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 Goal: Obtain a function 𝑓:𝒳 → 𝒴 (𝒴: discrete domain)

–E.g. 𝑥 ∈ 𝒳 is an image and 𝑦 ∈ 𝒴 is the type of object 
appearing in the image

–Two-class classification: 𝒴 = {+1,−1}

 Training dataset: 
𝑁 pairs of an input and an output

𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

Classification:
Supervised learning for predicting discrete variable

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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 Binary (two-class)classification: 

– Purchase prediction: Predict if a customer 𝐱 will buy a particular product 
(+1) or not (-1)

– Credit risk prediction: Predict if a obligor 𝐱 will pay back a debt (+1) or 
not (-1)

 Multi-class classification: 

– Text classification: Categorize a document 𝐱 into one of several 
categories, e.g., {politics, economy, sports, …}

– Image classification: Categorize the object in an image 𝐱 into one of 
several object names, e.g., {AK5, American flag, backpack, …}

– Action recognition: Recognize the action type ({running, walking, 
sitting, …}) that a person is taking from sensor data 𝐱

Some applications of classification:
From binary to multi-class classification
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 Linear classification: Liner regression model
𝑦 = sign 𝐰⊤𝐱 = sign 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝐷𝑥𝐷

– 𝐰⊤𝐱 indicates the intensity of belief 

–𝐰⊤𝐱 = 0 gives a separating hyperplane

–𝐰: normal vector perpendicular to the separating hyperplace

Model for classification:
Linear classifier

𝑥1

𝑥2

𝐰 = 𝑤1, 𝑤2

𝐰⊤𝐱 = 0

𝐰⊤𝐱 > 0

𝐰⊤𝐱 < 0

𝑦 = +1

𝑦 = −1
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 Two learning frameworks

1. Loss minimization: 𝐿 𝐰 =  𝑖=1
𝑁 ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 ; 𝐰

• Loss function ℓ(𝑖): directly handles utility of predictions

• Regularization term 𝑅 𝐰

2. Statistical estimation (likelihood maximization):         

𝐿 𝐰 =  𝑖=1
𝑁 𝑓(𝑦(𝑖)|𝐱(𝑖), 𝐰)

• Probabilistic model: Noise assumptions are clear

• Prior distribution 𝑃 𝐰

–They are often equivalent :

Learning framework:
Loss minimization and statistical estimation

 
Loss = Probabilistic model

Regularization = Prior
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 Minimization problem: 𝐰∗ = argmin𝐰 𝐿 𝐰 + 𝑅(𝐰)

–Loss function 𝐿 𝐰 : Fitness to training data

–Regularization term 𝑅(𝐰) : Penalty on the model complexity 
to avoid overfitting to training data (usually norm of 𝐰)

 Loss function should reflect the number of misclassifications on 
training data

–Zero-one loss: 

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 ; 𝐰 =  
0 𝑦 𝑖 = sign 𝐰⊤𝐱 𝑖

1 𝑦 𝑖 ≠ sign 𝐰⊤𝐱 𝑖

Classification problem in loss minimization framework:
Minimize loss function + regularization term

Correct classification

Incorrect classification
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 Zero-one loss: ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 ; 𝐰 =  
0 𝑦 𝑖 𝐰⊤𝐱 𝑖 > 0

1 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 0

 Non-convex function is hard to optimize directly

Zero-one loss:
Number of misclassification is hard to minimize

𝑦 𝑖 𝐰⊤𝐱 𝑖

Correct classificationMisclassification

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 ; 𝐰
Non-convex
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 Convex surrogates: Upper bounds of zero-one loss 

–Hinge loss = SVM, Logistic loss = logistic regression, ...

Convex surrogates of zero-one loss:
Different functions lead to different learning machines

Squared loss

Logistic loss

Hinge loss

𝑦 𝑖 𝐰⊤𝐱 𝑖



10 KYOTO UNIVERSITY

Logistic regressionLogistic regression
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 Logistic loss: 

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 ; 𝐰 =
1

ln2
ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖

 (Regularized) Logistic regression: 

𝐰∗ = argmin𝐰 

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

Logistic regression:
Minimization of logistic loss is a convex optimization

Logistic loss
𝑦 𝑖 𝐰⊤𝐱 𝑖

Convex
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 Minimization of logistic loss is equivalent to maximum 
likelihood estimation of logistic regression model

 Logistic regression model (conditional probability): 

𝑓 𝑦 = 1 𝐱,𝐰) = 𝜎(𝐰⊤𝐱) =
1

1+exp −𝐰⊤𝐱

–𝜎: Logistic function (𝜎:ℜ → 0,1 )

 Log likelihood: 

𝐿 𝐰 =  

𝑖=1

𝑁

log 𝑓(𝑦(𝑖)|𝐱(𝑖), 𝐰) = − 

𝑖=1

𝑁

log 1 + exp −𝑦(𝑖)𝐰⊤𝐱

=  

𝑖=1

𝑁

𝛿 𝑦 𝑖 = 1 log
1

1 + exp −𝐰⊤𝐱
+ 𝛿 𝑦 𝑖 = −1 log 1 −

1

1 + exp −𝐰⊤𝐱

Statistical interpretation:
Logistic loss min. as MLE of logistic regression model

𝐰⊤𝐱

𝜎
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 Objective function of (regularized) logistic regression:

𝐿 𝐰 =  

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

 Minimization of logistic loss / MLE of logistic regression model 
has no closed form solution

 Numerical nonlinear optimization methods are used

– Iterate parameter updates: 𝐰NEW ← 𝐰+ 𝐝

Parameter estimation of logistic regression :
Numerical nonlinear optimization

𝐰 𝐰+ 𝐝
𝐝
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 By update 𝐰NEW ← 𝐰+ 𝐝, the objective function will be:

𝐿𝐰 𝐝 =  

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 (𝐰 + 𝐝)⊤𝐱(𝑖) + 𝜆 𝐰 + 𝐝 2
2

 Find 𝐝∗ that minimizes𝐿𝐰 𝐝 :

–𝐝∗ = argmin𝐝 𝐿𝐰 𝐝

Parameter update :
Find the best update minimizing the objective function
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 Taylor expansion:

𝐿𝐰 𝐝 = 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

–Gradient vector: 𝛻𝐿 𝐰 =
𝜕𝐿 𝐰

𝜕𝑤1
,
𝜕𝐿 𝐰

𝜕𝑤2
, … ,

𝜕𝐿 𝐰

𝜕𝑤𝐷

⊤

• Steepest direction

–Hessian matrix: 𝐻 𝐰 𝑖,𝑗 =
𝜕2𝐿 𝐰

𝜕𝑤𝑖𝜕𝑤𝑗

Finding the best parameter update :
Approximate the objective with Taylor expansion

3rd-order term
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 Approximated Taylor expansion (neglecting the 3rd order term):

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

 Derivative w.r.t. 𝐝: 
𝜕𝐿𝐰 𝐝

𝜕𝐝
≈ 𝛻𝐿 𝐰 +𝑯 𝐰 𝐝

 Setting it to be 𝟎, 𝐝 = −𝑯 𝐰 −1𝛻𝐿 𝐰

 Newton update formula: 
𝐰NEW ← 𝐰−𝑯 𝐰 −1𝛻𝐿 𝐰

Newton update :
Minimizes the second order approximation

𝐰 𝐰−𝑯 𝐰 −1𝛻𝐿 𝐰
−𝑯 𝐰 −1𝛻𝐿 𝐰
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 The correctness of the update 𝐰NEW ← 𝐰−𝑯 𝐰 −1𝛻𝐿 𝐰
depends on the second-order approximation:

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝

–This is not actually true for most cases 

 Use only the direction of 𝑯 𝐰 −1𝛻𝐿 𝐰 and update with
𝐰NEW ← 𝐰− 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

 Learning rate 𝜂 > 0 is determined by linear search:

𝜂∗ = argmax𝜂 𝐿 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

Modified Newton update:
Second order approximation + linear search 
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 Computing the inverse of Hessian matrix is costly

–Newton update: 𝐰NEW ← 𝐰− 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

 Steepest gradient descent:

–Replacing 𝑯 𝐰 −1 with 𝑰 will give 
𝐰NEW ← 𝐰− 𝜂𝛻𝐿 𝐰

• 𝛻𝐿 𝐰 is the steepest direction

• Learning rate 𝜂 is determined by line search

Steepest gradient descent:
Simple update without computing inverse Hessian

𝐰 𝐰− 𝜂𝛻𝐿 𝐰
−𝜂𝛻𝐿 𝐰

Gradient of 
objective function



19 KYOTO UNIVERSITY

 𝐿 𝐰 =  𝑖=1
𝑁 ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)


𝜕𝐿 𝐰

𝜕𝐰
=  𝑖=1

𝑁 1

1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)
𝜕 1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

𝜕𝐰

= − 

𝑖=1

𝑁
1

1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖
exp −𝑦 𝑖 𝐰⊤𝐱 𝑖 𝑦 𝑖 𝐱 𝑖

= − 

𝑖=1

𝑁

(1 − 𝑓(𝑦(𝑖)|𝐱(𝑖), 𝐰)) 𝑦 𝑖 𝐱 𝑖

(Supplement) :
Computing the gradient of logistic regression

Can be easily computed with the 
current prediction probabilities
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 Objective function for 𝑁 instances:                                   

𝐿 𝐰 =  𝑖=1
𝑁 ℓ 𝐰⊤𝐱 𝑖 + 𝜆𝑅 𝐰

 Its derivative 
𝜕𝐿 𝐰

𝜕𝐰
=  𝑖=1

𝑁 𝜕ℓ 𝐰⊤𝐱 𝑖

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
needs 𝑂 𝑁

computation

 Approximate this with only one instance:                              
𝜕𝐿 𝐰

𝜕𝐰
≈ 𝑁

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Stochastic approximation)

 Also we can do this with 1 < 𝑀 < 𝑁 instances:                  
𝜕𝐿 𝐰

𝜕𝐰
≈

𝑁

𝑀
 𝑗∈MiniBatch

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Mini batch)

Mini batch:
Efficient training using data subsets
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Support Vector Machine
and Kernel Methods

Support Vector Machine
and Kernel Methods
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 One of the most important achievements in machine learning

–Proposed in 1990s by Cortes & Vapnik

–Suitable for small to middle sized data

 A learning algorithm of linear classifiers

–Based on “margin maximization” principle

–Understood as hinge loss + L2-regularization

 Kernel methods: Capable of non-linear classification through 
kernel functions

–SVM is one of the kernel methods

Support vector machine:
One of the most successful learning methods
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 In SVM, we use hinge loss as a convex upper bound of 0-1 loss

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 ; 𝐰 = max{1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 , 0}

 Squared hinge loss max{ 1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 2
, 0} is also 

sometimes used 

Loss function of support vector machine:
Hinge loss

𝑦 𝑖 𝐰⊤𝐱 𝑖

Hinge lossZero-one loss
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 When we use L2 regularization, we have “soft-margin” SVM:

𝐰∗ = argmin𝐰 

𝑖=1

𝑁

max{1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 , 0} + 𝜆 𝐰 2
2

–This is a convex optimization problem ☺

 With constraint on the loss, we have “hard-margin” SVM: 

𝐰∗ = argmin𝐰
1

2
𝐰 2

2 s.t.  𝑖=1
𝑁 max{1 − 𝑦 𝑖 𝒘⊤𝐱 𝑖 , 0} = 0

–Equivalently, the constraint is written as 

1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 0 (for all 𝑖 = 1,2, … , 𝑁)

–The originally proposed SVM formulation was in this form

Two formulations of SVM training:
Soft-margin SVM and hard margin SVM
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Geometric interpretation:
Hard-margin SVM maximizes the margin

min
1

2
∥ 𝐰 ∥2

2 ↔ max
1

∥𝐰∥2
(

1

∥𝐰∥2
is called margin)


𝐰⊤ 𝐱+−𝐱−

∥𝐰∥2
: Sum of distances between separating hyperplane 

and a positive instance 𝐱+ and a negative instance 𝐱−

 Since 1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 0 ∀𝑖,

𝐰⊤ 𝐱+−𝐱−

∥𝐰∥2
is lower bounded  

2

∥𝐰∥2
𝑥1

𝑥2

𝐰 = 𝑤1, 𝑤2

𝐰⊤𝐱 = 0

𝐱+

𝐱−
They can be taken as the closest instance to 
the separating hyperplane
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min𝐰
1

2
∥ 𝐰 ∥2

2 s.t. 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖 ≤ 0 (𝑖 = 1,2, … ,𝑁)

 Lagrange multipliers 𝛼𝑖 𝑖 :

min𝐰 max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

1

2
∥ 𝐰 ∥2

2 + 

𝑖=1

𝑁

𝛼𝑖 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖

– If 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖 > 0 for some 𝑖, we have 𝛼𝑖 = ∞

• The objective function becomes ∞, that cannot be optimal

– If 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖 ≤ 0 for some 𝑖, we have either

𝛼𝑖 = 0 or 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖 = 0 , i.e. objective function 
remains the same as the original one (1

2
∥ 𝐰 ∥2

2)

Solution of hard-margin SVM (Step I):
Introducing Lagrange multipliers 
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 By changing the order of min and max:

min𝐰 max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

∥ 𝐰 ∥2
2

2
+ 

𝑖=1

𝑁

𝛼𝑖 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

min𝐰
∥ 𝐰 ∥2

2

2
+ 

𝑖=1

𝑁

𝛼𝑖 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖

 Solving min gives 𝐰 =  𝑖=1
𝑁 𝛼𝑖𝑦

(𝑖)𝐱 𝑖 , which finally results in

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

 

𝑖=1

𝑁

𝛼𝑖 −
1

2
 

𝑖=1

𝑁

 

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
(𝑖)𝑦(𝑗)𝐱 𝑖 ⊤

𝐱 𝑗

Solution of hard-margin SVM (Step II):
Dual formulation as a quadratic programming problem
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 The dual problem: 

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

 

𝑖=1

𝑁

𝛼𝑖 −
1

2
 

𝑖=1

𝑁

 

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
(𝑖)𝑦(𝑗)𝐱 𝑖 ⊤

𝐱 𝑗

 Support vectors: the set of 𝑖 such that 𝛼𝑖 > 0

–For such 𝑖, 1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 = 0 holds

–They are the closest instance to the separating hyperplane

 Non-support vectors (𝛼𝑖 = 0) do not appear in the model: 

𝐰⊤𝐱 =  𝑗=1
𝑁 𝛼𝑗𝑦

(𝑗)𝐱(𝑗)
⊤
𝐱

Support vectors:
SVM model depends only on support vectors

𝐰 =  𝑖=1
𝑁 𝛼𝑖𝑦

(𝑖)𝐱 𝑖
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 Equivalent formulation of soft-margin SVM: 

min𝐰 𝐰 2
2 + 𝐶 

𝑖=1

𝑁

𝑒𝑖

s. t. 1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 𝑒𝑖

(𝑖 = 1,2, … , 𝑁)

 Similar dual problem with additional constraints: 

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

 

𝑖=1

𝑁

𝛼𝑖 −
1

2
 

𝑖=1

𝑁

 

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖 𝑦 𝑗 𝐱 𝑖 ⊤

𝐱 𝑗

0 ≤ 𝛼𝑖≤ 𝐶 (𝑖 = 1,2, … ,𝑁)

Solution of soft-margin SVM:
Additional constraints 

Hinge loss
(Slack variable)
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 The dual form objective function and the classifier access to 

data always through inner products 𝐱 𝑖 ⊤
𝐱 𝑗

–The inner product 𝐱 𝑖 ⊤
𝐱 𝑗 is considered as similarity

 Can we use some similarity function 𝐾 𝐱 𝑖 , 𝐱 𝑗 instead of 

𝐱 𝑖 ⊤
𝐱 𝑗 ?  – Yes (under certain conditions)

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

 

𝑖=1

𝑁

𝛼𝑖 −
1

2
 

𝑖

𝑁

 

𝑗

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖 𝑦 𝑗 𝐾 𝐱 𝑖 , 𝐱 𝑗

–Model：𝐰⊤𝐱 =  𝑗=1
𝑁 𝛼𝑗𝑦

𝑗 𝐾 𝐱 𝑗 , 𝐱

Kernel methods:
Data access through kernel function
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 Consider a (nonlinear) mapping 𝝓:ℜ𝐷 → ℜ𝐷′

–𝐷-dimensional space to 𝐷′ ≫ 𝐷 -dimensional space

–Vector 𝐱 is mapped to a high-dimensional vector 𝝓(𝐱)

 Define kernel 𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝝓 𝐱 𝑖 ⊤
𝝓(𝐱 𝑗 )

 SVM is a linear classifier in the 𝐷′-dimensional space, while is a 
non-linear classifier in the original space

Kernel functions:
Introducing non-linearity in linear models

https://en.wikipedia.org/wiki/Support_vector_machine#/
media/File:Kernel_Machine.svg
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 Advantage of using kernel function

𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝝓 𝐱 𝑖 ⊤
𝝓(𝐱 𝑗 )

 Even if 𝝓 is high-dimensional (possibly infinite dimensional), as 

far as its inner product 𝝓 𝐱 𝑖 ⊤
𝝓(𝐱 𝑗 ) is given as an 

efficiently computable function, the dimension of 𝝓 does not 
matter

 Problem size: 
𝐷(number of dimensions) → 𝑁(number of data)

–Advantageous when 𝝓 is especially high or infinite 
dimensional

Advantage of kernel methods:
Computational efficiency in terms of input dimensions 
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 Combinatorial features: Not only the original features 
𝑥1, 𝑥2, … , 𝑥𝐷, use their combinations (i.e. products)

–Exponential number of dimensions wrt 𝑑

 Polynomial kernel: 𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝐱 𝑖 ⊤
𝐱 𝑗 + 𝑐

𝑑

–E.g. 𝑐 = 0, 𝑑 = 2, two dimensional case

𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝑥1
𝑖
𝑥1

𝑗
+ 𝑥2

𝑖
𝑥2

𝑗
2

= 𝑥1
𝑖 2

, 𝑥2
𝑖 2

, 2𝑥1
𝑖
𝑥2

𝑖
𝑥1

𝑗 2
, 𝑥2

𝑗 2
, 2𝑥1

𝑗
𝑥2

𝑗

–Note that it can be computed in O 𝐷

Example of kernel functions:
Polynomial kernel can consider high-order cross terms 

𝐱 𝑖 =
𝑥1
(𝑖)

𝑥2
(𝑖)
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 Gaussian kernel (RBF kernel): 𝐾 𝐱𝑖 , 𝐱𝑗 = exp −
∥𝐱𝑖−𝐱𝑗∥2

2

𝜎

–Can be interpreted as an inner product in an infinite-
dimensional space

Example of kernel functions:
Gaussian kernel with infinite feature space 

∥ 𝐱𝑖 − 𝐱𝑗 ∥2
2http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Machi

neLearning&doc=exercises/ex8/ex8.html

Gaussian kernel (RBF kernel)

Discrimination surface with Gaussian kernel
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 Kernel methods can handle any kinds of objects (even non-
vectorial objects) as long as efficiently computable kernel 
function is available

–Kernels for strings, trees, and graphs, …

Kernel methods for non-vectorial data:
Kernels for sequences, trees, and graphs

http://www.bic.kyoto-u.ac.jp/coe/img/akutsu_fig_e_02.gif
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 Can we use some similarity function as a kernel function?

–Yes (under certain conditions)

 Kernel methods rely on the fact that the optimal parameter is 
represented as a linear combination of input vectors: 

𝐰 =  

𝑖=1

𝑁

𝛼𝑖𝑦
(𝑖)𝐱 𝑖

–Gives the dual form 𝐰⊤𝐱 =  𝑗=1
𝑁 𝛼𝑗𝑦

(𝑗)𝐱(𝑗)
⊤
𝐱

 Representer theorem: 
This is guaranteed under L2-regularization 

Representer theorem:
Theoretical underpinning of kernel methods
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 Assumption: Loss ℓ(𝑖) for 𝑖-th data depends only on 𝐰⊤𝐱 𝑖

–Objective function: 𝐿 𝐰 =  𝑖=1
𝑁 ℓ(𝑖) 𝐰⊤𝐱 𝑖 + 𝜆 𝐰 2

2

 Divide the optimal parameter 𝐰∗ into two parts 𝐰+𝐰⊥:

–𝐰: Linear combination of input data 𝐱 𝑖
𝑖

–𝐰⊥: Other parts (orthogonal to all input data)

 𝐿 𝐰∗ depends only on 𝐰:  𝑖=1
𝑁 ℓ(𝑖) 𝐰∗⊤𝐱 𝑖 + 𝜆 𝐰∗

2
2

=  

𝑖=1

𝑁

ℓ(𝑖) 𝐰⊤𝐱 𝑖 +𝐰⊥⊤
𝐱 𝑖 + 𝜆 𝐰 2

2 + 2𝐰⊤𝐰⊥ + 𝐰⊥
2

2

(Simple) proof of representer theorem:
Obj. func. depends only on the linear combination

= 0 = 0 Minimized to = 0
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 Primal objective function of SVM: 

𝐿 𝐰 =  

𝑖=1

𝑁

max{1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 , 0} + 𝜆 𝐰 2
2

 Primal objective function using kernel: 
𝐿 𝛂

=  

𝑖=1

𝑁

max{1 − 𝑦 𝑖  

𝑗=1

𝑁

𝛼𝑗𝑦
𝑗 𝐾 𝐱 𝑖 , 𝐱 𝑗 , 0}

+ 𝜆 

𝑖=1

𝑁

 

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖 𝑦 𝑗 𝐾 𝐱 𝑖 , 𝐱 𝑗

Primal objective function:
Kernel representation is also available in the primal form

Using
𝐰 =  𝑖=1

𝑁 𝛼𝑖𝑦
(𝑖)𝐱 𝑖
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 Instead of the hinge loss, use 𝜖-insensitive loss:

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 ; 𝐰 = max{ 𝑦𝑖 −𝐰⊤𝐱 𝑖 − 𝜖, 0}

 Incurs no loss if the difference between the prediction and the 

target 𝑦𝑖 −𝐰⊤𝐱 𝑖 is less than 𝜖

Support vector regression:
Use 𝜖-insensitive loss instead of hinge loss

𝜖𝜖

𝜖-insensitive loss

Squared loss


