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 Regression learning is one of supervised learning problem 
settings with wide applications

Goal: Obtain a function 𝑓: 𝒳 → ℜ (ℜ : real value)

–Usually, 𝒳 is a 𝐷-dimensional vector space

–E.g.  𝑥 ∈ 𝒳 is a house and 𝑦 ∈ ℜ is its price
(housing dataset in UCI Machine Learning Repository)

 Training dataset: 𝑁 pairs of an input and an output 
𝐱 , 𝑦 , 𝐱 , 𝑦 , … , 𝐱 , 𝑦

Regression:
Supervised learning for predicting a real valued variable
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 Some applications:

–Price prediction: Predict the price 𝑦 of a product 𝑥

–Demand prediction: Predict the demanded amount 𝑦 of a 
product 𝑥

–Sales prediction: Predict the sales amount 𝑦 of a product 𝑥

–Chemical activity: Predict the activity level 𝑦 of a compound 𝑥

Other applications:

–Time series prediction: Predict the value 𝑦 at the next time 
step given the past measurements 𝑥

–Classification

Some applications of regression:
From marketing prediction to chemo-informatics
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Model: How does 𝑦 depend on 𝐱?

We consider the simplest choices: Liner regression model
𝑦 = 𝐰 𝐱 = 𝑤 𝑥 + 𝑤 𝑥 + ⋯ + 𝑤 𝑥

–Prediction model of the price of a house:

Model:
Linear regression model

Age

Time to station

Crime rate

Price
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We assume input 𝐱 is a real vector

– In the house price prediction example, features can be age, 
walk time to the nearest station, crime rate in the area, …

Discrete features are handled as real values

–Binary features: {Male, Female} are encoded as {0,1}

–One-hot encoding: Kyoto, Osaka, Tokyo are encoded with 
(1,0,0), (0,1,0), and (0,0,1)

Handling discrete features:
Dummy variables



4

7 KYOTO UNIVERSITY

Objective function (to minimize): 
Disagreement measure of the model to the training dataset

–Loss function: ℓ( ) 𝑦 , 𝐰 𝐱 ;  𝐰  for the 𝑖-th instance

–Objective function: 𝐿 𝐰 = ∑ ℓ( ) 𝑦 , 𝐰 𝐱 ;  𝐰

 Squared loss function: 

ℓ( ) 𝑦 , 𝐰 𝐱 ;  𝐰 = 𝑦 − 𝐰 𝐱( )

–Absolute loss, Huber loss: more robust choices

Optimal parameter 𝐰∗ is the one that minimizes 𝐿 𝐰 :
𝐰∗ = argmin𝐰 𝐿 𝐰

Objective function of training:
Squared loss
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We assume data are identically and independently distributed:

–Data instances are generated from the same data generation 
mechanism (or probability distribution)

• Past data (training data) and future data (test data) have the 
same property

–Data instances are independent of each other

Important assumption on data:
Identically and independently distributed
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 Let us start with a case where inputs and outputs are both one-
dimensional

Objective function to minimize: 

𝐿 𝑤 = 𝑦 − 𝑤𝑥

 Solution: 𝑤∗ =
∑

∑
=

( , )

( )

Solution of linear regression:
One dimensional case
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Matrix and vector notations:

–Design matrix 𝑿 = 𝐱 , 𝐱 , … , 𝐱

–Target vector 𝐲 = 𝑦 , 𝑦 , … , 𝑦

Objective function: 

𝐿 𝐰 = 𝑦 − 𝐰 𝐱 = 𝐲 − 𝑿𝐰

= 𝐲 − 𝑿𝐰 𝐲 − 𝑿𝐰

 Solution: 𝐰∗ = argmin𝐰 𝐿 𝐰 = 𝑿 𝑿 𝑿 𝐲

Solution of linear regression:
General case
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Regularization
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 Existence of the solution 𝐰∗ = 𝑿 𝑿 𝑿𝐲 requires that 𝑿 𝑿
is non-singular, i.e. full-rank

–This is often secured when the number of data instances 𝑁 is 
much larger than the number of dimensions 𝐷

 Regularization: Adding some constant 𝜆 > 0 to the diagonals of 
𝑿 𝑿 for numerical stability

–New solution: 𝐰∗ = 𝑿 𝑿 + 𝜆𝑰 𝑿 𝐲

 Back to its objective function, the solution corresponds to
𝐿 𝐰 = 𝐲 − 𝑿𝐰 + 𝜆 𝐰

Ridge regression:
Include penalty on the norm of 𝐰 to avoid instability
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 Previously, we introduced the regularization to avoid numerical 
stability

 Another interpretation: To avoid overfitting to the training data

–Our goal is to make correct predictions for future data, not for 
the training data

–Overfitting: Too much adaptation to the training data  
degrades predictive performance on future data 

When the number of data instances 𝑁 is less than the number 
of dimensions 𝐷, the solution is not unique 

– Infinite number of solutions exist

Overfitting:
Degradation of predictive performance for future data
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We have infinite number of models that equally fit to the 
training data (=minimize the loss function)

–Some perform well, some perform badly

Which is the “best” model among them?

Occam’s razor: Take the simplest model

–We will discuss why the simple model is good later in the 
statistical learning theory

What is the measure of simplicity? 
For example, number of features = the number of non-zero 
elements in 𝐰

Occam’s razor:
Adopt the simplest model
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Number of non-zero elements in 𝐰 = 0-norm of 𝐰

Use 0-norm constraint: 
minimize𝐰 𝐲 − 𝑿𝐰   s. t.  𝐰 ≤ 𝜂

or 0-norm penalty: 
minimize𝐰  𝐲 − 𝑿𝐰 + 𝜆 𝐰

–There is some one-to-one correspondence between 𝜂 and 𝜆

However, they are non-convex optimization problems …

–Hard to find the optimal solution

0-norm regularization:
Reduce the number of non-zero elements in 𝐰

Number of 
features used in 
the model
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 Instead of the zero-norm 𝐰 , we use 2-norm 𝐰

 Ridge regression: 𝐿 𝐰 = 𝐲 − 𝑿𝐰 + 𝜆 𝐰

–Can be seen as a relaxed version of 
𝐿 𝐰 =  𝐲 − 𝑿𝐰 +𝜆 𝐰

–The closed form solution: 𝐰∗ = 𝑿 𝑿 + 𝜆𝑰 𝑿 𝐲

Ridge regression :
2-norm regularization as a convex surrogate for 0-norm

Convex 

Non-convex

𝑤
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 Instead, we can use 1-norm 𝐰 = 𝑤 + 𝑤 + ⋯ + 𝑤

 Lasso: 𝐿 𝐰 = 𝐲 − 𝑿𝐰 + 𝜆 𝐰

–Convex optimization, but no closed form solution

 Sparsity inducing norm: 1-norm induces sparse 𝐰∗

Lasso :
1-norm regularization further induces sparsity

𝑤
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Statistical Interpretation
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 So far we have formulated the regression problem in loss 
minimization framework

–Function (prediction model) 𝑓: 𝒳 → ℜ is deterministic

–Least squares: Minimization of the sum of squared losses

We have not considered any statistical inference

 Actually, we can interpret the previous formulation in a 
statistical inference framework, namely, maximum likelihood 
estimation

Interpretation as statistical inference :
Regression as maximum likelihood estimation
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We consider 𝑓 as a conditional distribution 𝑓(𝑦|𝐱, 𝐰)

Maximum likelihood estimation (MLE):

–Find 𝐰 that maximizes the likelihood function:
𝐿 𝐰 = ∏ 𝑓(𝑦( )|𝐱( ), 𝐰) 

• Likelihood function: Probability that the training data is 
reproduced by the model

• Note that we assume i.i.d.
– It is often convenient to use log likelihood instead:

𝐿 𝐰 = log 𝑓(𝑦( )|𝐱( ), 𝐰)

Maximum likelihood estimation (MLE):
Find the parameter that best reproduces training data 

Conditional
probability 
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 Probabilistic version of the linear regression model 𝑦 = 𝐰 𝐱

 𝑦 ∼ 𝒩 𝐰 𝐱, 𝜎 : Gaussian distribution with mean 𝐰 𝐱 and 
variance 𝜎

𝑓 𝑦 𝐱, 𝐰) =
1

2𝜋𝜎
exp −

𝑦 − 𝐰 𝐱

2𝜎

Probabilistic version of the linear regression model:
Gaussian distribution model

Linear 
regression 
model
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 Log-likelihood function:

𝐿 𝐰 = log 𝑓(𝑦( )|𝐱( ), 𝐰)

= log
1

2𝜋𝜎
exp −

𝑦( ) − 𝐰 𝐱( )

2𝜎

= −
1

2𝜎
𝑦( ) − 𝐰 𝐱( ) + const.

Maximization of 𝐿 𝐰 is equivalent to minimization of the 

squared loss  ∑ 𝑦( ) − 𝐰 𝐱( )

Relation between least squares and MLE:
Maximum likelihood is equivalent to least squares
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Some More Applications
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 Time series data: A sequence of real valued data 
𝑥 , 𝑥 , … , 𝑥 , … ∈ ℜ associated with time stamps 𝑡 = 1,2, …

 Time series prediction: Given 𝑥 , 𝑥 , … , 𝑥 , predict 𝑥

 Auto regressive (AR) model: 
𝑥 = 𝑤 𝑥 + 𝑤 𝑥 + ⋯ + 𝑤 𝑥

–𝑥 is determined by the recent length-𝐷 history

 AR model as a linear regression model 𝑦 = 𝐰 𝐱 :

–𝐰 = 𝑤 , 𝑤 , … , 𝑤

–𝐱 = 𝑥 , 𝑥 , … , 𝑥

Time series prediction:
Auto regressive (AR) model
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 Classification: 𝑦 ∈ +1, −1

 Apply regression to predict 𝑦 ∈ +1, −1

 Rigorously, such application is not valid

–Since an output is either +1 or -1, 
the Gaussian noise assumption does not hold

–However, since solution of regression is often easier than that 
of classification, this application can be compromise

 Fisher discriminant: Instead of +1, −1 , use + , −

–𝑁 (𝑁 ) is the number of positive (negative) data

Classification as regression:
Regression is also applicable to classification
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Nonlinear Regression
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 So far we have considered only linear models

How to introduce non-linearity in the models?

 Introduce nonlinear basis functions:

–Transformed features: e.g. 𝑥 → log 𝑥

–Cross terms: e.g. 𝑥 , 𝑥 → 𝑥 𝑥

–Kernels: 𝐱 → 𝝓(𝐱) (some nonlinear mapping to a high-
dimensional space)

Nonlinear regression:
Introducing nonlinearity in linear models
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Nonlinear basis function: 𝑥 → log 𝑥 , 𝑒 , 𝑥 , , …

–Sometimes used for converting the range 

• E.g. log: ℜ → ℜ, exp: ℜ → ℜ

 Interpretations of log transformation:

Nonlinear transformation of features:
Simplest way to introduce nonlinearity in linear models

𝑦 log 𝑦

𝑥
𝑦 = 𝛽𝑥 + 𝛼 log 𝑦 = 𝛽𝑥 + 𝛼

Increase of 𝑥 by 1 will 
increase 𝑦 by 𝛽

Increase of 𝑥 by 1 will  
multiply 𝑦 by 1 + 𝛽

log 𝑥
𝑦 = 𝛽 log 𝑥 + 𝛼 log 𝑦 = 𝛽 log 𝑥 + 𝛼

Doubling 𝑥 will increase 𝑦 by 
𝛽

Doubling 𝑥 will multiply 𝑦 by 
1 + 𝛽
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Not only the original features 𝑥 , 𝑥 , … , 𝑥 , use their cross 
terms products 𝑥 𝑥 ,

Model has a matrix parameter 𝑾:

𝑦 = Trace

𝑤 , ⋯ 𝑤 ,

⋮ ⋱ ⋮
𝑤 , ⋯ 𝑤 ,

𝑥 𝑥 𝑥

𝑥 𝑥 𝑥
⋯

𝑥 𝑥
𝑥 𝑥

⋮ ⋱ ⋮
𝑥 𝑥 𝑥 𝑥 ⋯ 𝑥

= 𝐱 𝑾 𝐱

 𝐿 𝑾 = ∑ 𝑦 − 𝐱 𝑾 𝐱 + 𝜆 𝑾

Cross terms:
Can include synergetic effects among different features

(e.g. factorization machines)
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High dimensional non-linear mapping: 𝐱 → 𝝓 𝐱

–𝝓: ℜ → ℜ is some nonlinear mapping from 𝐷-dimensional 
space to a 𝐷-dimensional space (𝐷 ≪ 𝐷)

 Linear model 𝑦 = 𝐰 𝝓 𝐱

 Kernel regression model: 𝑦 = ∑ 𝛼( ) 𝑘 𝐱( ), 𝐱

–Kernel function 𝑘 𝐱( ), 𝐱 = 𝝓 𝐱( ) , 𝝓 𝐱 : inner product

–Kernel trick: Instead of working in the 𝐷-dimensional space, we 
use an equivalent form in an 𝑁 -dimensional space

• Foundation of kernel machines, e.g. SVM, Gaussian process, ...

Kernels:
Linear model in a high-dimensional feature space
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Bayesian Statistical Interpretation
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 Posterior distribution of parameters

Maximum A Posteriori (MAP) estimation

 Ridge regression as MAP estimation

Bayesian interpretation of regression:
Ridge regression as MAP estimation
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 In maximum likelihood estimation (MLE), we obtain 𝐰 that 
maximizes data likelihood:

𝑃(𝐲 ∣ 𝑿, 𝐰) = ∏ 𝑓(𝑦( )|𝐱( ), 𝐰)

or log 𝑃(𝐲 ∣ 𝑿, 𝐰) = ∑ log 𝑓(𝑦( )|𝐱( ), 𝐰)

–The probability of the data reproduced with the parameter: 
𝑃(Data ∣ Parameters)

 In Bayesian modeling, we consider the posterior distribution
𝑃 Parameters Data

–Posterior distribution is the distribution over model 
parameters given data

Bayesian modeling:
Posterior, instead of likelihood
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 Posterior distribution:

𝑃 Parameters Data =
𝑃 Data Parameters 𝑃 Parameters

𝑃(Data)

 Log posterior: 
log 𝑃 Parameters Data
= log 𝑃 Data Parameters + log 𝑃 Parameters

−log 𝑃(Data)

• 𝑃(Data) is often neglected as a constant term because it 
does not depend on the parameters 

Posterior distribution:
Posterior = likelihood + prior

(Bayes’ formula)

Likelihood Prior
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 Log posterior: 
log 𝑃 Parameters Data
= log 𝑃 Data Parameters + log 𝑃 Parameters + const.

Maximum a posteriori (MAP) estimation finds the parameter 
that maximizes the posterior:
Parameters∗ = argmax log 𝑃 Parameters Data

–MLE considers only log 𝑃 Data Parameters part

–Additional term (log prior) : log 𝑃 Parameters

Maximum a posteriori (MAP) estimation:
Find parameter that maximizes the posterior
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 Log posterior: 
log 𝑃 Parameters Data
= log 𝑃 Data Parameters + log 𝑃 Parameters + const.

 Ridge regression:

𝐰∗ = argmin𝐰

1

2𝜎
𝑦 − 𝐰 𝐱 +

1

2𝜎
𝐰

• Log-likelihood: ∑ log exp −
( ) 𝐰 𝐱( )

• Prior 𝑃(𝐰) = exp −
𝐰 𝐰

Ridge regression as MAP estimation:
Find parameter that maximizes the posterior
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 A supervised learning problem to make real-valued predictions

 Regression problem is often formulated as a least-square 
minimization problem

–Closed form solution is given

 Regularization framework to avoid overfitting

–Reduce the number of features: 0-norm, 2-norm (ridge 
regression), 1-norm (lasso)

Nonlinear regression

 Statistical interpretations: maximum likelihood estimation, 
maximum a posteriori (MAP) estimation

Regression:
Supervised learning for predicting a real valued variable


