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Topics:
Learning with sparsity

" |,-regularization & Lasso
= Reduced rank regression

= Dimension reduction
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Regression:
Prediction of a continuous target variable

= Training dataset { (x(l), y(l)), . (X(N), y(N))}
— xW e RP: feature vector
— yW e R: real-valued target value

= Linear regression model: y = w'x

= |Least square solution:

N
w* = argminwz:(y(i) — wa(i))z
i=1

| — (xD x@ @
= argmin,, |ly — Xw]||3 X = (x,x%, .. x )T
— (XTX)_ley y = (y(l),y(Z)’ ___,y(N)) )
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Ridge regression:
L,-Regularization for avoiding overfitting

= Qverfitting to the training data

— Especially when the training data is small compared with
the input space dimensionality

=  Regularized least square solution:

*

w* = argmin,, |ly — Xw||5 + y|lw]|3
— (XTX + )/I)_ley

— |Iwll5 = wf + w2 + -+ + wj: L,-regularization term

— Analytical solution exists
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L,-regularization:
A sparsity-inducing regularization
= Qver-fitting sometimes occurs even with L,-regularization

— when the dimensionality is extremely large
— when the true model uses only a small number of features
= |,-regularization
— |wlly = |w;| + lwy| + -+ |wp|: L,-regularization term
leads to sparse solutions

e Sparse: Many w,; becomes 0 in the solutions
e High interpretability and easy-to-implementability
— L,-regularized least square linear regression (LASSO):
w* = argmin,, |ly — Xwl|3 + y[lwll,
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Why does L,-regularization induce sparse solutions?:

Some intuitive explanations

= L ,-regularization is equivalent to L,-norm constraint:
argmin,, f(w) + y||w||; © argmin,, f(w) s.t. ||[w][; <A

= Some intuitive explanations for sparsity:

1. L;-norm is a convex alternative to L,-norm

2. Level curves of norms and loss

% fw)=C

Iwll; =1

= #nonzero elements ]

fw)=C

1

L,-norm
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L,-regularized least square linear regression:
No closed-form solutions

= |,-regularized least square linear regression (LASSO):
w* = argminy, |ly — Xw||5 + v|lwll,

— L;-regularization with a convex loss function is a convex
optimization problem

=  LASSO has no closed form solution...
= needs iterative solutions, e.g.:

1. Optimization with respect to only one dimension

2. Reduction to L,-regularization
we will discuss this ]
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An algorithm for lasso:
Repeat optimization w.r.t only one dimension

= |,-regularization term is cumbersome since:
— itis not differentiable at w; = 0

— wy = 0 tends to be a solution

= (QObservation: The objective function is easy to optimize
if we focus only on a single dimension (e.g. w;,)

= |[terative algorithm: Coordinate-wise descent
1. Choose an arbitrary d
2. Optimize w, (has a closed form solution)

3. Repeat steps 1&2 until convergence
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One dimensional optimization problem for LASSO:
Sum of a quadratic function & an absolute value function
= |,-regularized least square linear regression (LASSO):

w* = argminy, |ly — Xw/||5 + y|lwll;

=  Consider optimization w.r.t. only Wdﬁlect the other terms notJ

depending on wg

— wg" = argminy,, q(wg) + y|wy]

e qglwy) =alwy; —wy)?+ b (a > 0): quadratic function

— Wy is the minimizer of g(w,) i.e. the solution of the
one-variable optimization when y|wy| is neglected

= Finally what we want is

. . 1 - 1
Wq = argminy, , E(Wd —Wg)? + Awy| (A= EV)
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Solution of the one-dimensional optimization:
Find the stationary point

=  Find the minimizer of [(w,) = %(Wd — Wg)?% + Alwy|

= Taking the derivative of [(wy), 9lwa)
( — . dwg
w N :
e g — g — 2 (fwg<O0) /
Wa ) .
_ undefined (otherwise) —g + A C
—wy, +
. . ol
= Solution: w; = w} s.t. Wg) =0 N
>
. ol . . w
— lies at Wa) hits the x-axis F ’
awd .
solution ]
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Sparsity of lasso solutions:
Solutions close to zero are rounded to zero
= \We have 3 cases:

1. =Wy +A <0 (i.e. Wy > A4),
e Solution:w; =w; — A

2. —wWyz—A1>0(i.e.wy; < —21),
e Solution:wy; =Ww,; + 1

3. A<Zw;< 4 4( sparse solution ] Ay
e Solution:wj; =0 }

if w; > 0, we have a contradiction
ol(wgq)
awd

Wa=wy

Similarly, assuming w,
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[ Dimension Reduction }
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Multivariate regression:
Prediction of multiple continuous variables

= Multivariate regression is a regression problem to predict
multiple output variables

~ f:RP = R
= Training dataset { (x(l), y(l)), . (X(N), y(N))}
— x e RP: feature vector

— y(i) € RP': real-valued target values

= Multivariate linear regression model:y = W'x

— W € RP*DP": Matrix parameter

KYOTO UNIVERSITY




Solution of multivariate regression:
Closed form least square solution

= Least square solution:

N
W = argmin_ 1., Zuyu) -wxO|’

=1
= argminyy [|¥Y — XW”%{X = (x®,x®@, _"’X(N))T\
=X'X)"IX'Y Yy = (y®,y®, .. y®)'
otr(AB) _gT
= Regularized version _ 0A Y

— |[IW|I§ = X jw: Ly-regularization term

— wW=X'X+yD XY
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Reduced rank regression:
Multivariate regression with rank constraint

= Multivariate regression is equivalent to D'-independent
univariate regressions

— exploits no shared information

= Low-rank assumption W = UV

_ UeRP*X y e RP %K e rank of Wis K
e K <min(D,D")

— D' output variables share K—dimensional latent space

= Reduced rank regression: Sparsity in the dim of latent space
W* = argminy ||Y — XW||% s.t. rank(W) < K
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Sparsity in reduced rank regression:
Sparse parameters in terms of matrix singular values

= Parameter W in the reduced rank regression y = W'x is
dense in terms of matrix elements

= W is sparse in terms of singular values
— W =UV" is low-rank
e UeRP*K yeRP* K < min(D,D")

— Rank = L, norm of singular values: rank(W) = |[|[a(W)]|,

Y1
X2

Y2
X3

Y3
X4
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[Review] Eigenvalue decomposition of symmetric
matrix

= Symmetric matrix can be diagonalized using an orthogonal
matrix

= A = P"AP: eigen-decomposition of symmetric matrix A

— A: diagonal matrix A = diag(14,4,, ..., Ap),
where Ay = 1, = --- = Ap = 0 (eigenvalues)

— P:orthogonal matrix P'P = PPT =1
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[Review] Singular value decomposition (SVD) and
best rank-K approximation

= B =UXV":SVD of rank- R real matrix B
—  X:diagonal matrix ¥ = diag(oy, 05, ..., 03,0, ..., 0),
where g; = 0, = -+ = op = 0 (singular values)
e XYissqrtof eigenvalues of BB or B'B

— U, V:orthogonal matrices

o« Uiseig.vecsof BB, Viseig.vecsof BB, u; = %BTVL-

= Best rank-K approximation problem of matrix B:
~ ~112 ~
B* = argming||B — B||F s.t.rank(B) < K

—  Find K largest singular values X* = diag(oy, ..., 0x), and
corresponding vectors U* = (uq, ..., ug), V* = (vq, ..., Vi),
and let B* = U*X*V*'
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Solution of reduced rank regression (1/2):
Best rank-K approximation of a matrix

= (QObjective function to be minimized:
Y — XW||g = tr{(Y — XW)T (Y — XW)}
=tr{Y'Y - 2W' XY + WTXTXW}
(Let X' X = PT AP be the eigendecomposition)

O _1 —~ —~—
EPTP = Ppﬁ = tr{YTY —2WTA 2PXTY + WTW}
: —_ 1
P+ orthogonal) where W = A2PW

2
_ |l - A_%PXTYHF + const.

1
= Find the best rank-K approximation of A zPX'Y

20 KYoTo UNIVERSITY




Solution of reduced rank regression (2/2):
Closed form solution using SVD

1
= The best rank-K approximation of A"2PX'Y is given as
W* — U*Z*V*T

— V7 is top-K eigenvectors of

1 1
YTXPTA2AZ2PXTY = YTX(XTX)"1XTY

— X":adiagonal matrix with K largest singular values
1
— U =A"2PX'Y V!

1__ _1
= ThesolutionisW* = PTA zW* = PTA 2 U*X*V* =
(XTX)_leYV*V*T
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Dimension reduction:
Find low-dimensional representations of high-dim. data

= Dimension reduction:
— Find a low-dimensional mapping f: R? = R¥ (D > K)

e forinterpretability, computational/space efficiency,
generalization abilities, ...

e (Lossy) compression: keep the original information as
much as possible

* Linear dimension reduction: h = U'x X4
h
— U :D X K matrix X2 '
x3 hz

22 KYoTo UNIVERSITY




Basic idea behind dimension reduction:
Find a coding & decoding function for lossy compression

= Coding and decoding process:

[ Original signal L f g i Decoded signal ]
X > h > X

coding decoding

= |If f and g are appropriately designed so that x = X,
h must be a good low-dimensional representation of x

= Optimization problem:

(f,g) = argming g z loss(x(‘),g(f(x(‘))))
(l)
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Principal component analysis:
Dimension reduction using reduced rank regression

= Linear dimension reduction with coding & decoding functions
— linear coding function f :h = U"x (U : D X K matrix)
— linear decoding function g : X = Vh (V : K X D matrix)
- X=VU'x

= Reduced rank regression finds the solution by taking the
training dataset as { (x(l), x(l)), . (X(N), X(N))}

. . X X
— SolutionwillbeV =U ! 1
X3 X3
X4 X4
U U’
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Topics:
Learning with sparsity

" |,-regularization & Lasso
—Sparsity in terms of number of features used in the model

—Solution of Lasso: Coordinate-wise descent

" Reduced rank regression

—Sparsity in terms of number of dimensions of latent feature
space

—Solution using SVD

—Dimension reduction
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