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Regression:
Supervised learning for predicting a real valued variable

= Regression learning is one of supervised learning problem
settings with wide applications

» Goal: Obtain a function f: X’ = R (R : real value)
—Usually, X is a D-dimensional vector space

—E.g. x € X isa house and y € R is its price
(housing dataset in UCI Machine Learning Repository)

* Training dataset: N pairs of an input and an output
{(x(l), y(l)), (X(Z), y(Z)), - (x(N), y(N))}
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Some applications of regression:
From marketing prediction to chemo-informatics
= Some applications:

—Price prediction: Predict the price y of a product x

—Demand prediction: Predict the demanded amount y of a
product x

—Sales prediction: Predict the sales amount y of a product x

—Chemical activity: Predict the activity level y of a compound x

= Other applications:

—Time series prediction: Predict the value y at the next time
step given the past measurements x

—Classification
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Model:
Linear regression model

* Model: How does y depend on x?

= We consider the simplest choices: Liner regression model
y = WTX = WiXq + Wy X5 + -+ WpXp

—Prediction model of the price of a house:
Ol
[mimetoistation] () —{xw, | + |—(@ [Pl
crime rate
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Handling discrete features:
Dummy variables

= We assume input X is a real vector

—In the house price prediction example, features can be age,
walk time to the nearest station, crime rate in the area, ...

= Discrete features are handled as real values
—Binary features: {Male, Female} are encoded as {0,1}

—One-hot encoding: {Kyoto, Osaka, Tokyo} are encoded with
(1,0,0), (0,1,0), and (0,0,1)
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Objective function of training:
Squared loss

= Objective function (to minimize):
Disagreement measure of the model to the training dataset

—Loss function: £® (y(i), wa(i); w) for the i-th instance
—Objective function: L(w) = YL, #O(y®, wTx®; w)
= Squared loss function:
PO >y, wTx®; w) = (y® — wTx®)?
—Absolute loss, Huber loss: more robust choices

= Optimal parameter w* is the one that minimizes L(w):
w* = argminy, L(w)
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Important assumption on data:
Identically and independently distributed

= We assume data are identically and independently distributed:
—Data instances are generated from the same data generation
mechanism (or probability distribution)
e Past data (training data) and future data (test data) have the
same property
—Data instances are independent of each other

8 KYOTO UNIVERSITY



Solution of linear regression:
One dimensional case

= Let us start with a case where inputs and outputs are both one-
dimensional

= Objective function to minimize:

N
i=1

= Solution: w* = 22, yOx® _ Covixy)
' Zlinl x®? Var(x)
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Solution of linear regression:
General case

= Matrix and vector notations:
—Design matrix X = (xV,x?), ...,x("’))T
—Target vectory = (y(l), y@, ., y(N))T
= Objective functionl\:l
Lw) = ) (y® = wTx®)* = |ly - Xwl3
= (v~ Xw)"(y — Xw)
= Solution: w* = argmin,, L(w) = (XTX) Xy
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{ Regularization }
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Ridge regression:

Include penalty on the norm of w to avoid instability

= Existence of the solution w* = (X" X)~1Xy requires that X' X
is non-singular, i.e. full-rank

—This is often secured when the number of data instances N is
much larger than the number of dimensions D

= Regularization: Adding some constant A > 0 to the diagonals of
X" X for numerical stability

—New solution: w* = (XTX + AI)"1XTy

= Back to its objective function, the solution corresponds to
L(w) = |ly — Xwl|3 + A[|w]|3
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Overfitting:
Degradation of predictive performance for future data

= Previously, we introduced the regularization to avoid numerical
stability

= Another interpretation: To avoid overfitting to the training data

—Our goal is to make correct predictions for future data, not for
the training data

—Overfitting: Too much adaptation to the training data
degrades predictive performance on future data

= \When the number of data instances N is less than the number
of dimensions D, the solution is not unique

—Infinite number of solutions exist
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Occam’s razor:
Adopt the simplest model

= We have infinite number of models that equally fit to the
training data (=minimize the loss function)

—Some perform well, some perform badly
= Which is the “best” model among them?

» Occam’s razor: Take the simplest model

—We will discuss why the simple model is good later in the
statistical learning theory

= What is the measure of simplicity?
For example, number of features = the number of non-zero
elements in w
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0-norm regularization:
Reduce the number of non-zero elements in w

= Number of non-zero elements in w = 0-norm of w

Number of
features used in
the model

= Use 0-norm constraint:
minimize,, ||y — Xw||3 s.t. [|[w]l, <7
or 0-norm penalty:
minimize,, |y — Xwl|3+ A|lw]|,

—There is some one-to-one correspondence between 1 and A
= However, they are non-convex optimization problems ...

—Hard to find the optimal solution
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Ridge regression :
2-norm regularization as a convex surrogate for 0-norm

= Instead of the zero-norm ||w/|,, we use 2-norm ||w||3

6

= Ridge regression: L(w) = ||y — Xw/||2 + A||w]|3
—Can be seen as a relaxed version of
on-convex
L(w) = |ly — Xwl|5 +Allwll,

—The closed form solution: w* = (XTX + AI)"1XTy
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Lasso :
1-norm regularization further induces sparsity

" Instead, we can use 1-norm [|w]|; = |wyq| + |wy| + -+ |wp|

= Lasso: L(w) = |ly — Xw/||Z + A||w]l,
—Convex optimization, but no closed form solution

= Sparsity inducing norm: 1-norm induces sparse w*
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[ Statistical Interpretation }
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Interpretation as statistical inference :
Regression as maximum likelihood estimation

= So far we have formulated the regression problem in loss
minimization framework

—Function (prediction model) f: X — R is deterministic

—Least squares: Minimization of the sum of squared losses
= We have not considered any statistical inference

= Actually, we can interpret the previous formulationin a
statistical inference framework, namely, maximum likelihood

estimation
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Maximum likelihood estimation (MLE):
Find the parameter that best reproduces training data

= We consider f as a conditional distribution f(y|x, w)

= Maximum likelihood estimation (MLE):

—Find w that maximizes the likelihood function:
Lw) =TT, f @ 1x D, w)
e Likelihood function: Probability that the training data is
reproduced by the model
* Note that we assume i.i.d.
—It is often convenient to use log likelihood instead:

N
L(w) = > log f(yO[x®, w)
i=1
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Probabilistic version of the linear regression model:
Gaussian distribution model

= Probabilistic version of the linear regression model y = w'x

=y ~ N (WTx,02): Gaussian distribution with mean wx and
variance o2

(y —w'x)?

1
exp | —
V2ro p( 202

fylx,w) =

Linear
regression
model
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Relation between least squares and MLE:

Maximum likelihood is equivalent to least squares
= Log-likelihood function:

N
L(w) = > log fyD[x®, w)

=1

i
N 1 < (y® — wa(i))Z)
= lo exp |\ —
; g\/27w P 207

N
797 (/0 ~wTxO)

_ _ (D) _ s T (D

= = > (v wTx®)” + const.
20 -

= Maximization of L(w) is equivalent to minimization of the
squared loss XL, (y® — wa(i))2
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{ Some More Applications }
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Time series prediction:
Auto regressive (AR) model

= Time series data: A sequence of real valued data
X1, X9, ., X¢, ... € R associated with time stamps t = 1,2, ...

= Time series prediction: Given x{, X5, ..., X;_1, predict x;

= Auto regressive (AR) model:
Xe = WiXgq + WyXp_p + -+ WpXt_p

—Xx; is determined by the recent length-D history

= AR model as a linear regression model y = w'x:

—w = (Wy, Wy, ..., wp) T

—-X = (xt—ly Xt—2) ---th—D)T

5 8 8 & 3 g
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Classification as regression:
Regression is also applicable to classification

= Classification: y € {+1, —1}
= Apply regression to predicty € {+1, —1}
= Rigorously, such application is not valid

—Since an output is either +1 or -1,
the Gaussian noise assumption does not hold

—However, since solution of regression is often easier than that
of classification, this application can be compromise

= Fisher discriminant: Instead of {+1, —1}, use {+%, —%}

—N*(N7) is the number of positive (negative) data
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[ Nonlinear Regression }
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Nonlinear regression:
Introducing nonlinearity in linear models

= So far we have considered only linear models

=" How to introduce non-linearity in the models?

®» Introduce nonlinear basis functions:
—Transformed features: e.g. x — log x
—Cross terms: e.g. X1, X, = X1X,

—Kernels: x = ¢(X) (some nonlinear mapping to a high-
dimensional space)
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Nonlinear transformation of features:
Simplest way to introduce nonlinearity in linear models

. : : 1
= Nonlinear basis function: x — log x, ex,xz,;,
—Sometimes used for converting the range
eE.g. log: Rt > R, exp: R > R

= Interpretations of log transformation:

y logy
y=Ffx+a logy=0Fx+a
X Increase of x by 1 will Increase of x by 1 will
increase y by 8 multiply y by 1 + 8
y=pflogx+a logy =Blogx +a
log X Doubling x will increase y by | Doubling x will multiply y by
B 1+
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Cross terms:
Can include synergetic effects among different features

= Not only the original features x4, x», ..., Xp, use their cross
terms products {x3x 4} 4 4/

= Model has a matrix parameter W:

2
7| x XX X1Xp
W1’1 ee e Wl’D 1 122 e x x
. ) . 2XDp
y = Trace : . : X2X1 ) X7
Wp1 ° Wpp ) ) P
XpX1 XpXz -+ Xp

. . ~\ 2
L) = 3, (y© —x@TwTx®)" 4+ 2|w2

(e.g. factorization machines)
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Kernels:
Linear model in a high-dimensional feature space

= High dimensional non-linear mapping: x —» ¢(x)

—p:RP - RP is some nonlinear mapping from D-dimensional
space to a D-dimensional space (D <« D)

= Linear model y = W' ¢p(x)
= Kernel regression model: y = Y., a® k(x®, x)
—Kernel function k(x(i),x) = (¢(x(i)),¢(x)): inner product

—Kernel trick: Instead of working in the D-dimensional space, we
use an equivalent form in an N -dimensional space

e Foundation of kernel machines, e.g. SVM, Gaussian process, ...
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{ Bayesian Statistical Interpretation }
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Bayesian interpretation of regression:
Ridge regression as MAP estimation

= Posterior distribution of parameters
= Maximum A Posteriori (MAP) estimation

= Ridge regression as MAP estimation
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Bayesian modeling:
Posterior, instead of likelihood

= In maximum likelihood estimation (MLE), we obtain w that
maximizes data likelihood:

P(y | X,w) = ITiL, f 7V 1x®, w)
orlog P(y | X,w) = XiL; log f(y ™ [x®), w)
—The probability of the data reproduced with the parameter:
P(Data | Parameters)

= |n Bayesian modeling, we consider the posterior distribution
P( Parameters | Data)

—Posterior distribution is the distribution over model
parameters given data
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Posterior distribution:
Posterior = likelihood + prior

= Posterior distribution:
P(Data | Parameters ) P(Parameters)

P(Data)

P(Parameters | Data) =
(Bayes’ formula)

= Log posterior:
log P( Parameters | Data)

= log P( Data | Parameters) + log P(Parameters)

\ J | J
/ Y

Likelihood Prior
—log P(Data)
e P(Data) is often neglected as a constant term because it
does not depend on the parameters
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Maximum a posteriori (MAP) estimation:
Find parameter that maximizes the posterior

= Log posterior:
log P( Parameters | Data)
= log P( Data | Parameters ) + log P(Parameters) + const.

= Maximum a posteriori (MAP) estimation finds the parameter
that maximizes the posterior:
Parameters™ = argmaxp,rameters 10g P( Parameters | Data )

—MLE considers only log P( Data | Parameters ) part
—Additional term (log prior) : log P(Parameters)
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Ridge regression as MAP estimation:
Find parameter that maximizes the posterior

» Log posterior:
log P( Parameters | Data )
= log P(Data | Parameters) + log P(Parameters) + const.

= Ridge regression:
1
20

N
_ 1 . )
w = argmlnwﬁz(y(‘) —w'x®)" + — lIwll3
i=1

20'%

() —w T (D)2
« Log-likelihood: 3N, logﬁ exp (_ w>

.
* Prior P(w) = ﬁ exp (— “2'0_2')
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Regression:
Supervised learning for predicting a real valued variable

= A supervised learning problem to make real-valued predictions

= Regression problem is often formulated as a least-square
minimization problem

—Closed form solution is given
= Regularization framework to avoid overfitting

—Reduce the number of features: 0-norm, 2-norm (ridge
regression), 1-norm (lasso)

= Nonlinear regression

= Statistical interpretations: maximum likelihood estimation,

maximum a posteriori (MAP) estimation
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