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Classification:
Supervised learning for predicting discrete variable

* Goal: Obtain a function f: X = Y (Y: discrete domain)

—E.g. x € X isanimage and y € U is the type of object
appearing in the image

—Two-class classification: Y = {+1, —1}

" Training dataset:
N pairs of an input and an output

{(x(l), y(l)), . (X(N), y(N))}

http://www.vision.caltech.edu/Image Datasets/Caltech256/
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Some applications of classification:

From binary to multi-class classification
" Binary (two-class)classification:

— Purchase prediction: Predict if a customer X will buy a particular product
(+1) ornot (-1)

— Credit risk prediction: Predict if a obligor x will pay back a debt (+1) or
not (-1)

= Multi-class classification:

— Text classification: Categorize a document X into one of several
categories, e.g., {politics, economy, sports, ...}

— Image classification: Categorize the object in an image X into one of
several object names, e.g., {AK5, American flag, backpack, ...}

— Action recognition: Recognize the action type ({running, walking,
sitting, ...}) that a person is taking from sensor data x
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Model for classification:
Linear classifier

" Linear classification: Liner regression model
y = sign(w'x) = sign(w;x; + wox, + - + wpxp)

—|wTx| indicates the intensity of belief
—w 'x = 0 gives a separating hyperplane

—w: normal vector perpendicular to the separating hyperplace

X2
A y = +1
wix>0
N
\‘\ w = (W, wy)
T N
w'x<o0 \\
- » X1
~\
~
~
~\
1 B
—_ — \
y wix=0
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Learning framework:
Loss minimization and statistical estimation

=" Two learning frameworks
1. Loss minimization: L(w) = ¥, 0 (y®O wTx®; w)
e Loss function £ directly handles utility of predictions
e Regularization term R(w)
2. Statistical estimation (likelihood maximization):
L(w) = [T, f P 1x®, w)
e Probabilistic model: Noise assumptions are clear

* Prior distribution P(w)

| Loss = _—
—They are often equivalent : { 0ss = Probabilistic model

Regularization = Prior
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Classification problem in loss minimization framework:
Minimize loss function + regularization term

* Minimization problem: w* = argmin,, L(w) + R(w)
—Loss function L(w) : Fitness to training data

—Regularization term R(w) : Penalty on the model complexity
to avoid overfitting to training data (usually norm of w)

= | oss function should reflect the number of misclassifications on
training data

—Zero-one loss: [ correct |
0 (y(i) = sign(wa(i)))
f(i)(y(i)’wTX(i); w) = | .
1 (y(‘) # sign(wa(‘)))
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Zero-one loss:
Number of misclassification is hard to minimize

0 (yOwTx® > 0)

) e p(D (D) wTo(i). —
= Zero-one loss: W (yW, wTxW; w) =4 1 (yPwTx® <0)
\

=" Non-convex function is hard to optimize directly

[ Non-convex
1

2O (y®, wTx®; w)

yOwTx®
< >

Misclassification Correct classification
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Convex surrogates of zero-one loss:
Different functions lead to different learning machines

= Convex surrogates: Upper bounds of zero-one loss

—Hinge loss = SVM, Logistic loss = logistic regression, ...

/ Squared loss

V/'
f
/
/

Logistic loss

1 b 7 2 3 4 y(i)WTX(i)
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[ Logistic regression }
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Logistic regression:
Minimization of logistic loss is a convex optimization

= Logistic loss:

PO (y® wTx®; w) = %m@ + exp(—yPwTx®))

" (Regularized) Logistic regression: anex ]

N
w* = argminwz ln(l + exp(—y(i)wa(i))) + Allwl|5
=1

l

Logistic loss
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Statistical interpretation:
Logistic loss min. as MLE of logistic regression model

" Minimization of logistic loss is equivalent to maximum
likelihood estimation of logistic regression model

" Logistic regression model (conditional probability):

— _ T _ 1 o( )
f(y = 1lx, w) =0o(W'X) = 1+exp(—wTx) 1—/,_--_—
—0: Logistic function (a: R — (0,1)) Vi
" Log likelihood: ; / s
W' X

N N
Liw) = z log f(y@Wx®, w) = — z log(1 + exp(—y®wTx))
i=1 i=1

N
. 1 . 1
Z 5(y 1)log 1+ exp(—wTx) + 6(y 1)log <1 1+ exp(—wa)>
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Parameter estimation of logistic regression :
Numerical nonlinear optimization

" Objective function of (regularized) logistic regression:

N
L(w) = z In(1 + exp(—yPwTxD)) + A||wl|3
i=1

= Minimization of logistic loss / MLE of logistic regression model
has no closed form solution

= Numerical nonlinear optimization methods are used
—lterate parameter updates: wNEW « w + d

A% A%
o o
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Parameter update :
Find the best update minimizing the objective function

EW

= By update wNEW «— w + d, the objective function will be:

N
Lu(@ = ) In(1+exp(=yO(w +@)xV)) + 2llw + di
=1

= Find d* that minimizesL,,(d):

—d* = argming L,,(d)
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Finding the best parameter update :
Approximate the objective with Taylor expansion

" Taylor expansion: [ 3rd-ordertim_]
1

L,(d) =L(w)+d"VL(w) + EdTH(w)d + 0(d?)

) VILLLD

T
_Gradient vector: VL(w) = (aL(w) dL(w) 6L(w))

aWD

6W1 aWZ

e Steepest direction

2
—Hessian matrix: [H(W)]; ; = 97L(w)

15 KYoTo UNIVERSITY




Newton update :
Minimizes the second order approximation

= Approximated Taylor expansion (neglecting the 3 order term):

Ly(d) ~ L(w)+d"VL(w) + %dTH(w)dA-—Q{d?%

0Lw(d)
ad

= Settingittobe 0, d = —H(w) 1VL(w)

= Derivative w.r.t. w: ~ VL(w)+ Hw)d

= Newton update formula:
wVEW  w— H(w)"1VL(w)

w _H(W)-'VL(w) w—H(w) 1VL(w)
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Modified Newton update:
Second order approximation + linear search

= The correctness of the update wNEW « w — H(w) " 1VL(w)
depends on the second-order approximation:

Ly(d) ~ L(w)+d"VL(w) + %dTH(w)d

—This is not actually true for most cases

= Use only the direction of H(w)~1VL(w) and update with
wVEW  w —nH(w)17L(w)

" Learning raten > 0 is determined by linear search:
n* = argmax, L(w — nH(w) 'VL(w))
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Steepest gradient descent:
Simple update without computing inverse Hessian

= Computing the inverse of Hessian matrix is costly

—Newton update: WNEW «— w — nH(wW)1VL(w)

= Steepest gradient descent: Gradient of }
objective function
—Replacing H(w) ™1 with I will give

wVEW  w —nVL(w)

e VL(W) is the steepest direction
e Learning rate n is determined by line search

w _nVL(W) w—nVL(w)
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(Supplement) :
Computing the gradient of logistic regression

= L(w) =3I, In(1 + exp(—yPwx®))

6L(w) Z 1 6(1+exp(—y(i)wa(i)))
=11 texp(—y@OwTx®) ow

N

1 . . - .
— A (D ar T (DY A4, (1) (D)
= . — eX w'X X
Zl + exp(—yWwTx®) p(= )y

=1

== ) (1= FOxO,w) yOx©

Can be easily computed with the
current prediction probabilities
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Mini batch:
Efficient training using data subsets

= Objective function for N instances:
Lw) =Y, 6(wTxD) + AR (W)

(1)
" |ts derivative aL(w) =y, ob(w x) + A ORW) 1 eeds O(N)

ow ow
computation

= Approximate this with only one instance:
OL(w) ~ Naf(wa(j)) n /16R(w)

ow ow ow

(Stochastic approximation)

= Also we can do this with 1 < M < N instances:
T+ ()
OL(w) otw )+ A—aR(w) (Mini batch)

ow ow ow

~ Z] EMiniBatch
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Support Vector Machine
and Kernel Methods
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Support vector machine:
One of the most successful learning methods

" One of the most important achievements in machine learning
—Proposed in 1990s

—Suitable for small to middle sized data

" Learning algorithm of linear classifiers
—Based on “margin maximization” principle

—Understood as hinge loss + L2-regularization

= Kernel methods: Capable of non-linear classification through
kernel functions
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Loss function of support vector machine:

Hinge loss

" |n SVM, we use hinge loss as a convex upper bound of 0-1 loss
2Oy wTx®W; w) = max{1 — yOwTxV, 0}

= Sometimes, squared hinge loss is used

/ero-one loss

Hinge loss

yOwTx®

23
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Two formulations of SVM training:
Soft-margin SVM and hard margin SVM

" When we use L2 regularization, we have “soft-margin” SVM:

N
wh = argminwz: max{1 — y(i)WTX(i), 0} + Allwll5
i=1

—Convex optimization problem

= With constraint on the loss, we have “hard-margin” SVM:
w" = argminw% lw||5 s.t. ¥_, max{1 — yOwTxW 01 =0

—Equivalently, the constraint is written as
1-yOwTxW <0(=12..,N)

—The initial SVM formulation was in this form
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Geometric interpretation:
Hard-margin SVM minimizes the margin
1

1 .
"min || w 15 < max (Margin)

wil,

T(gt_x—
wl (" —x ): Sum of distances between separating hyperplane

Iwll,
and a positive instance X* and a negative instance x~
. . {2 x*
= Since 1 — y®OwTx® < 0 vi, .
\\\\ W = (Wl,Wz)
wT(xt—x7) . 2 S
<< is lower bounded R > X1
Iwll, \ Iwll, 3
They can be taken as the closest instance to o T~ To
: wx=0
the separating hyperplane X~
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Solution of hard-margin SVM (Step |):
Introducing Lagrange multipliers

- minwzl Iwi2 st 1-yOwTx® <0(i=1.2,..,N)

= Lagrange multipliers {«a;}; :

: - (i) (i)
miny, a_(alrogé,l.?.(,a,v)w (2 I wl5 +2 a;(1—y®PwTx ))

—For i such that 1 — y®OwTx® > 0, we have a; = ©
e The objective function becomes oo, that cannot be optimal

—For i such that 1 — y(i)wa(i) < 0, we have either
a; = 0or (1 — y(i)wa(i)) = 0 ,i.e. objective function
remains the same
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Solution of hard-margin SVM (Step Il):
Dual formulation as a quadratic programming problem

= By changing the order of min and max:

IwiZ <
] 2 _ _ (l) T (l)
W e (apapeanzo | 2 +,za‘(1 yOwTx)
=1
4 Iwi?Z <
: A1 — v D T (D)
T LS WD
=

= Solving min gives w = ZN y(i)x(i) which finally results in

max z z z IPRVONONORNG
a=(aq,as,...,ay)20

=1 j=
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Support vectors:
SVM model depends only on support vectors

* The dual problem:

max
a=(aq,as,...,ayn)=20

N
z a;ay Dy Dx® 'x )
j=1

Mz

1
C(i—z

AMZ
Il
i

L L

= Support vectors: the set of i such that a; > 0
—Forsuch i, 1 — y®PwTx® = 0 holds
—They are the closest instance to the separating hyperplane

= Non-support vectors (a; = 0) do not appear in the model:

WTX — j= 1ay(])X(J)T
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Solution of soft-margin SVM:
Additional constraints

= Equivalent formulation of soft- margin SVM:

miny, [|W[|5 + C z € (5|;Icir|:gv2:?ast§|e) }
S. t. 1 y(l)w X(l) < e
(i=1,2,..,N)

= Similar derivation gives additional constraints:
0< aiS C
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Kernel methods:
Data access through kernel function

" The dual form objective function and the classifier access to

~T .
data always through inner products x(D xU)

~T .
—The inner product x() " xU) is considered as similarity

= Can we use some similarity function K(x(i),x(j)) instead of

~T .
x(D xU)? —ves (under certain conditions)

N
(D)~,() (1) ()
e 3, )

—Model : ¥V, ajyPV K (xY),x)
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Kernel functions:
Introducing non-linearity in linear models

= Consider a (nonlinear) mapping ¢: RP? > RP’
—D-dimensional space to D' (>> D)-dimensional space

—Vector X is mapped to a high-dimensional vector ¢p(x)

* Define kernel K(x(i),x(j)) = qb(x(i))Tqb(x(j))

= SVM is a linear classifier in the D’-dimensional space, while is a
non-linear classifier in the original space
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Advantage of kernel methods:
Computational efficiency in terms of input dimensions

= Advantages of using kernel function
K(x®, x0) = ¢(X(i>)T¢(Xu>)
" Even if ¢ is high-dimensional (possibly infinite dimensional), as

T :
far as its inner product qb(x(‘)) ¢ (xY)) is given as an
efficiently computable function, the dimension of ¢ does not
matter

" Problem size:
D (number of dimensions) = N(number of data)

—Advantageous when ¢ is especially high or infinite
dimensional
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Example of kernel functions:
Polynomial kernel

33

Combinatorial features: Not only the original features
X1,X>, ..., Xp, use their combinations

—Exponential number of dimensions wrt d

Polynomial kernel: K(x(i),x(j)) = (x(i)Tx(j) + c)d

—E.g.c = 0,d = 2, two dimensional case ) (xf))
K(X(i)’x(j)) _ (x(l)xil) §‘>x§f>)
— (xpz (i) \/_xf)xg‘)) (x§1)2 ()? \/_x§f>x§f))

—Note that it can be computed in O(D)
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Example of kernel functions:
Gaussian kernel with infinite feature space

2
Ix;—x;ll2
o

= Gaussian kernel (RBF kernel): K(xi,xj) = exp (—

—Can be interpreted as an inner product in an infinite-
dimensional space

Discrimination surface with Gaussian kernel

095 .
g Gaussian kernel (RBF kernel)
L) e
u @ : & s} L} ‘
a5 wtese B € A . = o: oo .
0.8 ‘::‘..‘ ... .oo. .:: .. . :: \ ° : . o...O L] /"m\
or o o e @ R L) f \
075 9‘?:‘ * o °%e y s / |'.\
0.7 g® [ \
*09% Lo 025 f \
0.65 -&‘o..° ,v \
08 8 /' \
L @ \
055 @ :O.o.. ° ob o 01% |
asF ." 2o 2% g : '{f \
o &0 010 \
450 e '..o. : 2P &% °.o @ o ..o .0 9 / \
1 g 1 1 | 1 1 b 1 L I ] oo
01 0. . . 07 03 / \
http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Machi 00e - 2 o 2 : 6 X; — X; 2
l J 12

nelLearning&doc=exercises/ex8/ex8.html
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Kernel methods for non-vectorial data:
Kernels for sequences, trees, and graphs

= Kernel methods can handle any kinds of objects (even non-
vectorial objects) as far as kernel functions that are similarity
between objects

—Kernels for strings, trees, and graphs, ... ...
i = P e = 0 B

e

Inactive
o A N\

M v« 3

o* J'II ‘[ > ot Support vector machine !/ j [ I om
\_.{-‘ » . N 1

?????

http://www.bic.kyoto-u.ac.jp/coe/img/akutsu_fig e 02.gif
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Representer theorem:
Theoretical underpinning of kernel methods

= Kernel methods rely on the fact that the optimal parameter is
represented as a linear combination of input vectors:

N
W = z a;yOx®
=1

—Gives the dual formw'x = Z?’zl ajy(j)x(j)Tx

= Representer theorem: The above is guaranteed under L2-
regularization
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(Simple) proof of representer theorem:
Obj. func. depends only on the linear combination

= Assumption: Loss £ for i-th data depends only on w'x®
—Objective function: L(w) = YN, £O(wTxW) + 1||wl|3
= Divide the optimal parameter w* into two parts w + w:

—w: Linear combination of input data

—w+: Other parts (orthogonal to all input data)

= L(w*) depends only on w: YN 2O (w*'x®) + 1||w|3
N

= 2 ) (wa(i) + wlTx(i)) + A([lw]l5 + 2w Tw +]|w|[3)
\ J

\ ]| J
| |

=1 \
=0 =0 Minimizedto=0
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Primal objective function:
Kernel representation

" Primal objective function:

L(w) = 2 max{1 — yOwTx®_ 0} + 1||w]|2

" Primal objective function using kernel:

L(a)
z max{1 — y® Z a0y DK (x®,x0), 0}

+ ,12 z a0y Oy DK (x®, xN)

i=1j=1

38
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Support vector regression:
Use e-insensitive loss instead of hinge loss

" Instead of the hinge loss, use e-insensitive loss:
2Oy wTxW; w) = max{|y; — wTx®| — ¢, 0}

" [ncurs no loss if the difference between the prediction and the
target |y; — wTx®| is less than e

\'-. .-'/ Squared loss

e-insensitive loss
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