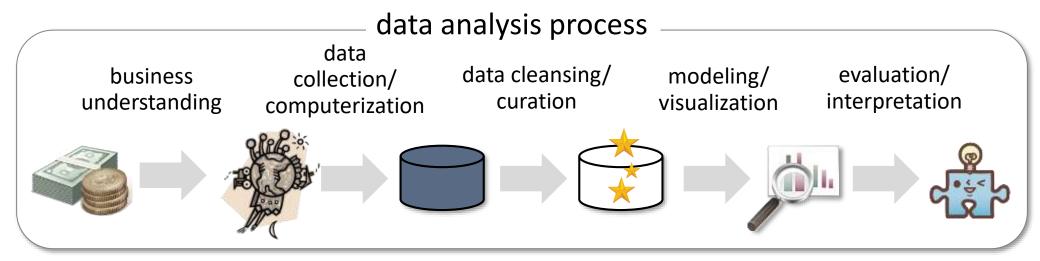
## https://bit.ly/2KBGl56

KYOTO UNIVERSITY

Statistical Machine Learning Theory


### **Predictive Modeling Challenge**

Hisashi Kashima / Makoto Yamada

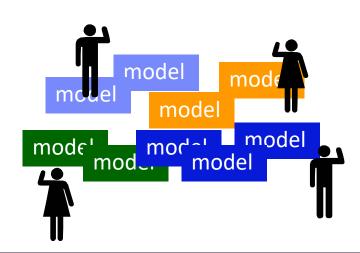
DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

### A serious issue in data analytics: Manpower bottleneck

- Automatic data analysis techniques (e.g. machine learning) are often considered as main components of data analytics
- Data analysis is heavily labor intensive
  - Manual processing dominates a large part of data analysis process
  - Data analysis process standards (e.g., CRISP-DM)

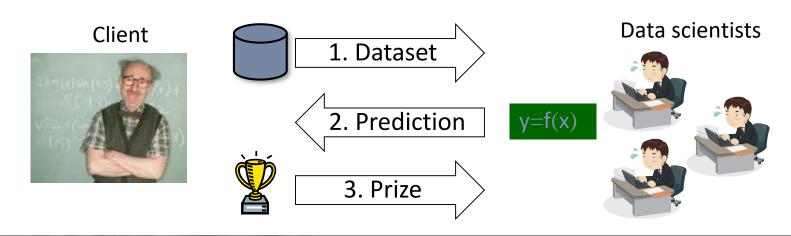


### Big shortage of data scientists: Implies labor intensity in data analysis


- "By 2015, 4.4 million IT jobs globally will be created to support big data", but "only one-third of the IT jobs will be filled"
  - Peter Sondergaard (Senior VP at Gartner)
- "Data Scientist: The Sexiest Job of the 21st Century"
  - Thomas H. Davenport and D.J. Patil, Harvard Business Review
- These statements imply the labor intensity of data analysis



# Labor intensity of data modeling: Exploring huge model space is labor-intensive


- Predictive modeling is labor-intensive
  - -Requires extensive model selection + feature engineering
  - -"No free lunch": there is no universally good model
- Crowds of data scientists can explore the huge model space
  - -Hard for a *single data scientist*

```
model model model model model model model model
```



### Predictive modeling competition: Crowdsourcing of data scientists

- Predictive modeling competition:
  - 1. Training dataset is published
  - 2. Participants submit predictions for test dataset
- Several weeks to months
- 3. Winner is determined by results on test data (and gets awarded)
- Supporting platforms (e.g. Kaggle)

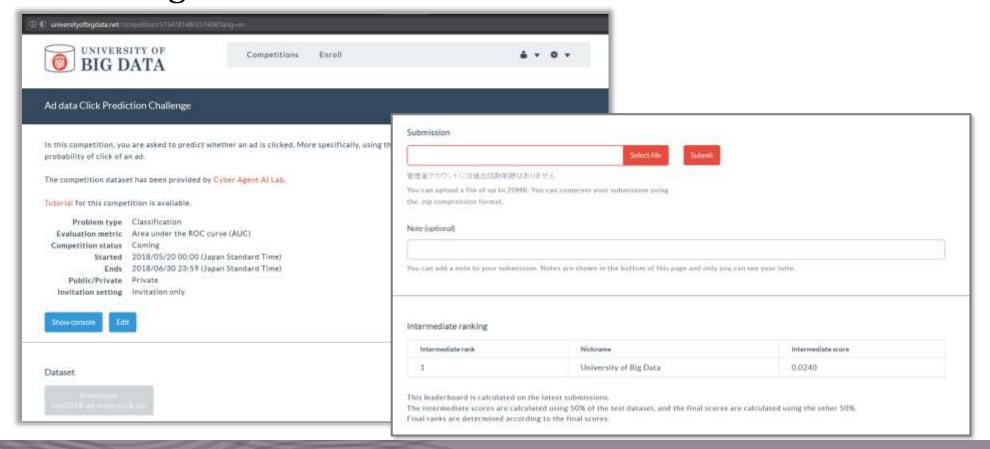


### Predictive modeling challenge: Supervised classification competition

- A supervised classification problem:
  - Implementing some algorithms by yourself is recommended,
     but you can use publicly available implementations
     (e.g. scikit.learn)
- Participate into a competition at http//universityofbigdata.net
  - Online ad click prediction (by courtesy of CyberAgent. )
  - -Will start at May 20th and ends at June 30th
- Submit a report summarizing your work
  - -Due: July 9th noon

### How to participate: Register to University Of Big Data

- The competition is held at the educational competition platform University of Big Data:
  - http://universityofbigdata.net/?lang=en
- Register with your Google account (if you have not)
  - -With registration code 'SML2018challenge'




- Challenge to the competition requires a permission (which may take a few hours to days)
  - If you still cannot access to the competition page, contact the instructor

### Submit your prediction:

### https://bit.ly/2L9Z74C

See the instructions at http://universityofbigdata.net/competition/572378844443 4432?lang=en



## Report submission: Submit a report summarizing your work (in English)

- Submission:
  - -Due: July 9th noon
  - -Send your report to statisticallearningtheory2018@gmail.com and confirm you receive an ack on 9th
- The report must include:
  - Idea behind your approach, analysis pipeline, results, and discussions(Do not include your source codes)
  - -At least 3 pages, but do not exceed 6 pages in LNCS format

## The competition task: Advertisement click prediction



Predict whether the advertisement will be clicked

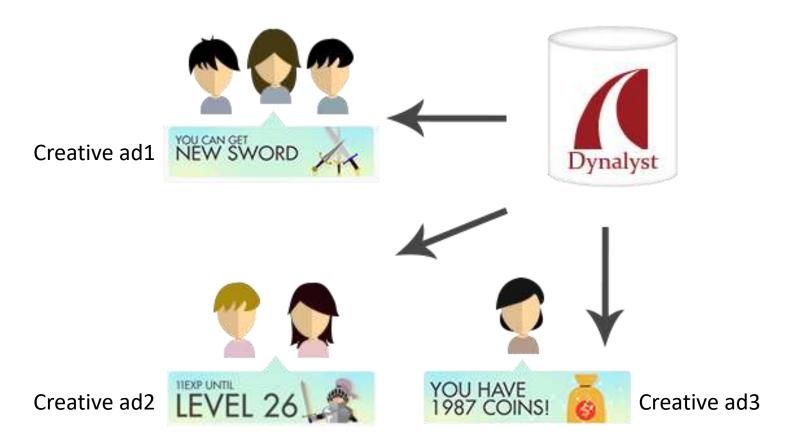



Image at https://www.dynalyst.jp/

#### Dataset:

### Training data, test data

Training data: data\_train.csv

Advertisement feature input  $\mathbf{x}^{(i)}$ 

Correct labels  $\mathbf{y}^{(i)}$ 

| <u> </u> |                         |               |             |  |       |
|----------|-------------------------|---------------|-------------|--|-------|
|          | Logged_at               | Advertiser_id | Campaign_id |  | click |
| 1        | 2018-03-15 00:00:00.125 | 1909          | 7942        |  | 0     |
| 2        | 2018-03-15 00:00:29.917 | 2088          | 10668       |  | 1     |

### Test data: data\_test.csv

|   | Logged_at               | Advertiser_id | Campaign_id | click       |
|---|-------------------------|---------------|-------------|-------------|
| 1 | 2018-03-15 15:28:09.221 | 1953          | 8687        | <br>Predict |
| 2 | 2018-03-15 15:28:13.202 | 1909          | 7948        | <br>this    |

#### Submission:

### Submit your predictions for the test data

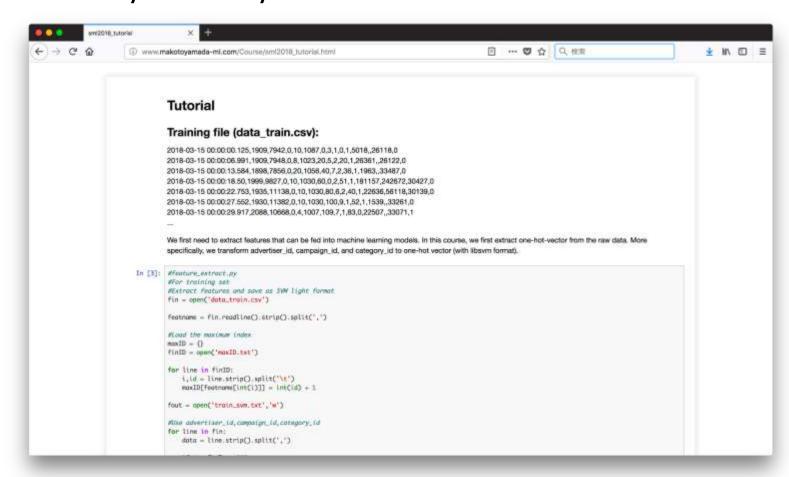
Predict the probability of each advertisement information.

|   | Logged_at               | Advertiser_id | Campaign_id | click      |
|---|-------------------------|---------------|-------------|------------|
| 1 | 2018-03-15 15:28:09.221 | 1953          | 8687        | <br>0.3384 |
| 2 | 2018-03-15 15:28:13.202 | 1909          | 7948        | <br>0.4951 |



Example submission file: sample-submission.dat

You can make submissions at most three times a day


## Evaluation measure: ROC-AUC

- ROC-AUC is a evaluation measure of two-class classification
- See http://scikitlearn.org/stable/modules/model\_evaluation.html#roc-metrics

#### **Tutorial:**

### Quick start guide for making the first predictions

• Find the tutorial at: http://www.makotoyamada-ml.com/Course/sml2018\_tutorial.html

