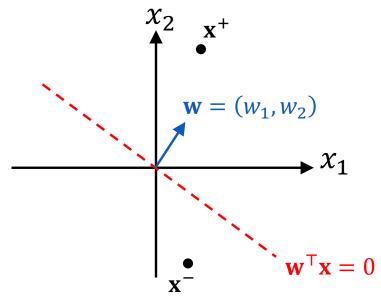
$$1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \le 0 \ (i = 1, 2, ..., N)$$

-The initial SVM formulation was in this form

Geometric interpretation: Hard-margin SVM minimizes the margin

- $\bullet \min \frac{1}{2} \parallel \mathbf{w} \parallel_2^2 \leftrightarrow \max \frac{1}{\|\mathbf{w}\|_2} \text{ (Margin)}$
- $\frac{\mathbf{w}^{\top}(\mathbf{x}^{+}-\mathbf{x}^{-})}{\|\mathbf{w}\|_{2}}$: Sum of distances between separating hyperplane and a positive instance \mathbf{x}^{+} and a negative instance \mathbf{x}^{-}
- Since $1 y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \leq 0 \ \forall i$,





Solution of hard-margin SVM (Step I): Introducing Lagrange multipliers

$$\min_{\mathbf{w}} \frac{1}{2} \| \mathbf{w} \|_{2}^{2} \text{ s.t. } 1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \leq 0 \ (i = 1, 2, ..., N)$$

• Lagrange multipliers $\{\alpha_i\}_i$:

$$\min_{\mathbf{w}} \max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \left(\frac{1}{2} \| \mathbf{w} \|_2^2 + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) \right)$$

- -For i such that $1 y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} > 0$, we have $\alpha_i = \infty$
 - The objective function becomes ∞ , that cannot be optimal
- -For i such that $1 y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \leq 0$, we have either $\alpha_i = 0$ or $(1 y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) = 0$, i.e. objective function remains the same

Solution of hard-margin SVM (Step II): Dual formulation as a quadratic programming problem

By changing the order of min and max:

$$\min_{\mathbf{w}} \max_{\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \left(\frac{\parallel \mathbf{w} \parallel_2^2}{2} + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^\top \mathbf{x}^{(i)}) \right)$$

$$\max_{\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \min_{\mathbf{w}} \left(\frac{\parallel \mathbf{w} \parallel_2^2}{2} + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^\top \mathbf{x}^{(i)}) \right)$$

• Solving min gives $\mathbf{w} = \sum_{i=1}^N \alpha_i y^{(i)} \mathbf{x}^{(i)}$, which finally results in

$$\max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$$

Support vectors: SVM model depends only on support vectors

• The dual problem:

$$\max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$$

- lacksquare Support vectors: the set of i such that $lpha_i>0$
 - -For such i, $1 y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} = 0$ holds
 - They are the closest instance to the separating hyperplane
- Non-support vectors ($\alpha_i=0$) do not appear in the model:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = \sum_{j=1}^{N} \alpha_j y^{(j)} \mathbf{x}^{(j)}^{\mathsf{T}}\mathbf{x}$$

Solution of soft-margin SVM: Additional constraints

• Equivalent formulation of soft-margin SVM:

$$\min_{\mathbf{w}} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{N} e_{i} \qquad \text{Hinge loss (Slack variable)}$$

$$\text{s. t. } 1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} \leq e_{i}$$

$$(i = 1, 2, ..., N)$$

Similar derivation gives additional constraints:

$$0 \le \alpha_i \le C$$

Kernel methods:

Data access through kernel function

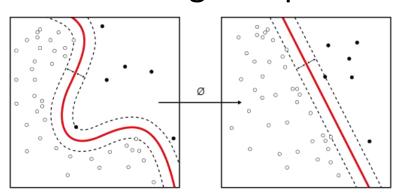
- The dual form objective function and the classifier access to data always through inner products $\mathbf{x}^{(i)}^\mathsf{T} \mathbf{x}^{(j)}$
 - -The inner product $\mathbf{x}^{(i)} \mathbf{x}^{(j)}$ is considered as similarity
- Can we use some similarity function $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ instead of $\mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$? Yes (under certain conditions)

$$\max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

-Model:
$$\sum_{j=1}^{N} \alpha_j y^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x})$$

Kernel functions: Introducing non-linearity in linear models

- Consider a (nonlinear) mapping ϕ : $\Re^D \to \Re^{D'}$
 - -D-dimensional space to $D'(\gg D)$ -dimensional space
 - -Vector \mathbf{x} is mapped to a high-dimensional vector $\boldsymbol{\phi}(\mathbf{x})$
- Define kernel $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$
- ullet SVM is a linear classifier in the D'-dimensional space, while is a non-linear classifier in the original space



Advantage of kernel methods: Computational efficiency in terms of input dimensions

Advantages of using kernel function

$$K(\mathbf{x}^{(i)},\mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}^{(j)})$$

- Even if ϕ is high-dimensional (possibly infinite dimensional), as far as its inner product $\phi(\mathbf{x}^{(i)})^{\mathsf{T}}\phi(\mathbf{x}^{(j)})$ is given as an efficiently computable function, the dimension of ϕ does not matter
- Problem size:

 $D(\text{number of dimensions}) \rightarrow N(\text{number of data})$

-Advantageous when ϕ is especially high or infinite dimensional

Example of kernel functions: Polynomial kernel

- Combinatorial features: Not only the original features $x_1, x_2, ..., x_D$, use their combinations
 - -Exponential number of dimensions wrt d
- Polynomial kernel: $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)} + c)^a$

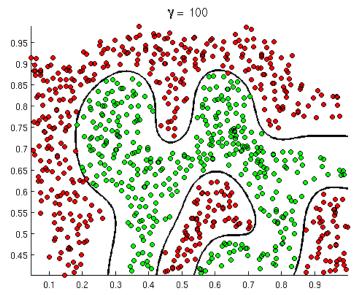
-E.g.
$$c = 0$$
, $d = 2$, two dimensional case
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \left(x_1^{(i)} x_1^{(j)} + x_2^{(i)} x_2^{(j)}\right)^2$$
$$= \left(x_1^{(i)^2}, x_2^{(i)^2}, \sqrt{2} x_1^{(i)} x_2^{(i)}\right) \left(x_1^{(j)^2}, x_2^{(j)^2}, \sqrt{2} x_1^{(j)} x_2^{(j)}\right)$$

-Note that it can be computed in O(D)

Example of kernel functions: Gaussian kernel with infinite feature space

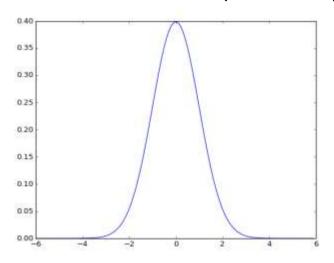
- Gaussian kernel (RBF kernel): $K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i \mathbf{x}_j\|_2^2}{\sigma}\right)$
 - Can be interpreted as an inner product in an infinitedimensional space

Discrimination surface with Gaussian kernel



http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html

Gaussian kernel (RBF kernel)



 $\|\mathbf{x}_i - \mathbf{x}_j\|_2^2$

Kernel methods for non-vectorial data: Kernels for sequences, trees, and graphs

Kernel methods can handle any kinds of objects (even non-vectorial objects) as far as kernel functions that are similarity between objects

-Kernels for strings, trees, and graphs, ... Active Classification Inactive

http://www.bic.kyoto-u.ac.jp/coe/img/akutsu_fig_e_02.gif

Representer theorem: Theoretical underpinning of kernel methods

• Kernel methods rely on the fact that the optimal parameter is represented as a linear combination of input vectors:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

- -Gives the dual form $\mathbf{w}^{\mathsf{T}}\mathbf{x} = \sum_{j=1}^{N} \alpha_j y^{(j)} \mathbf{x}^{(j)} \mathbf{x}$
- Representer theorem: The above is guaranteed under L2regularization

(Simple) proof of representer theorem: Obj. func. depends only on the linear combination

- Assumption: Loss $\ell^{(i)}$ for *i*-th data depends only on $\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}$
 - -Objective function: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) + \lambda ||\mathbf{w}||_{2}^{2}$
- Divide the optimal parameter \mathbf{w}^* into two parts $\mathbf{w} + \mathbf{w}^{\perp}$:
 - -w: Linear combination of input data
 - $-\mathbf{w}^{\perp}$: Other parts (orthogonal to all input data)
- $L(\mathbf{w}^*)$ depends only on \mathbf{w} : $\sum_{i=1}^N \ell^{(i)}(\mathbf{w}^{*\top}\mathbf{x}^{(i)}) + \lambda \|\mathbf{w}\|_2^2$

$$= \sum_{i=1}^{N} \ell^{(i)} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \right) + \lambda (\|\mathbf{w}\|_{2}^{2} + 2\mathbf{w}^{\mathsf{T}} \mathbf{w}^{\mathsf{T}} + \|\mathbf{w}^{\mathsf{T}}\|_{2}^{2})$$

$$= 0$$

$$= 0$$

Primal objective function:

Kernel representation

Primal objective function:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \max\{1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\} + \lambda \|\mathbf{w}\|_{2}^{2}$$

Primal objective function using kernel:

$$L(\mathbf{\alpha}) = \sum_{i=1}^{N} \max\{1 - y^{(i)} \sum_{j=1}^{N} \alpha_{j} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), 0\}$$

$$+ \lambda \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

Support vector regression:

Use ϵ -insensitive loss instead of hinge loss

■ Instead of the hinge loss, use ϵ -insensitive loss:

$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \max\{|y_i - \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}| - \epsilon, 0\}$$

■ Incurs no loss if the difference between the prediction and the target $|y_i - \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)}|$ is less than ϵ

