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 How many samples are needed to achieve a particular test 
performance?

 What is the test performance of a classifier with a particular 
training performance?

 How far is a classifier from the best performance model?

Statistical learning theory: 
Theoretical guarantee for learning from limited data

REFERENCE:
Bousquet, Boucheron, and Lugosi. 
"Introduction to statistical learning theory." 
Advanced lectures on machine learning. pp. 169-207, 2004.
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Error Bounds
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 Training dataset 𝑥 1 , 𝑦 1 , … , 𝑥(𝑁), 𝑦 𝑁 is sampled 

from 𝑃 in an i.i.d manner

– 𝑦 𝑖 ∈ {+1,−1} : Binary classification

– We want to estimate 𝑓:𝒳 → +1,−1

 (True) risk: 𝑅 𝑓 = Pr 𝑓 𝑥 ≠ 𝑦 = 𝐸 1𝑓 𝑥 ≠𝑦

– We do not know this since we do not 𝑃

 Empirical risk: 𝑅𝑁 𝑓 =
1

𝑁
 𝑖=1
𝑁 1𝑓 𝑥 𝑖 ≠𝑦 𝑖

– Usually we estimate a classifier that minimizes this

True risk and empirical risk: We are interested in true 
risk but can access only to empirical risk

Indicator function
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 We want to find the best 𝑓 in function class ℱ

– Best function: 𝑓∗ = argmin𝑓∈ℱ 𝑅 𝑓

 Empirical risk minimization: 𝑓𝑁 = argmin𝑓∈ℱ 𝑅𝑁 𝑓

– Or with regularization: 𝑓𝑁 = argmin𝑓∈ℱ 𝑅𝑁 𝑓 + 𝜆 𝑓
2

 Our targets: We want to know how good 𝑓𝑁 is

1. 𝑅 𝑓𝑁 − 𝑅𝑁 𝑓𝑁 ≤ 𝐵 𝑁,ℱ : Estimate of the true risk of a 
trained classifier from its empirical risk

2. 𝑅 𝑓𝑁 − 𝑅 𝑓
∗ ≤ 𝐵 𝑁,ℱ : Estimate how far the true risk 

of a trained classifier from the best one

Our goal: How good is the classifier learned by 
empirical risk minimization?

True risk
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 Let us consider to find a bound 𝑅 𝑓𝑁 − 𝑅𝑁 𝑓𝑁 ≤ 𝐵 𝑁,ℱ

 𝑅 𝑓 − 𝑅𝑁 𝑓 = 𝐸 1𝑓 𝑥 ≠𝑦 −
1

𝑁
 𝑖=1
𝑁 1𝑓 𝑥(𝑖) ≠𝑦(𝑖)

– By the law of large numbers, this will converge to 0

• Empirical risk is a good estimate of the true risk

– But we want to know 𝐵 𝑁,ℱ depending on a finite 𝑁

Error bound: 
We want to give an error bound for a finite dataset

The bound is a 
function of 𝑁
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 Hoeffding’s inequality: Let 𝑍(1), … , 𝑍(𝑁) be 𝑁 i.i.d. random 
variables with 𝑍 ∈ 𝑎, 𝑏 . Then for all 𝜖 > 0,

Pr 𝐸 𝑍 −
1

𝑁
 
𝑖=1

𝑁

𝑍 𝑖 > 𝜖 ≤ 2exp −
2𝑁𝜖2

𝑏 − 𝑎 2

– Gives the bound of probability of difference between 
expected value and empirical estimate exceeding 𝜖

 For a classifier 𝑓 ∈ ℱ,  setting 𝑍 = 1𝑓 𝑥 ≠𝑦 gives

Pr 𝑅 𝑓 − 𝑅𝑁 𝑓 > 𝜖 ≤ 2 exp −2𝑁𝜖
2 ≡ 𝛿

 With probability at least 1 − 𝛿, 𝑅 𝑓 − 𝑅𝑁 𝑓 ≤
log
2

𝛿

2𝑁

Hoeffding’s inequality: 
Bound of true risk for a fixed classifier
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 For a fixed classifier 𝑓, its true risk is estimated by Hoeffding’s 
inequality

– With a fixed 𝑓, we can draw a sample with the bounded error 
with high probability

 But, this is not the estimate of the true risk of the algorithm

– With fixed samples, there are many classifiers that violate the 
bound, and the algorithm can find one of them

– Before seeing the data, we do not know which classifier the 
algorithm will choose, there is no guarantee the bound holds 
for the classifier

– We want a bound which holds for any classifier 𝑓

Hoeffding’s inequality: 
Simple application does not give the error bound
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 Theorem: With probability at least 1 − 𝛿, ∀𝑓 ∈ ℱ

𝑅 𝑓 − 𝑅𝑁 𝑓 ≤
log ℱ + log

1
𝛿

2𝑁

 This also implies: for 𝑓𝑁 = argmin𝑓∈ℱ 𝑅𝑁 𝑓 ,

𝑅 𝑓𝑁 − 𝑅𝑁 𝑓𝑁 ≤
log ℱ + log

1
𝛿

2𝑁

 The bound depends on the number of functions in ℱ

Error  bound: 
Depends on the log number of possible classifiers

log
2
𝛿
2𝑁

in the 
previous 
bound
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 We apply the Hoeffding’s inequality to all classifiers in 
ℱ simultaneously 

 Union bound:

– For two events 𝐴1, 𝐴2, Pr 𝐴1 ∪ 𝐴2 ≤ Pr 𝐴1 + Pr 𝐴2

– For 𝐾 events, Pr 𝐴1 ∪⋯∪ 𝐴𝐾 ≤  𝑖=1
𝐾 Pr 𝐴𝐾

 Hoeffding + union bound gives:

– Pr ∃𝑓 ∈ ℱ: 𝑅 𝑓 − 𝑅𝑁 𝑓 > 𝜖 ≤ 2 ℱ exp −2𝑁𝜖
2

– Equate the right hand side to 𝛿

Error  bound: 
Proof using the union bound
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 We are also interested in how far the true risk of a trained 
classifier from the best one in ℱ

 Similar analysis gives a bound depending on log ℱ

 Theorem: With probability at least 1 − 𝛿, 

𝑅 𝑓𝑛 − 𝑅 𝑓
∗ ≤ 2

log ℱ + log
2
𝛿

2𝑁

Error  bound against the optimal classifier: 
Similar bound holds 
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Infinite Case
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 We assumed the number of classifiers is finite

– The bound depends on the number of classifiers in the 

class ℱ: 𝑅 𝑓𝑁 − 𝑅𝑁 𝑓𝑁 ≤
log ℱ +log

1

𝛿

2𝑁

• log ℱ is considered as the complexity of class ℱ

– So far we measure the complexity of the model using the 
number of possible classifiers

 What if it is infinite? (E.g. linear classifiers)

 Do we have another complexity measure?

Infinite case: 
Previous results assume finite number of classifiers
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 For example, the class of the linear classifier has infinite 
number of functions

 Idea:

– The following two classifiers make the same prediction for 
the four points

– They might be considered as the same for the purpose of 
classifying the four points

Growth function: Infinite number of functions can be 
grouped into finite number of function groups

●

●

●
●
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 Growth function 𝒮ℱ(𝑁): The maximum number of ways into 
which 𝑁 points can be classified by the function class ℱ

– Apparently, 𝒮ℱ 𝑁 ≤ 2
𝑁

– For two-dimensional linear classifiers, 𝒮ℱ 4 = 14 ≤ 2
4

 Theorem: With probability at least 1 − 𝛿, ∀𝑓 ∈ ℱ

𝑅 𝑓 − 𝑅𝑁 𝑓 ≤ 2
log 𝒮ℱ 𝑁 + log

2
𝛿

𝑁

Growth function: 
Error bound using growth function

●

●●

● ●

● ●

●

only the two cases
cannot be classified
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 When 𝒮ℱ 𝑁 = 2
𝑁, any classification of 𝑁 points is possible 

(we say that ℱ shatters the set)

 VC dimension ℎ of class ℱ : 
The largest 𝑁 such that 𝒮ℱ 𝑁 = 2

𝑁

 For two-dimensional linear classifiers, ℎ = 3

 Generally, for 𝑑-dimensional linear classifiers, ℎ = 𝑑 + 1

 Theorem: With probability at least 1 − 𝛿, ∀𝑓 ∈ ℱ

𝑅 𝑓 − 𝑅𝑁 𝑓 ≤ 2 2
ℎ log
2𝑒𝑁
ℎ
+ log
2
𝛿

𝑁

VC dimension: 
Intrinsic dimension of function class


