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 Semi-supervised learning

–Weighted maximum likelihood estimation

–Graph-based methods (e.g. label propagation)

– Self-training

 Active learning

–Uncertainty sampling

– Estimated model change

 Transfer learning

– Covariate shift using with weighted ML estimation

– Shared parameters and domain specific parameters

Topics: 
Semi-supervised, active, and transfer learning
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 We have both labeled and unlabeled instances

–Labeled data: 𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

–Unlabeled data: 𝐱 𝑁+1 , … , 𝐱 𝑁+𝑀

–Usually, 𝑁 ≪ 𝑀

 Semi-supervised learning uses unlabeled data as well as 
labeled data

 Active learning

–has accesses to an oracle to give labels to unlabeled data

–has to choose which unlabeled data to query next

Semi-supervised learning and active learning: 
Learning with labeled and unlabeled data
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 Data generation process

– Input 𝐱 is generated by input data distribution 𝒟𝒳

–Output 𝑦 for 𝐱 is generated by conditional distribution 𝒟𝒴|𝒳

 Unlabeled data can be used for capturing 𝒟𝒳

– Input data distribution, input space metric, or better representations

Role of unlabeled data in supervised learning: 
Information of the input data distribution
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Semi-supervised Learning
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 We have both labeled and unlabeled instances

–Labeled data 𝐿 = 𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

–Unlabeled data 𝑈 = 𝐱 𝑁+1 , … , 𝐱 𝑁+𝑀

 Estimate a deterministic mapping 𝑓: 𝒳 → 𝒴 (often with a 
confidence value) or a conditional probability 𝑃(𝑦|𝐱)

Semi-supervised learning problem: 
Learning with labeled and unlabeled data
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 Weighted maximum likelihood estimation

 Graph-based learning

 Self-training

 Clustering

 Generative models

Typical approaches of semi-supervised learning: 
Learning with labeled and unlabeled data
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 The original goal of ML estimation is to maximize

𝐸𝒙,𝑦 log 𝑃(𝑦|𝐱) =  log 𝑃 𝑦 𝐱 d𝑝(𝐱)d𝑝(𝑦|𝐱) ≈
1

𝑁
 

𝑖=1

𝑁

log 𝑃(𝑦(𝑖)|𝐱(𝑖))

–Each training data instance is equally weighted

 Weighted maximum likelihood:
Each training data instance is weighted according to 𝑝(𝐱)

maximize  

𝑖=1

𝑁

𝑝(𝐱(𝑖)) log 𝑃(𝑦(𝑖)|𝐱(𝑖))

–𝑝(𝐱) is estimated using unlabeled data (but not practical) 

Weighted maximum likelihood: 
Estimate input distribution to weight labeled instances
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 Weighted maximum likelihood:

–Each training data instance is weighted according to 𝑝(𝐱)

–Dense areas are largely weighted

–Training a classifier focusing on the dense areas

Weighted maximum likelihood: 
Densely distributed area are weighted larger
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 Basic idea: construct a graph capturing the intrinsic shape of the 
input space, and make predictions on the graph

 Assumption: Data lie on a manifold in the feature space

 The graph represent adjacency relationships among data

–𝐾-nearest neighbor graph (e.g. 𝐴𝑖,𝑗 = {0, 1})

–Edge-weighted graph with e.g. 𝐴𝑖,𝑗 = exp −∥ 𝐱(𝑖) − 𝐱(𝑗) ∥2
2

Graph-based method: 
Capture intrinsic shape of input space
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 Basic idea: Adjacent instances tend to have the same label

–Note that we have test instances (i.e. transductive setting)

minimize𝑓  𝑖=1
𝑁 𝑓𝑖 − 𝑦(𝑖) 2

+ 𝛾  𝑖,𝑗 𝐴𝑖,𝑗 𝑓𝑖 − 𝑓𝑗
2

–1st term: (squared) loss function to fit to labeled data 

–2nd term: regularization function to make adjacent nodes to 
have similar predictions

Label propagation: 
Simple graph-based method

𝑗𝑖

𝑦(𝑖) = 1

prediction: 𝑓𝑖 𝑓𝑗

𝐴𝑖,𝑗 = 1labeled data unlabeled data
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 Predict if people are infected by some disease

–Test results are known for some people

– Infections spread over social networks

Illustrative example of label propagation: 
Infection prediction on social network
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 Procedure:

1. Initialization: train a classifier using labeled dataset 𝐿

2. Use the classifier to assign temporary labels to unlabeled 
dataset 𝑈

3. Train a classifier using 𝐿 and 𝑈(with the temporary labels)

4. Return to Step 2

 For probabilistic classifier, use the weighted ML estimation:

maximize  

𝑖∈𝐿

log 𝑝(𝑦(𝑖)|𝐱(𝑖)) +  

𝑖∈𝑈

 

 𝑦

𝑝(  𝑦|𝐱(𝑖))log 𝑝(  𝑦|𝐱(𝑖))

Self-training: 
Believe what you believe

Temporary label
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 Procedure:

Self-training: 
Believe what you believe
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Active Learning

Settles, B. Active Learning Literature Survey. Computer Sciences Technical Report 1648, 
University of Wisconsin–Madison, 2010.
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 Start with only unlabeled data 𝑈 = 𝐱 1 , … , 𝐱 𝑁

 At each round, an active learner can query an unlabeled 
instance to be labeled by an oracle

–then update the predictor using current labeled (and 
unlabeled) data

 An active learning algorithm determines the query strategy 
specifying which unlabeled instance should be queried next

Active learning: 
Learning with a label oracle 
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 Basic idea: Query the instance whose label is the most 
informative

 Several basic strategies to choose “informative” instance

–Query the instance with the most uncertain label

–Query the instance which will gives the largest expected 
model change 

–…

Active learning query strategies: 
Choose the most “informative” instance
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 In a linear classifier 𝑓 𝒙 = sign(𝐰⊺𝐱), 
|𝐰⊺𝐱| indicates “confidence level” of the prediction

–For multi−class classification, use max𝑘 𝐰(𝑘)⊺𝐱

(or, margin max𝑘 𝐰(𝑘)⊺𝐱 − secondbest𝑘 𝐰(𝑘)⊺𝐱 )

–For probabilistic classifiers, the entropy 
 𝑦 −𝑃 𝑦 𝐱 log 𝑃 𝑦 𝐱 is used as an uncertainty measure

 Query 𝐱(𝑖) with the lowest confidence/highest uncertainty

Uncertainty sampling: 
Query the instance with the most uncertain label

●

●

●

Least confident instance
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Differences among confidence level, margin, and entropy
[Settles, 2010. page 14] 

Settles, B. Active Learning Literature Survey. Computer Sciences Technical Report 1648, 
University of Wisconsin–Madison, 2010.
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 Querying the least confident instance cares only about the local 
information 

 Obtaining one labeled instance can make an impact on the 
whole model

 We should take the amount of the “impact” of a label into 
account

Limitation of uncertainty sampling : 
Uncertainty sampling is based on local information
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 How can we measure the impact of a labeled instance?

 We consider how much the label will change the model

 Assume gradient-based learning methods are used

–Denote the loss function for 𝐿 by 𝐽(𝐿)

–Gradient descent update 𝐰new ← 𝐰old − 𝛾 𝜵𝒘 𝐽(𝐿 ∪ (𝐱, 𝑦))
when a labeled instance (𝐱, 𝑦) is newly added to 𝐿

–The impact can be defined as ∥ 𝜵𝒘 𝐽(𝐿 ∪ (𝐱, 𝑦) ∥

 Choose instance 𝐱 that gives the largest (expected) gradient of 
the objective function:  𝑦 −𝑃 𝑦 𝐱 ∥ 𝜵𝒘 𝐽(𝐿 ∪ (𝐱, 𝑦) ∥

Expected model change: 
Query the instance which gives the largest model change
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 Another definition of the model change

𝑃𝐰new: model after update with new labeled data (𝐱, 𝑦)

 Information gain about the unlabeled data:

−  

𝑖=𝑁+1

𝑁+𝑀

 

𝑦′

𝑃𝐰new 𝑦′|𝐱 𝑖 log 𝑃𝐰new 𝑦′|𝐱 𝑖

 Choose an instance that gives the largest expected gain:

−  

𝑦

𝑃 𝑦 𝐱  

𝑖=𝑁+1

𝑁+𝑀

 

𝑦′

𝑃𝐰new 𝑦′|𝐱 𝑖 log 𝑃𝐰new 𝑦′|𝐱 𝑖

Expected model change: 
Query the instance which gives the largest model change
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Transfer Learning
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 Training dataset and test dataset are sampled from different 
distributions

 In the standard settings, an input 𝐱 is sampled from 𝒟𝒳, and an 
output 𝑦 is sampled from 𝒟𝒴|𝒳 (in both training and test)

 In transfer learning, 

–Training data come from 𝒟𝒳
train and 𝒟𝒴|𝒳

train

–Test data come from 𝒟𝒳
test and 𝒟𝒴|𝒳

test

 Example: Domain adaptation

–Classification of general text documents and medical texts

Transfer learning: 
Training and test data come from different distributions

Different distributions
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 Covariate shift: only the input distributions are different

–𝒟𝒳
train ≠ 𝒟𝒳

test

–𝒟𝒴|𝒳
train = 𝒟𝒴|𝒳

test: conditional distributions are the same

–Training dataset is labeled and test dataset is unlabeled

 Occurs when sampling of labeled data is constrained

– Labels are obtained only from the targets to which some actions are 
taken (e.g. responses to direct mails)

– Labels can only be taken in controlled environments (e.g., in-vitro 
experiments)

– Active learning controls the training distribution

Covariate shift: 
Input distributions are different
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 The distribution on which we want to work well is the test 
input distribution 𝑝test(𝐱)

 In maximum likelihood estimation, we want to maximize

𝐸𝑋
test log 𝑃(𝑦|𝐱) =  𝑝test(𝐱) log 𝑃 𝑦 𝐱 d𝐱

–Note that the expectation is taken over 𝑝test(𝐱)

 However, we can not directly evaluate the objective function

–We do not have label information for test dataset

Maximum likelihood learning under covariate shift : 
Maximize likelihood for test input distribution
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 Use the importance sampling

𝐸𝑋
test log 𝑃(𝑦|𝐱) =  

𝑝test(𝐱)

𝑝train(𝐱)
𝑝train(𝐱) log 𝑃 𝑦 𝐱 d𝐱

≈
1

𝑁
 

𝑖=1

𝑁
𝑝test 𝐱 𝑖

𝑝train 𝐱 𝑖
log 𝑃 𝑦 𝑖 𝐱 𝑖

=
1

𝑁
 

𝑖=1

𝑁

𝜔 𝐱 𝑖 log 𝑃 𝑦 𝑖 𝐱 𝑖

–Weighted ML estimation with weight 𝜔 𝐱 𝑖 =
𝑝test 𝐱 𝑖

𝑝train 𝐱 𝑖

Covariate shift learning only with training labels: 
Weighted maximum likelihood with density ratio

training data 𝐱 𝑖 , 𝑦 𝑖 is 

weighted with 𝜔 𝐱 𝑖
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 Focus on the training data in the dense region of the test data

Covariate shift learning only with training labels: 
Weighted maximum likelihood with density ratio
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 Estimation of the density ratio 𝜔 𝒙 =
𝑝test 𝒙

𝑝train 𝒙
is required

–Density estimation of 𝑝test and 𝑝train

–Some approaches directly estimate 𝜔

 Adaptive importance weighted ML estimation:

–Practically 𝜔𝜆 𝒙 𝑖 =
𝑝test 𝒙 𝑖

𝑝train 𝒙 𝑖

𝜆

(0 ≤ 𝜆 ≤ 1) works better

Practical considerations: 
Density ratio estimation and adaptive importance
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 Transfer learning of different conditional distributions

–𝒟𝒴|𝒳
train ≠ 𝒟𝒴|𝒳

test

–𝒟𝒳
train = 𝒟𝒳

test: Input distributions are the same

–Labels are available in both training and test datasets

 Adaptation to changes of predictive models

–Transfer knowledge from a general task to a specific task (and 
vice versa)

–Model changes over time

Transfer learning of different conditional distributions: 
Adaptation to model changes
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 Assume linear models (e.g. 𝑓 𝐱 = sign(𝐰⊺𝐱))

–The source domain model has 𝐰(s), while the target domain 

model has 𝐰(t)

 The models have shared parts and domain specific parts

–Source domain model 𝐰(s) = 𝐯(0) + 𝐯(s)

–Target domain model 𝐰(t) = 𝐯(0) + 𝐯(t)

 Ordinary classification methods can be used:  𝑓 𝐱 = sign(  𝐰⊺  𝐱)

–  𝐰 = (𝐯(0), 𝐯(s), 𝐯(t))

–  𝐱 = 𝐱⊤, 𝐱⊤, 𝟎⊤ ⊤ for source;  𝐱 = 𝐱⊤, 𝟎⊤, 𝐱⊤ ⊤for target

A simple approach to model change adaptation: 
Shared parameters and domain specific parameters


