
1 KYOTO UNIVERSITY

KYOTO UNIVERSITY

DEPARTMENT OF INTELLIGENCE SCIENCE

AND TECHNOLOGY

Statistical Machine Learning Theory

On-line Learning

Hisashi Kashima
kashima@i.Kyoto-u.ac.jp

https://goo.gl/kfxwEg

2 KYOTO UNIVERSITY

 http://universityofbigdata.net/competition/5085548788056064?lang=en

 A new prediction task on recommendation systems

 Datasets from an anime and manga recommendation system “MANGAKI”

 Provided past ratings of anime and manga, recommend what to watch
next

FYI:
New competition started

3 KYOTO UNIVERSITY

 On-line learning problems

 Halving algorithm, its theoretical mistake bound, and its limitation

 Regret analysis as a performance measure of online learning algorithms

 Analyses of:

– Follow-the-leader (FTL) and follow-the-regularized-leader (FTRL)
algorithms

–Online gradient descent algorithm

– Perceptron algorithm

Topics:
Online learning algorithms and theoretical guarantees

Most of the contents in this lecture are based on:
Shalev-Shwartz, S. (2011). Online learning and online convex optimization.
Foundations and Trends in Machine Learning, 4(2), 107-194.

4 KYOTO UNIVERSITY

 In standard (batch) learning settings,

1. Given training dataset 𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

2. Make predictions for test dataset 𝐱 𝑁+1 , … , 𝐱 𝑁+𝑀

3. Get feedbacks (reward or loss)

 In online learning,

1. At each round, make a prediction for an arriving data

2. Get a feedback for the prediction

3. Return to 1

– Training and test are done with the same data

On-line learning problem:
Learning to make periodical decisions

5 KYOTO UNIVERSITY

 Online learning can be used when you continuously have to
make decisions (and get feedbacks)

 Examples:

–Weather forecasting

–Stock price prediction

 Sometimes considered as an efficient alternative to batch
learning (for big data!)

–e.g. perceptron (as a batch learning algorithm)

On-line learning applications:
Real-time modeling and prediction

6 KYOTO UNIVERSITY

 At each round 𝑡 = 1, 2, … , 𝑇

1. Receive input 𝐱 𝑡 ∈ 𝒳

2. Make prediction 𝑝 𝑡 ∈ 𝒴

3. Observe true answer 𝑦 𝑡 ∈ 𝒴

4. Suffer loss 𝑙 𝑝 𝑡 , 𝑦 𝑡

 Our goals:

–Find a prediction strategy to minimize cumulative loss

 𝑡=1
𝑇 𝑙 𝑝 𝑡 , 𝑦 𝑡

–Theoretical guarantees of the performance of the strategy

On-line learning problem formulation:
Guaranteed strategy to minimize cumulative loss

the environment

chooses 𝑦 𝑡

the environment

chooses 𝑦 𝑡

7 KYOTO UNIVERSITY

 Consider an on-line two-class classification problem

– At each round 𝑡 = 1, 2, … , 𝑇

1. Receive input 𝐱 𝑡 ∈ 𝒳

2. Make prediction 𝑝 𝑡 ∈ {+1, −1}

3. Observe true answer 𝑦 𝑡 ∈ {+1, −1}

4. Suffer loss 𝑙 𝑝 𝑡 , 𝑦 𝑡 = 0 (if 𝑝 𝑡 =𝑦 𝑡) or 1 (if 𝑝 𝑡 ≠𝑦 𝑡)

 Assumptions:

1. Finite hypotheses:
A finite set of predictors ℋ (ℋ < ∞) is available

2. Realizability: True answers are generated by some ℎ∗ ∈ ℋ

A simple online learning problem example :
Two-class classification with a finite set of predictors

8 KYOTO UNIVERSITY

 Initialization: 𝑉1 = ℋ (𝑉𝑡 is called a version space at round 𝑡)

–𝑉𝑡 maintains predictors consistent with past observations

 At each round 𝑡 = 1, 2, … , 𝑇

1. Receive input 𝐱 𝑡 ∈ 𝒳

2. Predict 𝑝 𝑡 = argmax𝑝∈{+1,−1} ℎ ∈ 𝑉𝑡 |ℎ 𝐱 𝑡 = 𝑝

• Take a majority vote with the current version space

3. Observe true answer 𝑦 𝑡 ∈ {+1, −1}

4. Update 𝑉𝑡+1 = ℎ ∈ 𝑉𝑡 |ℎ 𝐱 𝑡 = 𝑦 𝑡

• Correct hypotheses survive to next round

Halving algorithm :
Majority vote prediction with version space

9 KYOTO UNIVERSITY

 Halving algorithm makes at most log2 |ℋ| wrong predictions

 Proof:

–Whenever the algorithm makes a mistake, more than a half of
the members in the current version space 𝑉𝑡 make mistakes

• Size of the next version space |𝑉𝑡+1| ≤
|𝑉𝑡|

2

–After making 𝑀 mistakes, |𝑉𝑡| ≤
|ℋ|

2𝑀

–Since at least one predictor survives, 1 ≤ |𝑉𝑡|

–Rearranging 1 ≤
|ℋ|

2𝑀 concludes the proof

Theoretical guarantee of the halving algorithm :
Logarithmic mistake bound

realizability
assumption
realizability
assumption

10 KYOTO UNIVERSITY

 The halving algorithm cannot enjoy the logarithmic bound

–when ℋ is an infinite set (e.g. 𝐰 ∈ ℝ𝐷)

–when the true predictor is not in ℋ

 The situation will be even worse when the environment is
adversarial

–Adversarial environment: the environment can decide the
true answer after observing an algorithm’s prediction

–Number of mistakes can be 𝑇

Limitations of the current setting:
Adversarial environments do not allow mistake bounds

11 KYOTO UNIVERSITY

 Adversarial environments can always make wrong predictions

– Impossible to guarantee mistake bounds

 Regret: relative performance in a particular class of predictors ℋ

Regret𝑇 ℋ =

𝑡=1

𝑇

𝑙 𝑝 𝑡 , 𝑦 𝑡 − minℎ∈ℋ

𝑡=1

𝑇

𝑙 ℎ 𝐱 𝑡 , 𝑦 𝑡

–ℎ∗ is the predictor achieving the minimum cumulative loss

–Even with an adversarial environment,
regret will not be large if all members of ℋperform poorly

Regret:
Relative performance in a particular class of predictors

cumulative loss
by the algorithm
cumulative loss

by the algorithm
minimum cumulative

loss in ℋ
minimum cumulative

loss in ℋ

12 KYOTO UNIVERSITY

 If Regret𝑇 ℋ = 𝜊 𝑇 (e.g. 𝑇),
Regret𝑇 ℋ

𝑇
→ 0 as 𝑇 → ∞

–Your algorithm is asymptotically guaranteed to perform as
well as the best predictor in ℋ(!)

𝑡=1

𝑇

𝑙 𝑝 𝑡 , 𝑦 𝑡 ≤ minℎ∈ℋ

𝑡=1

𝑇

𝑙 ℎ 𝐱 𝑡 , 𝑦 𝑡 + 𝜊 𝑇

Regret bound:
Sublinear regret bound guarantees relative performance

sublinear

13 KYOTO UNIVERSITY

 Consider of a specific class of online learning problems

–to design online learning algorithms of models with
parameters (e.g. linear classifiers)

 At each round 𝑡 = 1, 2, … , 𝑇

1. Submit a parameter vector 𝐰 𝑡 ∈ 𝒮 (e.g. ℝ𝐷)

2. Receive a loss function 𝑙 𝑡 : 𝒮 → ℝ

3. Suffer loss 𝑙 𝑡 𝐰 𝑡

–Loss function 𝑙 𝑡 can be different at each round

Regret𝑇 𝒮 = 𝑡=1
𝑇 𝑙 𝑡 𝐰 𝑡 − min𝐰∈𝒮 𝑡=1

𝑇 𝑙 𝑡 𝐰

On-line learning problem formulation II:
Online learning of general models with parameters

14 KYOTO UNIVERSITY

 Convex loss functions:

–Squared loss (Online regression)

𝑙 𝑡 𝐰 𝑡 = 𝑙 𝐰 𝑡 ⊤𝐱 𝑡 , 𝑦 𝑡 = 𝐰 𝑡 ⊤𝐱 𝑡 − 𝑦 𝑡 2

–Linear function (Online linear optimization)

𝑙 𝑡 𝐰 𝑡 = 𝐰 𝑡 , 𝐱 𝑡

 Non-convex loss function:

–0-1 loss (Online classification)

𝑙 𝑡 𝐰 𝑡 = 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

Some examples of loss function:
Convex and non-convex loss functions

prediction is
wrong

prediction is
wrong

15 KYOTO UNIVERSITY

 An online algorithm specifies 𝐰 𝑡

 Follow-the-Leader (FTL) submits 𝐰 𝑡 which has the minimum
cumulative loss for the past rounds

– i.e. 𝐰 𝑡 = argmin𝐰∈𝒮 𝜏=1
𝑡−1 𝑙 𝜏 𝐰

 Lemma:
∀
𝐮,

𝑡=1

𝑇

𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐮 ≤

𝑡=1

𝑇

𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐰 𝑡+1

–This holds for 𝐮 = argmin𝐰∈𝒮 𝑡=1
𝑇 𝑙 𝑡 𝐰 ,

so gives an upper bound of Regret𝑇 𝒮

Follow-the-leader:
An online algorithm with regret bound

decrease of 𝑙 𝑡 by
each update

decrease of 𝑙 𝑡 by
each update

16 KYOTO UNIVERSITY

 We want to show
∀
𝐮, 𝑡=1

𝑇 𝑙 𝑡 𝐰 𝑡+1 ≤ 𝑡=1
𝑇 𝑙 𝑡 𝐮

 For 𝑇 = 1, 𝑙 1 𝐰 2 ≤ 𝑙 1 𝐮 holds

since 𝐰 2 is determined so that 𝑙 1 is minimized

 Suppose the inequality holds for 𝑇 − 1,

i.e. 𝑡=1
𝑇−1 𝑙 𝑡 𝐰 𝑡+1 ≤ 𝑡=1

𝑇−1 𝑙 𝑡 𝐮

 Adding 𝑙 𝑇 𝐰 𝑡+1 to both sides yields

 𝑡=1
𝑇 𝑙 𝑡 𝐰 𝑡+1 ≤ 𝑙 𝑇 𝐰 𝑇+1 + 𝑡=1

𝑇−1 𝑙 𝑡 𝐮

 Since this holds even for 𝐮 = 𝐰 𝑇+1 ,

– 𝑡=1
𝑇 𝑙 𝑡 𝐰 𝑡+1 ≤ 𝑡=1

𝑇 𝑙 𝑡 𝐰 𝑇+1 ≤ 𝑡=1
𝑇 𝑙 𝑡 𝐮

Proof of the FTL lemma:
Proof by induction

𝐰 𝑇+1 is taken to satisfy this𝐰 𝑇+1 is taken to satisfy this

17 KYOTO UNIVERSITY

 Too aggressive updates might increase regret of FTL

–Regret bound depends on the sum of decreases of 𝑙 𝑡 so far

 Follow-the-Regularized-Leader (FTRL) makes “milder” updates

𝐰 𝑡 = argmin𝐰∈𝒮

𝜏=1

𝑡−1

𝑙 𝜏 𝐰 + 𝑅(𝐰)

 Lemma:

∀
𝐮, 𝑡=1

𝑇 𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐮

≤ 𝑅 𝐮 − 𝑅 𝐰 1 + 𝑡=1
𝑇 𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐰 𝑡+1

Follow-the-regularized-leader:
An online algorithm with regret bound

regularization termregularization term

18 KYOTO UNIVERSITY

 FTRL on 𝑙 1 , 𝑙 2 ,…
equivalent

FTL on 𝑙 0 = 𝑅 𝐰 , 𝑙 1 , 𝑙 2 ,…

–Since the FTL update is

𝐰 𝑡 = argmin𝐰∈𝒮 𝜏=0
𝑡−1 𝑙 𝜏 𝐰

= argmin𝐰∈𝒮 𝜏=1
𝑡−1 𝑙 𝜏 𝐰 + 𝑅 𝐰

 Applying the previous FTL lemma, we obtain additional terms
on the right-hand side:

𝑙 0 𝐮 − 𝑙 0 𝐰 1 = 𝑅 𝐮 − 𝑅 𝐰 1

Proof of the FTRL lemma:
Reuse of the FTL lemma

19 KYOTO UNIVERSITY

 Assume:

–Linear loss function: 𝑙 𝑡 𝐰 𝑡 = 𝐰 𝑡 , 𝐱 𝑡

–Standard L2-regularization term: 𝑅 𝐰 =
1

2𝜂
𝐰 2

2

 FTRL update: 𝐰 𝑡+1 = argmin𝐰∈ℝ𝑑 𝜏=1
𝑡 𝐰, 𝐱 𝜏 +

1

2𝜂
𝐰 2

2

 i.e. 𝐰 𝑡+1 = −𝜂 𝜏=1
𝑡 𝐱 𝜏 = 𝐰 𝑡 − 𝜂𝐱 𝑡

 With no regularization term, 𝐰 𝑡+1 = −∞ ⋅ sign 𝜏=1
𝑡 𝐱 𝜏

 suffers infinite loss

Example of FTRL update:
Online linear optimization

20 KYOTO UNIVERSITY

Regret𝑇 𝒮 ≤
1

2𝜂
𝐰∗

2
2 + 𝑡=1

𝑇 𝐰 𝑡 , 𝐱 𝑡 − 𝐰 𝑡+1 , 𝐱 𝑡

=
1

2𝜂
𝐰∗

2
2 +

𝑡=1

𝑇

𝐰 𝑡 − 𝐰 𝑡+1 , 𝐱 𝑡

=
1

2𝜂
𝐰∗

2
2 +

𝑡=1

𝑇

𝜂𝐱 𝑡 , 𝐱 𝑡 =
1

2𝜂
𝐰∗

2
2 + 𝜂

𝑡=1

𝑇

𝐱 𝑡
2

2

 By optimizing 𝜂, 𝜂 =
𝐰∗

2

𝐿 2𝑇
gives a sublinear bound:

Regret𝑇 𝒮 ≤ 𝐰∗
2 𝐿 2𝑇, where

1

𝑇
 𝑡=1

𝑇 𝐱 𝑡
2

2
≤ 𝐿2

Regret bound for online linear optimization:
FTRL enjoys sublinear regret bound

21 KYOTO UNIVERSITY

 Obtaining Ο 2𝑇 regret bound requires us to know the total

number of rounds 𝑇; we would get rid of the dependence

 Suppose we have an algorithm 𝐴 with regret bound of α 𝑇

 Doubling trick:

–For each epoch 𝑚 = 1, 2, … , run 𝐴 for 𝑇 = 2𝑚 rounds

– i.e. 𝑇 is doubled when the round 𝑡 reaches 𝑇

 Total regret is bounded by

𝑚=1

log2𝑇

α 𝑇 =

𝑚=1

log2𝑇

α 2𝑚 ≤
2

2 − 1
α 𝑇

Doubling trick:
Making the regret bound independent of 𝑇

22 KYOTO UNIVERSITY

 Online gradient descent

–Hyper-parameter (learning rate): 𝜂 > 0

– Initialization: 𝐰 𝑡 = 𝟎

 At each round 𝑡 = 1, 2, … , 𝑇

1. Submit a parameter vector 𝐰 𝑡 ∈ 𝒮 (convex set e.g. ℝ𝐷)

2. Receive a convex loss function 𝑙 𝑡 : 𝒮 → ℝ

and suffer loss 𝑙 𝑡 𝐰 𝑡

3. Update parameter 𝐰 𝑡+1 = 𝐰 𝑡 − 𝜂𝐳 𝑡 ,

where 𝐳 𝑡 ∈ 𝜕𝑙 𝑡 𝐰 𝑡 (subgradients)

Online gradient descent:
Online learning algorithm with convex loss function

23 KYOTO UNIVERSITY

 A function 𝑓: 𝑆 (convex set) → ℝ is a convex function
iff ∀𝐮 ∈ 𝑆, there exists 𝐳 such that

∀𝐮 ∈ 𝑆, 𝑓 𝐮 ≥ 𝑓 𝐰 + 𝐮 − 𝐰, 𝐳

 𝐳 is called a subgradient of 𝑓 at 𝐰, and denote the set of
subgradients by 𝜕𝑓 𝐰

 If 𝑓 is differentiable at 𝐰, 𝜕𝑓 𝐰 has only a single element
𝛻𝑙 𝐰 called gradient

[Supplement]:
Subgradient

24 KYOTO UNIVERSITY

 Lemma: Regret bound of online gradient descent is

Regret𝑇 𝒮 ≤
1

2𝜂
𝐰∗

2
2 + 𝜂

𝑡=1

𝑇

𝐳 𝑡
2

2

 Optimizing 𝜂, 𝜂 =
𝐰∗

2

𝐿 2𝑇
, where

1

𝑇
 𝑡=1

𝑇 𝐳 𝑡
2

2
≤ 𝐿2,

we have a sublinear bound: Regret𝑇 𝒮 ≤ 𝐰∗
2 𝐿 2𝑇

 Same result as the regret bound for online linear optimization

Regret bound of online gradient descent:
OGD also enjoys sublinear regret bound

optimal 𝐰optimal 𝐰 norm of subgradientnorm of subgradient

25 KYOTO UNIVERSITY

 For convex loss 𝑙,
𝑙 𝐰∗ ≥ 𝑙 𝐰 + 𝐰∗ − 𝐰, 𝐳 , 𝐳 ∈ 𝜕𝑙 𝐰 ⇒ 𝑙 𝐰 − 𝑙 𝐰∗ ≤ 𝐰 − 𝐰∗, 𝐳

 Regret is bounded from above:

Regret𝑇 𝒮 =

𝑡=1

𝑇

𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐰∗ ≤

𝑡=1

𝑇

𝐰 𝑡 , 𝐳 𝑡 − 𝐰∗, 𝐳 𝑡

–This is exactly what we bounded in the online linear

optimization using FTRL (by regarding 𝐱 𝑡 as 𝐳 𝑡)

OGD is equivalent to FTRL by taking 𝐳 𝑡 ∈ 𝜕𝑙 𝑡 𝐰 𝑡 ,

which results in the same regret bounds as those of FTRL

–Remember the FTRL update: 𝐰 𝑡+1 = 𝐰 𝑡 − 𝜂𝐳 𝑡

Proof of regret bound of online gradient descent:
Reduction to online linear optimization

optimal 𝐰optimal 𝐰

26 KYOTO UNIVERSITY

 Our analysis relied on the convexity of 𝑙 𝑡 ; what if it is not?

 Consider a convex upper bound 𝑙 𝑡 such that 𝑙 𝑡 ≤ 𝑙 𝑡

 Running the online gradient descent using 𝑙 𝑡 gives regret

bound 𝑡=1
𝑇 𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐰∗ ≤ 𝒘∗

2
2 𝐿 2𝑇

 Combined with 𝑙 𝑡 𝐰 𝑡 ≤ 𝑙 𝑡 𝐰 𝑡 , we get

𝑡=1

𝑇

𝑙 𝑡 𝐰 𝑡 ≤

𝑡=1

𝑇

 𝑙 𝑡 𝐰∗ + 𝒘∗
2
2 𝐿 2𝑇

Convex surrogate:
Regret bound for non-convex loss

27 KYOTO UNIVERSITY

 Perceptron update formula:

𝐰 𝑡+1 = 𝐰 𝑡 + 𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

 Non-convex loss function 0-1 loss (Online classification)

𝑙 𝑡 𝐰 𝑡 = 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

 Lemma: If there exists 𝐰∗ such that ∀𝑡, 𝑦 𝑡 𝐰∗, 𝐱 𝑡 ≥ 1,

mistake bound of perceptron is
𝑚 ≤ 2𝑅2 𝐰∗

2
2,

where 𝐱 𝑡
2

2
≤ 𝑅2

Perceptron algorithm:
Online classification learning with mistake bound

number of
mistakes

number of
mistakes

i.e. made a mistakei.e. made a mistake

28 KYOTO UNIVERSITY

 Define convex surrogate 𝑙 𝑡 as 𝑙 𝑡 = 1 − 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡

if the perceptron makes a mistake, and 𝑙 𝑡 = 0 if not

 Online gradient descent with 𝑙 𝑡 is equivalent to perceptron

–OGD:
𝐰 𝑡+1 = 𝐰 𝑡 + 𝜂𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

= 𝜂 𝑡=1
𝑇 𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

–Perceptron:
𝐰 𝑡+1 = 𝐰 𝑡 + 𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

= 𝑡=1
𝑇 𝑦 𝑡 𝐱 𝑡 ⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

–We can take arbitrary 𝜂 since sign 𝐰 𝑡 , 𝐱 𝑡 = sign 𝜂𝐰 𝑡 , 𝐱 𝑡

Perceptron algorithm:
Equivalent to ODG with surrogate loss

no effect on
prediction

no effect on
prediction

29 KYOTO UNIVERSITY

 Online gradient descent with 𝑙 𝑡 gives

Regret𝑇 𝒮 ≤
1

2𝜂
𝐰∗

2
2 + 𝜂

𝑡=1

𝑇

𝑦 𝑡 𝐱 𝑡
2

2
⋅ 1 𝑦 𝑡 𝐰 𝑡 , 𝐱 𝑡 ≤0

 On the other hand,

Regret𝑇 𝒮 =

𝑡=1

𝑇

 𝑙 𝑡 𝐰 𝑡 − 𝑙 𝑡 𝐰∗ ≥ 𝑚

– since 𝑡
 𝑙 𝑡 𝐰 𝑡 ≥ 𝑡 𝑙 𝑡 𝐰 𝑡 = 𝑚,

and 𝑡=1
𝑇 𝑙 𝑡 𝐰∗ = 0 (since ∀𝑡, 𝑦 𝑡 𝐰∗, 𝐱 𝑡 ≥ 1)

 Connecting the two inequalities yields 𝑚 ≤
1

2𝜂
𝐰∗

2
2 + 𝜂𝑚𝑅2

Proof of perceptron mistake bound (1/2):
Use regret bound of OGD with surrogate loss

𝑦 𝑡 𝐱 𝑡
2

2
= 𝐱 𝑡

2

2
≤ 𝑅2𝑦 𝑡 𝐱 𝑡

2

2
= 𝐱 𝑡

2

2
≤ 𝑅2

30 KYOTO UNIVERSITY

 We have 𝑚 ≤
1

2𝜂
𝐰∗

2
2 + 𝜂𝑚𝑅2

 Minimizing the r.h.s. finds 𝜂 =
𝐰∗

2

𝑅 2𝑚
,

which results in 𝑚 ≤ 𝑅 2𝑚 𝐰∗
2

–Remember we do not have to determine 𝜂 actually

𝑚 ≤ 2𝑅2 𝐰∗
2
2

Proof of perceptron mistake bound (2/2):
Optimize the bound

31 KYOTO UNIVERSITY

Concluding RemarksConcluding Remarks

32 KYOTO UNIVERSITY

 We have seen basic topics and some advanced ones mainly on
supervised machine learning

–Regression/Classification

–Regularization

–Sparse models

–Model evaluation

–Semi-supervised, active, and transfer Learning

–Statistical and on-line learning theory

What we have learned:
Basic and advanced topics of supervised learning

33 KYOTO UNIVERSITY

 Statistical machine learning is rapidly changing

–We are in the middle of a boom of deep learning

–New techniques are being introduced, and some introduced
in this course might become outdated

 The basic ideas introduced in this lecture will still survive

–You do not have to be hung up on details

–Understand the problem settings and basic concepts and
refer to them as required

What are important :
Problem settings and basic concepts

