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Statistical learning theory:
Theoretical guarantee for learning from limited data

" How many samples are needed to achieve a particular test
performance?

=" What is the test performance of a classifier with a particular
training performance?

" How far is a classifier from the best performance model?
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[ Error Bounds }
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True risk and empirical risk: We are interested in true
risk but can access only to empirical risk

= Training dataset { (x(l),y(l)), . (x(N),y(N))} is sampled
from P in ani.i.d manner

— y(i) € {+1,—1} : Binary classification

— We want to estimate f: X = {+1,—1} [ |ndicator function ]

= (True)risk: R(f) = Pr(f(x) #y) = E[lf(x)iy]

— We do not know this since we do not P

L 1
=  Empirical risk: Ry (f) = Nzlivzl 1f(x(i))¢y(i)

— Usually we estimate a classifier that minimizes this
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Our goal: How good is the classifier learned by
empirical risk minimization?

= We want to find the best f in function class F

— Best function: f* = argminscr R(f)4 True risk |

= Empirical risk minimization: f = argmin rer Ry(f)
— Or with regularization: fy = argminser Ry (f) + AfII?

= Qur targets: We want to know how good fy is

1. R(fy) — Ry(fy) < B(N,F): Estimate of the true risk of a
trained classifier from its empirical risk

2. R(fy) — R(f*) < B(N,F): Estimate how far the true risk
of a trained classifier from the best one
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Error bound:
We want to give an error bound for a finite dataset

= Let us consider to find a bound R(fy) — Ry (fy) < B(N,F)

- R(f) RN(f) — E[]-f(x)iy] l 1 f(x(l))iy(l)

— By the law of large numbers, this will converge to 0

e Empirical risk is a good estimate of the true risk

— But we want to know B(N, F) depending on a finite N

The bound is a
function of N
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Hoeffding’s inequality:

Bound of true risk for a fixed classifier

= Hoeffding’s inequality Let ZD, ..., ZM) pe N i.i.d. random
variables with Z € |a, b] Then for alle > 0,

- 2Ne?
Il >e | <2exp ~ =2

— Gives the bound of probability of difference between
expected value and empirical estimate exceeding €

= Foraclassifier f € F, setting Z = 1¢(5)+y gives
Pr[|R(f) — Ry(f)| > €] < 2exp(—2Ne?) =6

g_
2N
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=  With probability atleast 1 — §, R(f) — Ry(f) <



Hoeffding’s inequality:
Simple application does not give the error bound

" For a fixed classifier f, its true risk is estimated by Hoeffding’s
inequality

— With afixed f, we can draw a sample with the bounded error
with high probability

= But, this is not the estimate of the true risk of the algorithm

— With fixed samples, there are many classifiers that violate the
bound, and the algorithm can find one of them

— Before seeing the data, we do not know which classifier the
algorithm will choose, there is no guarantee the bound holds
for the classifier

— We want a bound which holds for any classifier f
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Error bound:
Depends on the log number of possible classifiers

= Theorem: With probability atleast 1 — 4, Vf € F

1 lo 2 A
log|F| + log 5 jv‘?
previous
. . . _ bound  /
= This also implies: for fy = argminser Ry(f),
log|F| + log%

R(fn) — Ry(fy) < N N

= The bound depends on the number of functions in F
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Error bound:
Proof using the union bound

=  We apply the Hoeffding’s inequality to all classifiers in
F simultaneously

= Union bound:
— For two events 4, A4,, Pr[A; U 4,] < Pr[A,] + Pr[A4,]
— For K events, Pr[4A; U U Ag] < Y&, Pr[Ak]

= Hoeffding + union bound gives:
— Pr[3f € F:|R(f) — Ry(f)| > €] < 2|F| exp(—2Ne?)
— Equate the right hand side to §
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Error bound against the optimal classifier:
Similar bound holds

= We are also interested in how far the true risk of a trained
classifier from the best one in F

= Similar analysis gives a bound depending on log|F|

= Theorem: With probability at least 1 — ¢,

log|F| + log%

\ 2N

R(fn) _ R(f*) <2
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[ Infinite Case }
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Infinite case:
Previous results assume finite number of classifiers

=  We assumed the number of classifiers is finite

— The bound depends on the number of classifiers in the

log|T|+log%

class F: R(fy) — Ry(fy) < \/ 2N

e log|F|is considered as the complexity of class F

— So far we measure the complexity of the model using the
number of possible classifiers

= Whatifitis infinite? (E.g. linear classifiers)

= Do we have another complexity measure?
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Growth function: Infinite number of functions can be
grouped into finite number of function groups

" For example, the class of the linear classifier has infinite
number of functions

= |dea:

— The following two classifiers make the same prediction for
the four points

— They might be considered as the same for the purpose of
classifying the four points

________
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Growth function:
Error bound using growth function

= Growth function S¢£(N): The maximum number of ways into
which N points can be classified by the function class F

— Apparently, Sz (N) < 2V

— For two-dimensional linear classifiers, Sz(4) = 14 < 2*

°© o o o { only the two cases }
o o o © cannot be classified
= Theorem: With probability atleast 1 — 0, Vf € F
log S+ (N) + log%
R(f)—RN(f)SZ\J N
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VC dimension:
Intrinsic dimension of function class

16

When S#(N) = 2V,

any classification of N points is possible

(we say that F shatters the set)

VC dimension h of ¢
The largest N such t

For two-dimensiona

ass F :
hat S (N) = 2V

linear classifiers, h = 3

Generally, for d-dimensional linear classifiers, h = d + 1

Theorem: With probability atleast 1 — 4§, Vf € F

R(f) —Ry(f) <2 |2

hlogzeTN+log%

\ N
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