https://goo.gl/kfxwEg

Kyoto University

Statistical Machine Learning Theory

Sparsity

Hisashi Kashima kashima@i.Kyoto-u.ac.jp

Topics: Learning with sparsity

- L₁-regularization & Lasso
- Reduced rank regression
- Dimension reduction

Lasso

Regression:

Prediction of a continuous target variable

- Training dataset $\{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(N)}, y^{(N)})\}$
 - $\mathbf{x}^{(i)} \in \mathbb{R}^D$: feature vector
 - $y^{(i)} \in \mathbb{R}$: real-valued target value
- Linear regression model: $y = \mathbf{w}^{\top} \mathbf{x}$
- Least square solution:

$$\mathbf{w}^{*} = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\top} \mathbf{x}^{(i)})^{2}$$

= $\operatorname{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2}$
= $(\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$
$$\mathbf{x} = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)})^{\top}$$

$$\mathbf{y} = (y^{(1)}, y^{(2)}, \dots, y^{(N)})^{\top}$$

Ridge regression: L₂-Regularization for avoiding overfitting

- Overfitting to the training data
 - Especially when the training data is small compared with the input space dimensionality
- Regularized least square solution:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \gamma \|\mathbf{w}\|_2^2$$
$$= (\mathbf{X}^\top \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y}$$

- $\|\mathbf{w}\|_{2}^{2} = w_{1}^{2} + w_{2}^{2} + \dots + w_{D}^{2}$: L₂-regularization term

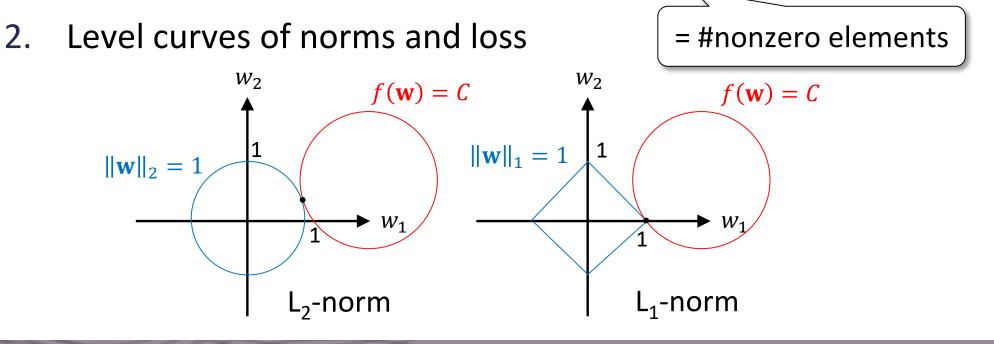
Analytical solution exists

L₁-regularization: A sparsity-inducing regularization

- Over-fitting sometimes occurs even with L₂-regularization
 - when the dimensionality is extremely large
 - when the true model uses only a small number of features
- L₁-regularization
 - $\|\mathbf{w}\|_1 = |w_1| + |w_2| + \dots + |w_D|$: L₁-regularization term leads to sparse solutions
 - Sparse: Many w_d becomes 0 in the solutions
 - High interpretability and easy-to-implementability
 - L_1 -regularized least square linear regression (LASSO): $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \gamma \|\mathbf{w}\|_1$

Why does L₁-regularization induce sparse solutions?: Some intuitive explanations

- L_1 -regularization is equivalent to L_1 -norm constraint: $\operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}) + \gamma \|\mathbf{w}\|_1 \Leftrightarrow \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w}) \text{ s.t. } \|\mathbf{w}\|_1 \leq \lambda$
- Some intuitive explanations for sparsity:
 - 1. L_1 -norm is a convex alternative to L_0 -norm



Kyoto University

L₁-regularized least square linear regression: No closed-form solutions

- L_1 -regularized least square linear regression (LASSO): $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \gamma \|\mathbf{w}\|_1$
 - L_1 -regularization with a convex loss function is a convex optimization problem
- LASSO has no closed form solution...
 ⇒ needs iterative solutions, e.g.:
 - 1. Optimization with respect to only one dimension
 - 2. Reduction to L₂-regularization

An algorithm for lasso:

Repeat optimization w.r.t only one dimension

- L₁-regularization term is cumbersome since:
 - it is not differentiable at $w_d = 0$
 - $w_d = 0$ tends to be a solution
- Observation: The objective function is easy to optimize if we focus only on a single dimension (e.g. w_d)
- Iterative algorithm: Coordinate-wise descent
 - 1. Choose an arbitrary *d*
 - 2. Optimize w_d (has a closed form solution)
 - 3. Repeat steps 1&2 until convergence

One dimensional optimization problem for LASSO: Sum of a quadratic function & an absolute value function

L₁-regularized least square linear regression (LASSO):

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \gamma \|\mathbf{w}\|_1$$

Consider optimization w.r.t. only w_d:

Neglect the other terms not depending on w_d

$$- w_d^* = \operatorname{argmin}_{w_d} q(w_d) + \gamma |w_d|$$

• $q(w_d) = a(w_d - \tilde{w}_d)^2 + b$ (a > 0): quadratic function

- \widetilde{w}_d is the minimizer of $q(w_d)$ i.e. the solution of the one-variable optimization when $\gamma |w_d|$ is neglected
- Finally what we want is

$$w_d^* = \operatorname{argmin}_{w_d} \frac{1}{2} (w_d - \widetilde{w}_d)^2 + \lambda |w_d| \quad (\lambda = \frac{1}{2a}\gamma)$$

Solution of the one-dimensional optimization: Find the stationary point

11

- Find the minimizer of $l(w_d) = \frac{1}{2}(w_d \widetilde{w}_d)^2 + \lambda |w_d|$
- $\partial l(w_d)$ Taking the derivative of $l(w_d)$, ∂w_d $\frac{\partial l(w_d)}{\partial w_d} = \begin{cases} w_d - \widetilde{w}_d + \lambda & (\text{if } w_d > 0) \\ w_d - \widetilde{w}_d - \lambda & (\text{if } w_d < 0) \\ \text{undefined} & (\text{otherwise}) \end{cases}$ $-\widetilde{w}_d + \lambda$ $-\widetilde{w}_d$ • Solution: $w_d = w_d^*$ s.t. $\frac{\partial l(w_d)}{\partial w_d} \bigg|_{w_d \to w_d^*} = 0$ $-\widetilde{w}_d - \lambda$ W_d - lies at $\frac{\partial l(w_d)}{\partial w_d}$ hits the x-axis solution

Sparsity of lasso solutions: Solutions close to zero are rounded to zero

- We have 3 cases: $\partial l(w_d)$ ∂w_d 1. $-\widetilde{w}_d + \lambda < 0$ (i.e. $\widetilde{w}_d > \lambda$), • Solution: $w_d^* = \widetilde{w}_d - \lambda$ W_d $-\widetilde{w}_d + \lambda$ 2. $-\widetilde{w}_d - \lambda > 0$ (i.e. $\widetilde{w}_d < -\lambda$), $-\widetilde{w}_d$ • Solution: $w_d^* = \widetilde{w}_d + \lambda$ 3. $-\lambda \leq \widetilde{w}_d \leq \lambda$ ☐ J sparse solution $-\widetilde{w}_d - \lambda$ • Solution: $w_d^* = 0$ W_d - if $w_d^* > 0$, we have a contradiction $\frac{\partial l(w_d)}{\partial w_d}\Big|_{w_d = w_d^*} = w_d^* - \widetilde{w}_d + \lambda = 0 \implies w_d^* = \widetilde{w}_d - \lambda \le 0$
 - Similarly, assuming $w_d^* < 0$ yields a contradiction $w_d^* \ge 0$

Kyoto University

Dimension Reduction

Multivariate regression: Prediction of multiple continuous variables

 Multivariate regression is a regression problem to predict multiple output variables

$$- f: \mathbb{R}^D \Rightarrow \mathbb{R}^D$$

• Training dataset $\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), ..., (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$

-
$$\mathbf{x}^{(i)} \in \mathbb{R}^D$$
: feature vector

- $\mathbf{y}^{(i)} \in \mathbb{R}^{D'}$: real-valued target values
- Multivariate linear regression model: $\mathbf{y} = \mathbf{W}^{\mathsf{T}}\mathbf{x}$

-
$$W \in \mathbb{R}^{D \times D'}$$
: Matrix parameter

Solution of multivariate regression: Closed form least square solution

Least square solution:

$$W^* = \operatorname{argmin}_{W \in \mathbb{R}^{D' \times D}} \sum_{i=1}^{N} \left\| \mathbf{y}^{(i)} - W^{\mathsf{T}} \mathbf{x}^{(i)} \right\|_{2}^{2}$$

= $\operatorname{argmin}_{W} \left\| \mathbf{Y} - \mathbf{X} \mathbf{W} \right\|_{F}^{2}$
= $(\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Y}$
Regularized version
$$X = \left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)} \right)^{\mathsf{T}}$$

$$\frac{\partial \operatorname{tr}(AB)}{\partial A} = B^{\mathsf{T}}$$

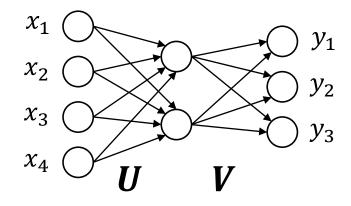
- $\|W\|_{\mathrm{F}}^2 = \sum_{(i,j)} w_{ij}^2$: L₂-regularization term - $W^* = (X^{\mathsf{T}}X + \gamma I)^{-1}X^{\mathsf{T}}Y$

Reduced rank regression: Multivariate regression with rank constraint

- Multivariate regression is equivalent to D'-independent univariate regressions
 - exploits no shared information
- Low-rank assumption $W = UV^{\top}$
 - $\boldsymbol{U} \in \mathbb{R}^{D \times K}$, $\boldsymbol{V} \in \mathbb{R}^{D' \times K}$ i.e. rank of \boldsymbol{W} is K
 - $K < \min(D, D')$
 - D' output variables share K-dimensional latent space
- Reduced rank regression: Sparsity in the dim of latent space $W^* = \operatorname{argmin}_W \|Y XW\|_F^2$ s.t. $\operatorname{rank}(W) \le K$

Sparsity in reduced rank regression: Sparse parameters in terms of matrix singular values

- Parameter W in the reduced rank regression $y = W^{\top}x$ is dense in terms of matrix elements
- W is sparse in terms of singular values
 - $W = UV^{\top}$ is low-rank
 - $\boldsymbol{U} \in \mathbb{R}^{D \times K}, \boldsymbol{V} \in \mathbb{R}^{D' \times K}, K < \min(D, D')$
 - Rank = L₀ norm of singular values: rank(W) = $\|\sigma(W)\|_0$



[Review] Eigenvalue decomposition of symmetric matrix

- Symmetric matrix can be diagonalized using an orthogonal matrix
- $A = P^{\top} \Lambda P$: eigen-decomposition of symmetric matrix A
 - Λ : diagonal matrix $\Lambda = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_D)$, where $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_D \ge 0$ (eigenvalues)
 - **P**: orthogonal matrix $P^{\top}P = PP^{\top} = I$

[Review] Singular value decomposition (SVD) and best rank-*K* approximation

- $B = U\Sigma V^{\top}$: SVD of rank- R real matrix B
 - Σ : diagonal matrix $\Sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_R, 0, \dots, 0)$, where $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_D \ge 0$ (singular values)
 - Σ is sqrt of eigenvalues of BB^{\top} or $B^{\top}B$
 - U, V: orthogonal matrices
 - **U** is eig.vecs of BB^{\top} , **V** is eig.vecs of $B^{\top}B$, $\mathbf{u}_i = \frac{1}{\sigma_i}B^{\top}\mathbf{v}_i$
- Best rank-*K* approximation problem of matrix **B**: $\widehat{B}^* = \operatorname{argmin}_{\widehat{B}} \| B - \widehat{B} \|_F^2$ s.t. $\operatorname{rank}(\widehat{B}) \leq K$
 - Find K largest singular values $\Sigma^* = \text{diag}(\sigma_1, \dots, \sigma_K)$, and corresponding vectors $U^* = (\mathbf{u}_1, \dots, \mathbf{u}_K)$, $V^* = (\mathbf{v}_1, \dots, \mathbf{v}_K)$, and let $\widehat{B}^* = U^* \Sigma^* V^{*\top}$

Solution of reduced rank regression (1/2): Best rank-*K* approximation of a matrix

• Objective function to be minimized:

$$\|Y - XW\|_{F}^{2} = \operatorname{tr}\{(Y - XW)^{\top}(Y - XW)\}$$

$$= \operatorname{tr}\{Y^{\top}Y - 2W^{\top}X^{\top}Y + W^{\top}X^{\top}XW\}$$
(Let $X^{\top}X = P^{\top}\Lambda P$ be the eigendecomposition)
 $P^{\top}P = PP^{\top} = I$
(P: orthogonal)
 $= \operatorname{tr}\{Y^{\top}Y - 2\widetilde{W}^{\top}\Lambda^{-\frac{1}{2}}PX^{\top}Y + \widetilde{W}^{\top}\widetilde{W}\}$
where $\widetilde{W} = \Lambda^{\frac{1}{2}}PW$
 $= \|\widetilde{W} - \Lambda^{-\frac{1}{2}}PX^{\top}Y\|_{F}^{2} + \operatorname{const.}$

• Find the best rank-*K* approximation of $\Lambda^{-\frac{1}{2}} P X^{\top} Y$

Solution of reduced rank regression (2/2): Closed form solution using SVD

- The best rank-*K* approximation of $\Lambda^{-\frac{1}{2}} P X^{\top} Y$ is given as $\widetilde{W}^* = U^* \Sigma^* {V^*}^{\top}$
 - V^* is top-*K* eigenvectors of $Y^{\top}XP^{\top}\Lambda^{-\frac{1}{2}}\Lambda^{-\frac{1}{2}}PX^{\top}Y = Y^{\top}X(X^{\top}X)^{-1}X^{\top}Y$
 - Σ^* : a diagonal matrix with K largest singular values

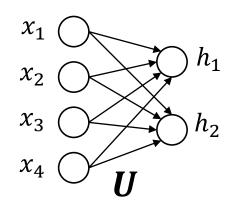
$$- U^* = \Lambda^{-\frac{1}{2}} P X^{\top} Y V^* {\Sigma^*}^{-1}$$

• The solution is $W^* = P^{\top} \Lambda^{-\frac{1}{2}} \widetilde{W}^* = P^{\top} \Lambda^{-\frac{1}{2}} U^* \Sigma^* V^{*\top} = (X^{\top} X)^{-1} X^{\top} Y V^* V^{*\top}$

Dimension reduction:

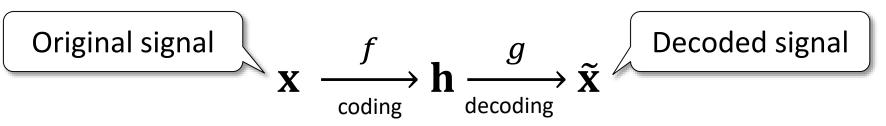
Find low-dimensional representations of high-dim. data

- Dimension reduction:
 - Find a low-dimensional mapping $f : \mathbb{R}^D \Rightarrow \mathbb{R}^K$ (D > K)
 - for interpretability, computational/space efficiency, generalization abilities, ...
 - (Lossy) compression: keep the original information as much as possible
- Linear dimension reduction: $\mathbf{h} = \mathbf{U}^{\mathsf{T}} \mathbf{x}$
 - $\boldsymbol{U}: D \times K$ matrix



Basic idea behind dimension reduction: Find a coding & decoding function for lossy compression

Coding and decoding process:



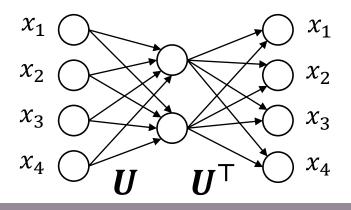
- If f and g are appropriately designed so that $\mathbf{x} \cong \tilde{\mathbf{x}}$,
 h must be a good low-dimensional representation of \mathbf{x}
- Optimization problem:

$$(f,g) = \operatorname{argmin}_{f,g} \sum_{i=1}^{N} \operatorname{loss}(\mathbf{x}^{(i)}, g(f(\mathbf{x}^{(i)})))$$

$$\overbrace{\mathbf{x}^{(i)}}^{\mathcal{N}}$$

Principal component analysis: Dimension reduction using reduced rank regression

- Linear dimension reduction with coding & decoding functions
 - linear coding function $f : \mathbf{h} = \mathbf{U}^{\mathsf{T}} \mathbf{x}$ ($\mathbf{U} : D \times K$ matrix)
 - linear decoding function $g: \tilde{\mathbf{x}} = V\mathbf{h}$ ($V: K \times D$ matrix)
 - $\quad \tilde{\mathbf{x}} = \boldsymbol{V} \boldsymbol{U}^{\top} \mathbf{x}$
- Reduced rank regression finds the solution by taking the training dataset as { (x⁽¹⁾, x⁽¹⁾), ..., (x^(N), x^(N))}
 - Solution will be V = U



Kyoto University

Topics: Learning with sparsity

- L₁-regularization & Lasso
 - -Sparsity in terms of number of features used in the model
 - -Solution of Lasso: Coordinate-wise descent
- Reduced rank regression
 - Sparsity in terms of number of dimensions of latent feature space
 - -Solution using SVD
 - -Dimension reduction