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 L1-regularization & Lasso

 Reduced rank regression

 Dimension reduction

Topics: 
Learning with sparsity
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Lasso
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 Training dataset 𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

– 𝐱 𝑖 ∈ ℝ𝐷: feature vector

– 𝑦 𝑖 ∈ ℝ : real-valued target value

 Linear regression model: 𝑦 = 𝐰⊤𝐱

 Least square solution:

𝐰∗ = argmin𝐰 

𝑖=1

𝑁

𝑦 𝑖 −𝐰⊤𝐱 𝑖 2

= argmin𝐰 𝐲 − 𝑿𝐰 2
2

= 𝑿⊤𝑿 −1𝑿⊤𝐲

Regression: 
Prediction of a continuous target variable

𝑿 = 𝐱 1 , 𝐱 2 , … , 𝐱 𝑁 ⊤

𝐲 = 𝑦 1 , 𝑦 2 , … , 𝑦 𝑁 ⊤
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 Overfitting to the training data

– Especially when the training data is small compared with 
the input space dimensionality

 Regularized least square solution:

𝐰∗ = argmin𝐰 𝐲 − 𝑿𝐰 2
2 + 𝛾 𝐰 2

2

= 𝑿⊤𝑿 + 𝛾𝑰 −1𝑿⊤𝐲

– 𝐰 2
2 = 𝑤1

2 +𝑤2
2 +⋯+𝑤𝐷

2: L2-regularization term

– Analytical solution exists

Ridge regression: 
L2-Regularization for avoiding overfitting
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 Over-fitting sometimes occurs even with L2-regularization

– when the dimensionality is extremely large

– when the true model uses only a small number of features

 L1-regularization

– 𝐰 1 = 𝑤1 + 𝑤2 +⋯+ 𝑤𝐷 : L1-regularization term 
leads to sparse solutions

• Sparse: Many 𝑤𝑑 becomes 0 in the solutions 

• High interpretability and easy-to-implementability

– L1-regularized least square linear regression (LASSO):

𝐰∗ = argmin𝐰 𝐲 − 𝑿𝐰 2
2 + 𝛾 𝐰 1

L1-regularization: 
A sparsity-inducing regularization
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 L1-regularization is equivalent to L1-norm constraint:

argmin𝐰 𝑓 𝐰 + 𝛾 𝐰 1 ⇔ argmin𝐰 𝑓 𝐰 s.t. 𝐰 1 ≤ 𝜆

 Some intuitive explanations for sparsity:

1. L1-norm is a convex alternative to L0-norm

2. Level curves of norms and loss

Why does L1-regularization induce sparse solutions?: 
Some intuitive explanations

𝑤1

𝑤2

𝑤1

𝑤2

L1-normL2-norm

11

1 1𝐰 1 = 1𝐰 2 = 1

= #nonzero elements

𝑓 𝐰 = 𝐶 𝑓 𝐰 = 𝐶
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 L1-regularized least square linear regression (LASSO):

𝐰∗ = argmin𝐰 𝐲 − 𝑿𝐰 2
2 + 𝛾 𝐰 1

– L1-regularization with a convex loss function is a convex 
optimization problem

 LASSO has no closed form solution…
⇒ needs iterative solutions, e.g.:

1. Optimization with respect to only one dimension

2. Reduction to L2-regularization

L1-regularized least square linear regression: 
No closed-form solutions

we will discuss this
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 L1-regularization term is cumbersome since:

– it is not differentiable at 𝑤𝑑 = 0

– 𝑤𝑑 = 0 tends to be a solution

 Observation: The objective function is easy to optimize 
if we focus only on a single dimension (e.g. 𝑤𝑑)

 Iterative algorithm: Coordinate-wise descent 

1. Choose an arbitrary 𝑑

2. Optimize 𝑤𝑑 (has a closed form solution)

3. Repeat steps 1&2 until convergence

An algorithm for lasso: 
Repeat optimization w.r.t only one dimension



10 KYOTO UNIVERSITY

 L1-regularized least square linear regression (LASSO):

𝐰∗ = argmin𝐰 𝐲 − 𝑿𝐰 2
2 + 𝛾 𝐰 1

 Consider optimization w.r.t. only 𝑤𝑑:

– 𝑤𝑑
∗ = argmin𝑤𝑑

𝑞 𝑤𝑑 + 𝛾 𝑤𝑑

• 𝑞 𝑤𝑑 = 𝑎 𝑤𝑑 −  𝑤𝑑
2 + 𝑏 (𝑎 > 0): quadratic function

–  𝑤𝑑 is the minimizer of 𝑞 𝑤𝑑 i.e. the solution of the 
one-variable optimization when 𝛾 𝑤𝑑 is neglected

 Finally what we want is

𝑤𝑑
∗ = argmin𝑤𝑑

1

2
𝑤𝑑 −  𝑤𝑑

2 + 𝜆 𝑤𝑑 (𝜆 =
1

2𝑎
𝛾)

One dimensional optimization problem for LASSO: 
Sum of a quadratic function & an absolute value function

Neglect the other terms not 
depending on 𝑤𝑑
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 Find the minimizer of 𝑙 𝑤𝑑 =
1

2
𝑤𝑑 −  𝑤𝑑

2 + 𝜆 𝑤𝑑

 Taking the derivative of 𝑙 𝑤𝑑 , 

𝜕𝑙 𝑤𝑑

𝜕𝑤𝑑
=  

𝑤𝑑 −  𝑤𝑑 + 𝜆
𝑤𝑑 −  𝑤𝑑 − 𝜆
undefined

(if 𝑤𝑑>0)
(if 𝑤𝑑<0)
(otherwise)

 Solution: 𝑤𝑑 = 𝑤𝑑
∗ s.t.  

𝜕𝑙 𝑤𝑑

𝜕𝑤𝑑 𝑤𝑑=𝑤𝑑
∗
= 0

– lies at 
𝜕𝑙 𝑤𝑑

𝜕𝑤𝑑
hits the x-axis

Solution of the one-dimensional optimization: 
Find the stationary point

𝑤𝑑

− 𝑤𝑑

− 𝑤𝑑 + 𝜆

− 𝑤𝑑 − 𝜆

𝜕𝑙 𝑤𝑑

𝜕𝑤𝑑

solution
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 We have 3 cases:

1. − 𝑤𝑑 + 𝜆 < 0 (i.e.  𝑤𝑑 > 𝜆),

• Solution: 𝑤𝑑
∗ =  𝑤𝑑 − 𝜆

2. − 𝑤𝑑 − 𝜆 > 0 (i.e.  𝑤𝑑 < −𝜆), 

• Solution: 𝑤𝑑
∗ =  𝑤𝑑 + 𝜆

3. −𝜆 ≤  𝑤𝑑 ≤ 𝜆

• Solution: 𝑤𝑑
∗ = 0

– if 𝑤𝑑
∗ > 0, we have a contradiction

 
𝜕𝑙 𝑤𝑑

𝜕𝑤𝑑 𝑤𝑑=𝑤𝑑
∗
= 𝑤𝑑

∗ −  𝑤𝑑 + 𝜆 = 0 ⇒ 𝑤𝑑
∗ =  𝑤𝑑 − 𝜆 ≤ 0

– Similarly, assuming 𝑤𝑑
∗ < 0 yields a contradiction 𝑤𝑑

∗ ≥ 0

Sparsity of lasso solutions: 
Solutions close to zero are rounded to zero

𝑤𝑑

− 𝑤𝑑

− 𝑤𝑑 + 𝜆

− 𝑤𝑑 − 𝜆

𝜕𝑙 𝑤𝑑

𝜕𝑤𝑑

sparse solution

𝑤𝑑
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Dimension Reduction
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 Multivariate regression is a regression problem to predict 
multiple output variables

– 𝑓:ℝ𝐷 ⇒ ℝ𝐷′

 Training dataset 𝐱 1 , 𝐲 1 , … , 𝐱 𝑁 , 𝐲 𝑁

– 𝐱 𝑖 ∈ ℝ𝐷: feature vector

– 𝐲 𝑖 ∈ ℝ𝐷′: real-valued target values

 Multivariate linear regression model: 𝐲 = 𝑾⊤𝐱

– 𝑾 ∈ ℝ𝐷×𝐷′: Matrix parameter

Multivariate regression: 
Prediction of multiple continuous variables
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 Least square solution:

𝑾∗ = argmin
𝑾∈ℝ𝐷

′×𝐷  

𝑖=1

𝑁

𝐲 𝑖 −𝑾⊤𝐱 𝑖
2

2

= argmin𝑾 𝒀 − 𝑿𝑾 F
2

= 𝑿⊤𝑿 −1𝑿⊤𝒀

 Regularized version

– 𝑾 F
2 =  (𝑖,𝑗)𝑤𝑖𝑗

2 : L2-regularization term

– 𝑾∗ = 𝑿⊤𝑿 + 𝛾𝑰 −1𝑿⊤𝒀

Solution of multivariate regression: 
Closed form least square solution

𝑿 = 𝐱 1 , 𝐱 2 , … , 𝐱 𝑁 ⊤

𝒀 = 𝐲 1 , 𝐲 2 , … , 𝐲 𝑁 ⊤

𝜕tr(𝑨𝑩)

𝜕𝑨
= 𝑩⊤
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 Multivariate regression is equivalent to 𝐷′-independent 
univariate regressions

– exploits no shared information

 Low-rank assumption 𝑾 = 𝑼𝑽⊤

– 𝑼 ∈ ℝ𝐷×𝐾, 𝑽 ∈ ℝ𝐷′×𝐾 i.e. rank of 𝑾 is 𝐾

• 𝐾 < min(𝐷, 𝐷′)

– 𝐷′ output variables share 𝐾–dimensional latent space

 Reduced rank regression: Sparsity in the dim of latent space
𝑾∗ = argmin𝑾 𝒀 − 𝑿𝑾 F

2 s.t. rank 𝑾 ≤ 𝐾

Reduced rank regression: 
Multivariate regression with rank constraint
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 Parameter 𝑾 in the reduced rank regression  𝐲 = 𝑾⊤𝐱 is 
dense in terms of matrix elements

 𝑾 is sparse in terms of singular values

– 𝑾 = 𝑼𝑽⊤ is low-rank

• 𝑼 ∈ ℝ𝐷×𝐾, 𝑽 ∈ ℝ𝐷′×𝐾, 𝐾 < min(𝐷, 𝐷′)

– Rank = L0 norm of singular values: rank 𝑾 = 𝝈(𝑾) 0

Sparsity in reduced rank regression: 
Sparse parameters in terms of matrix singular values

𝑥1

𝑥2

𝑥3

𝑥4

𝑦1

𝑦2

𝑦3

𝑼 𝑽
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 Symmetric matrix can be diagonalized using an orthogonal 
matrix

 𝑨 = 𝑷⊤𝜦𝑷: eigen-decomposition of symmetric matrix 𝑨

– 𝜦: diagonal matrix 𝜦 = diag 𝜆1, 𝜆2, … , 𝜆𝐷 , 
where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐷 ≥ 0 (eigenvalues)

– 𝑷: orthogonal matrix 𝑷⊤𝑷 = 𝑷𝑷⊤ = 𝑰

[Review] Eigenvalue decomposition of symmetric 
matrix
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 𝑩 = 𝑼𝜮𝑽⊤: SVD of rank- 𝑅 real matrix 𝑩

– 𝜮: diagonal matrix 𝜮 = diag 𝜎1, 𝜎2, … , 𝜎𝑅 , 0, … , 0 , 
where 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝐷 ≥ 0 (singular values)

• 𝜮 is sqrt of eigenvalues of 𝑩𝑩⊤ or 𝑩⊤𝑩

– 𝑼, 𝑽: orthogonal matrices

• 𝑼 is eig.vecs of 𝑩𝑩⊤, 𝑽 is eig.vecs of 𝑩⊤𝑩 , 𝐮𝑖 =
1

𝜎𝑖
𝑩⊤𝐯𝑖

 Best rank-𝐾 approximation problem of matrix 𝑩:

 𝑩∗ = argmin 𝑩 𝑩−  𝑩
F

2
s.t. rank  𝑩 ≤ 𝐾

– Find 𝐾 largest singular values 𝜮∗ = diag 𝜎1, … , 𝜎𝐾 , and 
corresponding vectors 𝑼∗ = 𝐮1, … , 𝐮𝐾 , 𝑽∗ = 𝐯1, … , 𝐯𝐾 ,

and let  𝑩∗ = 𝑼∗𝜮∗𝑽∗⊤

[Review] Singular value decomposition (SVD) and 
best rank-𝐾 approximation 



20 KYOTO UNIVERSITY

 Objective function to be minimized:

𝒀 − 𝑿𝑾 F
2 = tr 𝒀 − 𝑿𝑾 ⊤ 𝒀 − 𝑿𝑾

= tr 𝒀⊤𝒀 − 2𝑾⊤𝑿⊤𝒀 +𝑾⊤𝑿⊤𝑿𝑾

Let 𝑿⊤𝑿 = 𝑷⊤𝜦𝑷 be the eigendecomposition

= tr 𝒀⊤𝒀 − 2 𝑾⊤𝜦−
1
2𝑷𝑿⊤𝒀 + 𝑾⊤ 𝑾

where  𝑾 = 𝜦
1
2𝑷𝑾

=  𝑾− 𝜦−
1
2𝑷𝑿⊤𝒀 F

2

+ const.

 Find the best rank-𝐾 approximation of 𝜦−
1

2𝑷𝑿⊤𝒀

Solution of reduced rank regression (1/2): 
Best rank-𝐾 approximation of a matrix

𝑷⊤𝑷 = 𝑷𝑷⊤ = 𝑰
(𝑷: orthogonal)
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 The best rank-𝐾 approximation of 𝜦−
1

2𝑷𝑿⊤𝒀 is given as 
 𝑾∗ = 𝑼∗𝜮∗𝑽∗⊤

– 𝑽∗ is top-𝐾 eigenvectors of 

𝒀⊤𝑿𝑷⊤𝜦−
1
2𝜦−

1
2𝑷𝑿⊤𝒀 = 𝒀⊤𝑿 𝑿⊤𝑿 −1𝑿⊤𝒀

– 𝜮∗: a diagonal matrix with 𝐾 largest singular values 

– 𝑼∗ = 𝜦−
1

2𝑷𝑿⊤𝒀 𝑽∗𝜮∗−1

 The solution is 𝑾∗ = 𝑷⊤𝜦−
1

2 𝑾∗ = 𝑷⊤𝜦−
1

2 𝑼∗𝜮∗𝑽∗⊤ =

𝑿⊤𝑿 −1𝑿⊤𝒀𝑽∗𝑽∗⊤

Solution of reduced rank regression (2/2): 
Closed form solution using SVD
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 Dimension reduction: 

– Find a low-dimensional mapping 𝑓:ℝ𝐷 ⇒ ℝ𝐾 (𝐷 > 𝐾)

• for interpretability, computational/space efficiency, 
generalization abilities, …

• (Lossy) compression: keep the original information as 
much as possible

 Linear dimension reduction: 𝐡 = 𝑼⊤𝐱

– 𝑼 : 𝐷 × 𝐾 matrix  

Dimension reduction: 
Find low-dimensional representations of high-dim. data

𝑥1

𝑥2

𝑥3

𝑥4
𝑼

ℎ1

ℎ2
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 Coding and decoding process:

 If 𝑓 and 𝑔 are appropriately designed so that 𝐱 ≒  𝐱, 
𝐡 must be a good low-dimensional representation of 𝐱

 Optimization problem:

𝑓, 𝑔 = argmin𝑓,𝑔 

𝑖=1

𝑁

loss 𝐱(𝑖), 𝑔(𝑓 𝐱(𝑖) )

Basic idea behind dimension reduction: 
Find a coding & decoding function for lossy compression

𝐱
𝑓

𝐡
𝑔

 𝐱
coding decoding

 𝐱(𝑖)

Original signal Decoded signal
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 Linear dimension reduction with coding & decoding functions

– linear coding function 𝑓 : 𝐡 = 𝑼⊤𝐱 (𝑼 : 𝐷 × 𝐾 matrix)  

– linear decoding function 𝑔 :  𝐱 = 𝑽𝐡 (𝑽 : 𝐾 × 𝐷 matrix ) 

–  𝐱 = 𝑽𝑼⊤𝐱

 Reduced rank regression finds the solution by taking the 

training dataset as 𝐱 1 , 𝐱 1 , … , 𝐱 𝑁 , 𝐱 𝑁

– Solution will be 𝑽 = 𝑼

Principal component analysis: 
Dimension reduction using reduced rank regression

𝑥1

𝑥2

𝑥3

𝑥4
𝑼 𝑼⊤

𝑥1

𝑥2

𝑥3

𝑥4
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 L1-regularization & Lasso

–Sparsity in terms of number of features used in the model

–Solution of Lasso: Coordinate-wise descent

 Reduced rank regression

–Sparsity in terms of number of dimensions of latent feature 
space

–Solution using SVD

–Dimension reduction

Topics: 
Learning with sparsity


