https://bit.ly/2EriVw3

Kyoto University

Statistical Learning Theory - Classification -

Hisashi Kashima

Classification

Classification:

Supervised learning for predicting discrete variable

- Goal: Obtain a function $f: \mathcal{X} \to \mathcal{Y}$ (\mathcal{Y} : discrete domain)
 - -E.g. $x \in \mathcal{X}$ is an image and $y \in \mathcal{Y}$ is the type of object appearing in the image
 - -Two-class classification: $\mathcal{Y} = \{+1, -1\}$

02.american-flag

007.bat

http://www.vision.caltech.edu/Image Datasets/Caltech256/

KYOTO UNIVERSITY

N pairs of an input and an output $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$

Some applications of classification: From binary to multi-class classification

- Binary (two-class)classification:
 - Purchase prediction: Predict if a customer \mathbf{x} will buy a particular product (+1) or not (-1)
 - Credit risk prediction: Predict if a obligor \mathbf{x} will pay back a debt (+1) or not (-1)
- Multi-class classification:
 - Text classification: Categorize a document x into one of several categories, e.g., {politics, economy, sports, ...}
 - Image classification: Categorize the object in an image x into one of several object names, e.g., {AK5, American flag, backpack, ...}
 - Action recognition: Recognize the action type ({running, walking, sitting, ...}) that a person is taking from sensor data x

Model for classification: Linear classifier

- Linear classification: Liner regression model $y = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}(w_1x_1 + w_2x_2 + \dots + w_Dx_D)$
 - $-|\mathbf{w}^{\top}\mathbf{x}|$ indicates the intensity of belief
 - $-\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$ gives a separating hyperplane

-w: normal vector perpendicular to the separating hyperplace

Learning framework: Loss minimization and statistical estimation

Two learning frameworks

1. Loss minimization: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w})$

- Loss function $\ell^{(i)}$: directly handles utility of predictions
- Regularization term $R(\mathbf{w})$
- 2. Statistical estimation (likelihood maximization): $L(\mathbf{w}) = \prod_{i=1}^{N} f(y^{(i)} | \mathbf{x}^{(i)}, \mathbf{w})$
 - Probabilistic model: Noise assumptions are clear
 - Prior distribution $P(\mathbf{w})$

-They are often equivalent : Regularization = Prior

Classification problem in loss minimization framework: Minimize loss function + regularization term

- Minimization problem: $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} L(\mathbf{w}) + R(\mathbf{w})$
 - -Loss function $L(\mathbf{w})$: Fitness to training data
 - -Regularization term $R(\mathbf{w})$: Penalty on the model complexity to avoid overfitting to training data (usually norm of \mathbf{w})
- Loss function should reflect the number of misclassifications on training data

-Zero-one loss:

$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \begin{cases} 0 & (y^{(i)} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) \\ 1 & (y^{(i)} \neq \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) \end{cases}$$
Incorrect classification
Kyoto University

Zero-one loss:

Number of misclassification is hard to minimize

Zero-one loss:
$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \begin{cases} 0 & (y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} > 0) \\ 1 & (y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} \le 0) \end{cases}$$

Non-convex function is hard to optimize directly

Convex surrogates of zero-one loss: Different functions lead to different learning machines

- Convex surrogates: Upper bounds of zero-one loss
 - -Hinge loss = SVM, Logistic loss = logistic regression, ...

Logistic regression

Logistic regression: Minimization of logistic loss is a convex optimization

Logistic loss:

$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \frac{1}{\ln 2} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

Statistical interpretation: Logistic loss min. as MLE of logistic regression model

- Minimization of logistic loss is equivalent to maximum likelihood estimation of logistic regression model
- Logistic regression model (conditional probability):

$$f(y = 1 | \mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}} \mathbf{x})}$$

 $-\sigma$: Logistic function ($\sigma: \Re \rightarrow (0,1)$)

Log likelihood:

λT

$$\sigma()$$

$$L(\mathbf{w}) = \sum_{i=1}^{N} \log f(y^{(i)} | \mathbf{x}^{(i)}, \mathbf{w}) = -\sum_{i=1}^{N} \log(1 + \exp(-y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}))$$
$$\left(= \sum_{i=1}^{N} \delta(y^{(i)} = 1) \log \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}} \mathbf{x})} + \delta(y^{(i)} = -1) \log\left(1 - \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}} \mathbf{x})}\right)\right)$$

λŢ

Parameter estimation of logistic regression : Numerical nonlinear optimization

N

Objective function of (regularized) logistic regression:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w}\|_{2}^{2}$$

- Minimization of logistic loss / MLE of logistic regression model has no closed form solution
- Numerical nonlinear optimization methods are used

-Iterate parameter updates: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$

$$w \qquad d \qquad w + d$$

Parameter update :

Find the best update minimizing the objective function

By update
$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$$
, the objective function will be:

$$L_{\mathbf{w}}(\mathbf{d}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}(\mathbf{w} + \mathbf{d})^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w} + \mathbf{d}\|_{2}^{2}$$

- Find \mathbf{d}^* that minimizes $L_{\mathbf{w}}(\mathbf{d})$:
 - $-\mathbf{d}^* = \operatorname{argmin}_{\mathbf{d}} L_{\mathbf{w}}(\mathbf{d})$

- Finding the best parameter update : Approximate the objective with Taylor expansion
- Taylor expansion:

$$L_{\mathbf{w}}(\mathbf{d}) = L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^3)$$

-Gradient vector:
$$\nabla L(\mathbf{w}) = \left(\frac{\partial L(\mathbf{w})}{\partial w_1}, \frac{\partial L(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial L(\mathbf{w})}{\partial w_D}\right)^{\mathsf{T}}$$

• Steepest direction -Hessian matrix: $[H(\mathbf{w})]_{i,j} = \frac{\partial^2 L(\mathbf{w})}{\partial w_i \partial w}$ 3rd-order term

 $L(\mathbf{w})$

 $L(\mathbf{w})$

 $\nabla L(\mathbf{w})$

Ŵ

Newton update : Minimizes the second order approximation

Approximated Taylor expansion (neglecting the 3rd order term):

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^3)$$

• Derivative w.r.t.
$$\mathbf{d}: \frac{\partial L_{\mathbf{w}}(\mathbf{d})}{\partial \mathbf{d}} \approx \nabla L(\mathbf{w}) + H(\mathbf{w})\mathbf{d}$$

- Setting it to be **0**, $\mathbf{d} = -\mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$
- Newton update formula: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ $\mathbf{w} - \mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ $\mathbf{w} - \mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$

Modified Newton update: Second order approximation + linear search

• The correctness of the update $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$ depends on the second-order approximation:

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\top} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\top} H(\mathbf{w}) \mathbf{d}$$

-This is not actually true for most cases

• Use only the direction of $H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ and update with $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$

• Learning rate $\eta > 0$ is determined by linear search: $\eta^* = \operatorname{argmax}_{\eta} L(\mathbf{w} - \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w}))$

Steepest gradient descent: Simple update without computing inverse Hessian

Computing the inverse of Hessian matrix is costly

-Newton update: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$

Steepest gradient descent:

-Replacing
$$H(\mathbf{w})^{-1}$$
 with I will give
 $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \nabla L \mathbf{v}$

Gradient of objective function

 (\mathbf{W})

- $\nabla L(\mathbf{w})$ is the steepest direction
- Learning rate η is determined by line search

$$\mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{w}$$

(Supplement) : Computing the gradient of logistic regression $L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$ $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \frac{\partial (1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))}{\partial \mathbf{w}}$ $= -\sum_{i=1}^{1} \frac{1}{1 + \exp\left(-y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}\right)} \exp\left(-y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}\right) y^{(i)} \mathbf{x}^{(i)}$ $(1 - f(y^{(i)} | \mathbf{x}^{(i)}, \mathbf{w})) y^{(i)} \mathbf{x}^{(i)}$ i=1Can be easily computed with the current prediction probabilities

Mini batch: Efficient training using data subsets

• Objective function for N instances: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(\mathbf{w}^{\top} \mathbf{x}^{(i)}) + \lambda R(\mathbf{w})$

• Its derivative
$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{\partial \ell(\mathbf{w}^{\top} \mathbf{x}^{(i)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$$
 needs $O(N)$ computation

• Approximate this with only one instance: $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx N \frac{\partial \ell(\mathbf{w}^{\top} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$ (Stochastic approximation)

• Also we can do this with 1 < M < N instances:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{N}{M} \sum_{j \in \text{MiniBatch}} \frac{\partial \ell(\mathbf{w}^{\top} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}} \quad \text{(Mini batch)}$$

Support Vector Machine and Kernel Methods

Support vector machine: One of the most successful learning methods

- One of the most important achievements in machine learning
 - -Proposed in 1990s by Cortes & Vapnik
 - -Suitable for small to middle sized data
- A learning algorithm of linear classifiers
 - -Based on "margin maximization" principle
 - -Understood as hinge loss + L2-regularization
- Kernel methods: Capable of non-linear classification through kernel functions
 - -SVM is one of the kernel methods

22

Loss function of support vector machine: Hinge loss

- In SVM, we use hinge loss as a convex upper bound of 0-1 loss $\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \max\{1 y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\}$
- Squared hinge loss max{(1 y⁽ⁱ⁾w^Tx⁽ⁱ⁾)², 0} is also sometimes used

Two formulations of SVM training: Soft-margin SVM and hard margin SVM

• When we use L2 regularization, we have "soft-margin" SVM:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \max\{1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\} + \lambda \|\mathbf{w}\|_2^2$$

–This is a convex optimization problem \bigcirc

• With constraint on the loss, we have "hard-margin" SVM: $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_2^2 \text{ s.t. } \sum_{i=1}^N \max\{1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}, 0\} = 0$

-Equivalently, the constraint is written as $1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \leq 0$ (for all i = 1, 2, ..., N)

-The originally proposed SVM formulation was in this form

Geometric interpretation: Hard-margin SVM maximizes the margin

•
$$\min \frac{1}{2} \parallel \mathbf{w} \parallel_2^2 \leftrightarrow \max \frac{1}{\lVert \mathbf{w} \rVert_2} \left(\frac{1}{\lVert \mathbf{w} \rVert_2} \text{ is called margin} \right)$$

• $\frac{\mathbf{w}^{\top}(\mathbf{x}^{+}-\mathbf{x}^{-})}{\|\mathbf{w}\|_{2}}$: Sum of distances between separating hyperplane and a positive instance \mathbf{x}^{+} and a negative instance \mathbf{x}^{-}

• Since
$$1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \le 0 \ \forall i$$
,

 $\frac{\mathbf{w}^{\mathsf{T}}(\mathbf{x}^{+}-\mathbf{x}^{-})}{\|\mathbf{w}\|_{2}}$ is lower bounded $\frac{2}{\|\mathbf{w}\|_{2}}$ They can be taken as the closest instance to the separating hyperplane

Solution of hard-margin SVM (Step I): Introducing Lagrange multipliers

•
$$\min_{\mathbf{w}} \frac{1}{2} \| \mathbf{w} \|_{2}^{2}$$
 s.t. $1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \le 0$ $(i = 1, 2, ..., N)$

• Lagrange multipliers $\{\alpha_i\}_i$:

$$\min_{\mathbf{w}} \max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \left(\frac{1}{2} \| \mathbf{w} \|_2^2 + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) \right)$$

 $-\inf 1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} > 0$ for some *i*, we have $\alpha_i = \infty$

• The objective function becomes ∞ , that cannot be optimal $- \inf 1 - y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)} \leq 0$ for some i, we have either $\alpha_i = 0$ or $(1 - y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}) = 0$, i.e. objective function remains the same as the original one $(\frac{1}{2} \| \mathbf{w} \|_2^2)$

- Solution of hard-margin SVM (Step II): Dual formulation as a quadratic programming problem
- By changing the order of min and max:

27

$$\min_{\mathbf{w}} \max_{\substack{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0}} \left(\frac{\|\mathbf{w}\|_2^2}{2} + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^\top \mathbf{x}^{(i)}) \right)$$

$$\bigcup_{\substack{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0}} \min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|_2^2}{2} + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^\top \mathbf{x}^{(i)}) \right)$$

• Solving min gives $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)}$, which finally results in

$$\max_{\alpha = (\alpha_1, \alpha_2, ..., \alpha_N) \ge 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$$

SVM model depends only on support vectors

The dual problem:

$$\begin{aligned} & \left(\mathbf{w} = \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)} \right) \\ & \alpha_{i}(\alpha_{1}, \alpha_{2}, ..., \alpha_{N}) \ge 0 \\ & \sum_{i=1}^{N} \alpha_i \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)} \end{aligned} \end{aligned}$$

- Support vectors: the set of *i* such that $\alpha_i > 0$
 - -For such *i*, $1 y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} = 0$ holds
 - -They are the closest instance to the separating hyperplane
- Non-support vectors ($\alpha_i = 0$) do not appear in the model: $\mathbf{w}^{\mathsf{T}}\mathbf{x} = \sum_{j=1}^{N} \alpha_j y^{(j)} \mathbf{x}^{(j)^{\mathsf{T}}} \mathbf{x}$

Solution of soft-margin SVM: Additional constraints

Equivalent formulation of soft-margin SVM:

Similar dual problem with additional constraints:

$$\max_{\boldsymbol{\alpha}=(\alpha_1,\alpha_2,\ldots,\alpha_N)\geq 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$$

 $0 \le \alpha_i \le C \ (i = 1, 2, ..., N)$

Kernel methods: Data access through kernel function

• The dual form objective function and the classifier access to data always through inner products $\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}$

-The inner product $\mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$ is considered as similarity

• Can we use some similarity function $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ instead of $\mathbf{x}^{(i)^{\mathsf{T}}}\mathbf{x}^{(j)}$? – Yes (under certain conditions)

$$\max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_i^N \sum_j^N \alpha_i \alpha_j y^{(i)} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

-Model: $\mathbf{w}^{\mathsf{T}}\mathbf{x} = \sum_{j=1}^{N} \alpha_j y^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x})$

Kernel functions: Introducing non-linearity in linear models

- Consider a (nonlinear) mapping $\boldsymbol{\phi}: \mathfrak{R}^D \to \mathfrak{R}^{D'}$
 - -D-dimensional space to $D'(\gg D)$ -dimensional space
 - –Vector ${f x}$ is mapped to a high-dimensional vector ${m \phi}({f x})$
- Define kernel $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$

31

SVM is a linear classifier in the D'-dimensional space, while is a non-linear classifier in the original space

https://en.wikipedia.org/wiki/Support_vector_machine#/ media/File:Kernel_Machine.svg

Advantage of kernel methods: Computational efficiency in terms of input dimensions

Advantage of using kernel function

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$$

- Even if $\boldsymbol{\phi}$ is high-dimensional (possibly infinite dimensional), as far as its inner product $\boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$ is given as an efficiently computable function, the dimension of $\boldsymbol{\phi}$ does not matter
- Problem size:

 $D(\text{number of dimensions}) \rightarrow N(\text{number of data})$

-Advantageous when ϕ is especially high or infinite dimensional

Example of kernel functions: Polynomial kernel can consider high-order cross terms

Combinatorial features: Not only the original features x₁, x₂, ..., x_D, use their combinations (i.e. products)

-Exponential number of dimensions wrt d

• Polynomial kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)} + c)^d$$

-E.g.
$$c = 0, d = 2$$
, two dimensional case
 $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (x_1^{(i)} x_1^{(j)} + x_2^{(i)} x_2^{(j)})^2$
 $= (x_1^{(i)^2}, x_2^{(i)^2}, \sqrt{2}x_1^{(i)}x_2^{(i)}) (x_1^{(j)^2}, x_2^{(j)^2}, \sqrt{2}x_1^{(j)}x_2^{(j)})$

-Note that it can be computed in O(D)

Example of kernel functions: Gaussian kernel with infinite feature space

• Gaussian kernel (RBF kernel): $K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{\sigma}\right)$

Can be interpreted as an inner product in an infinitedimensional space

Discrimination surface with Gaussian kernel

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Machi neLearning&doc=exercises/ex8/ex8.html

Gaussian kernel (RBF kernel)

Kernel methods for non-vectorial data: Kernels for sequences, trees, and graphs

 Kernel methods can handle any kinds of objects (even nonvectorial objects) as long as efficiently computable kernel function is available

-Kernels for strings, trees, and graphs, ...

Representer theorem: Theoretical underpinning of kernel methods

Can we use some similarity function as a kernel function?

-Yes (under certain conditions)

Kernel methods rely on the fact that the optimal parameter is represented as a linear combination of input vectors:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

-Gives the dual form $\mathbf{w}^{\mathsf{T}}\mathbf{x} = \sum_{j=1}^{N} \alpha_j y^{(j)} \mathbf{x}^{(j)^{\mathsf{T}}} \mathbf{x}$

Representer theorem: This is guaranteed under L2-regularization (Simple) proof of representer theorem: Obj. func. depends only on the linear combination

• Assumption: Loss $\ell^{(i)}$ for *i*-th data depends only on $\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}$

-Objective function: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda \|\mathbf{w}\|_{2}^{2}$

- Divide the optimal parameter \mathbf{w}^* into two parts $\mathbf{w} + \mathbf{w}^{\perp}$:
 - -w: Linear combination of input data $\{\mathbf{x}^{(i)}\}_{i}$

 $-\mathbf{w}^{\perp}$: Other parts (orthogonal to all input data)

Primal objective function:

Kernel representation is also available in the primal form

Primal objective function of SVM:

N

$$L(\mathbf{w}) = \sum_{i=1}^{N} \max\{1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\} + \lambda \|\mathbf{w}\|_{2}^{2}$$

• Primal objective function using kernel:

$$L(\mathbf{\alpha})$$

$$= \sum_{i=1}^{N} \max\{1 - y^{(i)}\sum_{j=1}^{N} \alpha_{j}y^{(j)}K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), 0\}$$

$$+ \lambda \sum_{i=1}^{N}\sum_{j=1}^{N} \alpha_{i}\alpha_{j}y^{(i)}y^{(j)}K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

Support vector regression: Use ϵ -insensitive loss instead of hinge loss

• Instead of the hinge loss, use ϵ -insensitive loss:

$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \max\{|y_i - \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}| - \epsilon, 0\}$$

• Incurs no loss if the difference between the prediction and the target $|y_i - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}|$ is less than ϵ

