https://bitly/2I3JKMY

Statistical Learning Theory
 - Classification -

Hisashi Kashima

Department of Intelligence Science and Technology

Classification

Classification:

Supervised learning for predicting discrete variable

- Goal: Obtain a function $f: \mathcal{X} \rightarrow \mathcal{Y}$ (\mathcal{Y} : discrete domain)
-E.g. $x \in \mathcal{X}$ is an image and $y \in \mathcal{Y}$ is the type of object appearing in the image
-Two-class classification: $\mathcal{Y}=\{+1,-1\}$
- Training dataset:
N pairs of an input and an output $\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right), \ldots,\left(\mathbf{x}^{(N)}, y^{(N)}\right)\right\}$

Some applications of classification:

From binary to multi-class classification

- Binary (two-class)classification:
- Purchase prediction: Predict if a customer \mathbf{x} will buy a particular product $(+1)$ or not (-1)
- Credit risk prediction: Predict if a obligor \mathbf{x} will pay back a debt $(+1)$ or not (-1)
- Multi-class classification ($=$ Multi-label classification):
- Text classification: Categorize a document \mathbf{x} into one of several categories, e.g., \{politics, economy, sports, ...\}
- Image classification: Categorize the object in an image \mathbf{x} into one of several object names, e.g., \{AK5, American flag, backpack, ...\}
- Action recognition: Recognize the action type (\{running, walking, sitting, ...\}) that a person is taking from sensor data \mathbf{x}

Model for classification:

Linear classifier

- Linear classification: Linear regression model

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{D} x_{D}\right)
$$

$-\left|\mathbf{w}^{\top} \mathbf{x}\right|$ indicates the intensity of belief
$-\mathbf{w}^{\top} \mathbf{x}=0$ gives a separating hyperplane
-w: normal vector perpendicular to the separating hyperplane

Learning framework:

Loss minimization and statistical estimation

- Two learning frameworks

1. Loss minimization: $L(\mathbf{w})=\sum_{i=1}^{N} \ell\left(y^{(i)}, \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)$

- Loss function ℓ : directly handles utility of predictions
- Regularization term $R(\mathbf{w})$

2. Statistical estimation (likelihood maximization):

$$
L(\mathbf{w})=\prod_{i=1}^{N} f_{\mathbf{w}}\left(y^{(i)} \mid \mathbf{x}^{(i)}\right)
$$

- Probabilistic model: generation process of class labels
- Prior distribution $P(\mathbf{w})$
- They are often equivalent : $\left\{\begin{array}{c}\text { Loss }=\text { Probabilistic model } \\ \text { Regularization }=\text { Prior }\end{array}\right.$

Classification problem in loss minimization framework:

 Minimize loss function + regularization term- Minimization problem: $\mathbf{w}^{*}=\operatorname{argmin}_{\mathbf{w}} L(\mathbf{w})+R(\mathbf{w})$
-Loss function $L(\mathbf{w})$: Fitness to training data
-Regularization term $R(\mathbf{w})$: Penalty on the model complexity to avoid overfitting to training data (usually norm of \mathbf{w})
- Loss function should reflect the number of misclassifications on training data
-Zero-one loss:

$$
\ell^{(i)}\left(y^{(i)}, \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)=\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Correct classification } \\
& \left(y^{(i)}=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right) \\
& \left(y^{(i)} \neq \operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right)
\end{aligned}
$$

Zero-one loss:
Number of misclassification is hard to minimize

- Zero-one loss: $\ell\left(y^{(i)}, \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)= \begin{cases}0 & \left(y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}>0\right) \\ 1 & \left(y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)} \leq 0\right)\end{cases}$
- Non-convex function is hard to optimize directly

Convex surrogates of zero-one loss:

 Different functions lead to different learning machines- Convex surrogates: Upper bounds of zero-one loss
-Hinge loss \rightarrow SVM, Logistic loss \rightarrow logistic regression, ...
Hinge loss

Instead of directly minimizing zero-one loss, we minimize its upper bound

Squared loss

Logistic loss

Logistic regression

Logistic regression:

Minimization of logistic loss is a convex optimization

- Logistic loss:

$$
\ell\left(y^{(i)}, \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)=\frac{1}{\ln 2} \ln \left(1+\exp \left(-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right)
$$

- (Regularized) Logistic regression:

$$
\mathbf{w}^{*}=\operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \ln \left(1+\exp \left(-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right)+\lambda\|\mathbf{w}\|_{2}^{2}
$$

Logistic loss

Statistical interpretation:

Logistic loss min. as MLE of logistic regression model

- Minimization of logistic loss is equivalent to maximum likelihood estimation of logistic regression model
- Logistic regression model (conditional probability):

$$
f_{\mathbf{w}}(y=1 \mid \mathbf{x})=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}\right)}
$$

- σ : Logistic function $(\sigma: \Re \rightarrow(0,1))$
- Log likelihood:

$$
L(\mathbf{w})=\sum_{i=1}^{N} \log f_{\mathbf{w}}\left(y^{(i)} \mid \mathbf{x}^{(i)}\right)=-\sum_{i=1}^{N} \log \left(1+\exp \left(-y^{(i)} \mathbf{w}^{\top} \mathbf{x}\right)\right)
$$

$$
\left(=\sum_{i=1}^{N} \delta\left(y^{(i)}=1\right) \log \frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}\right)}+\delta\left(y^{(i)}=-1\right) \log \left(1-\frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}\right)}\right)\right)
$$

Parameter estimation of logistic regression : Numerical nonlinear optimization

- Objective function of (regularized) logistic regression:

$$
L(\mathbf{w})=\sum_{i=1}^{N} \ln \left(1+\exp \left(-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right)+\lambda\|\mathbf{w}\|_{2}^{2}
$$

- Minimization of logistic loss / MLE of logistic regression model has no closed form solution
- Numerical nonlinear optimization methods are used -Iterate parameter updates: $\mathbf{w}^{\mathrm{NEW}} \leftarrow \mathbf{w}+\mathbf{d}$

Parameter update :

Find the best update minimizing the objective function

- By update $\mathbf{w}^{\mathrm{NEW}} \leftarrow \mathbf{w}+\mathbf{d}$, the objective function will be:

$$
L_{\mathbf{w}}(\mathbf{d})=\sum_{i=1}^{N} \ln \left(1+\exp \left(-y^{(i)}(\mathbf{w}+\mathbf{d})^{\top} \mathbf{x}^{(i)}\right)\right)+\lambda\|\mathbf{w}+\mathbf{d}\|_{2}^{2}
$$

- Find \mathbf{d}^{*} that minimizes $L_{\mathbf{w}}(\mathbf{d})$:

$$
-\mathbf{d}^{*}=\operatorname{argmin}_{\mathbf{d}} L_{\mathbf{w}}(\mathbf{d})
$$

Finding the best parameter update :

Approximate the objective with Taylor expansion

- Taylor expansion:

$$
L_{\mathbf{w}}(\mathbf{d})=L(\mathbf{w})+\mathbf{d}^{\top} \nabla L(\mathbf{w})+\frac{1}{2} \mathbf{d}^{\top} \boldsymbol{H}(\mathbf{w}) \mathbf{d}+\mathrm{O}\left(\mathbf{d}^{3}\right)
$$

-Gradient vector: $\nabla L(\mathbf{w})=\left(\frac{\partial L(\mathbf{w})}{\partial w_{1}}, \frac{\partial L(\mathbf{w})}{\partial w_{2}}, \ldots, \frac{\partial L(\mathbf{w})}{\partial w_{D}}\right)^{\top}$

- Steepest direction
-Hessian matrix: $[H(\mathbf{w})]_{i, j}=\frac{\partial^{2} L(\mathbf{w})}{\partial w_{i} \partial w_{j}}$

Newton update :

Minimizes the second order approximation

- Approximated Taylor expansion (neglecting the $3^{\text {rd }}$ order term):

$$
L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w})+\mathbf{d}^{\top} \nabla L(\mathbf{w})+\frac{1}{2} \mathbf{d}^{\top} \boldsymbol{H}(\mathbf{w}) \mathbf{d}+O\left(\mathbf{d}^{3}\right)
$$

- Derivative w.r.t. $\mathbf{d}: \frac{\partial L_{\mathbf{w}}(\mathbf{d})}{\partial \mathbf{d}} \approx \nabla L(\mathbf{w})+\boldsymbol{H}(\mathbf{w}) \mathbf{d}$
- Setting it to be $\mathbf{0}$, we obtain $\mathbf{d}=-\boldsymbol{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$
- Newton update formula:

$$
\mathbf{w}^{\mathrm{NEW}} \leftarrow \mathbf{w}-\boldsymbol{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})
$$

$\mathbf{w}-\boldsymbol{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$

Modified Newton update:

Second order approximation + linear search

- The correctness of the update $\mathbf{w}^{\mathrm{NEW}} \leftarrow \mathbf{w}-\boldsymbol{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$ depends on the second-order approximation:

$$
L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w})+\mathbf{d}^{\top} \nabla L(\mathbf{w})+\frac{1}{2} \mathbf{d}^{\top} \boldsymbol{H}(\mathbf{w}) \mathbf{d}
$$

-This is not actually true for most cases

- Use only the direction of $\boldsymbol{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$ and update with $\mathbf{w}^{\text {NEW }} \leftarrow \mathbf{w}-\eta \boldsymbol{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$
- Learning rate $\eta>0$ is determined by linear search:

$$
\eta^{*}=\operatorname{argmax}_{\eta} L\left(\mathbf{w}-\eta \boldsymbol{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})\right)
$$

(Steepest) gradient descent:

Simple update without computing inverse Hessian

- Computing the inverse of Hessian matrix is costly -Newton update: $\mathbf{w}^{\text {NEW }} \leftarrow \mathbf{w}-\eta \boldsymbol{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$
- (Steepest) gradient descent:
- Replacing $\boldsymbol{H}(\mathbf{w})^{-1}$ with I gives

$$
\mathbf{w}^{\mathrm{NEW}} \leftarrow \mathbf{w}-\eta \nabla L(\mathbf{w})
$$

Gradient of objective function

- $\nabla L(\mathbf{w})$ is the steepest direction
- Learning rate η is determined by line search

[Review]:

Gradient descent

- Steepest gradient descent is the simplest optimization method:
- Update the parameter in the steepest direction of the objective function

$$
\mathbf{w}^{\mathrm{NEW}} \leftarrow \mathbf{w}-\eta \nabla L(\mathbf{w})
$$

-Gradient: $\nabla L(\mathbf{w})=\left(\frac{\partial L(\mathbf{w})}{\partial w_{1}}, \frac{\partial L(\mathbf{w})}{\partial w_{2}}, \ldots, \frac{\partial L(\mathbf{w})}{\partial w_{D}}\right)^{\top}$
-Learning rate η is determined by line search

$$
\mathbf{w}-\eta \nabla L(\mathbf{w})
$$

Gradient of logistic regression:

 Gradient descent of- $L(\mathbf{w})=\sum_{i=1}^{N} \ln \left(1+\exp \left(-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right)$

$$
\begin{aligned}
& =\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}=\sum_{i=1}^{N} \frac{1}{1+\exp \left(-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)} \frac{\partial\left(1+\exp \left(-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right)}{\partial \mathbf{w}} \\
& =-\sum_{i=1}^{N} \frac{1}{1+\exp \left(-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)} \exp \left(-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right) y^{(i)} \mathbf{x}^{(i)} \\
& =-\sum_{i=1}^{N}\left(1-f_{\mathbf{w}}\left(y^{(i)} \mid \mathbf{x}^{(i)}\right)\right) y^{(i)} \mathbf{x}^{(i)} \\
& \underbrace{N}_{\begin{array}{l}
\text { Can be easily computed with the } \\
\text { current prediction probabilities }
\end{array}}
\end{aligned}
$$

Mini batch optimization:

Efficient training using data subsets

- Objective function for N instances:
$L(\mathbf{w})=\sum_{i=1}^{N} \ell\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)+\lambda R(\mathbf{w})$
- Its derivative $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}=\sum_{i=1}^{N} \frac{\partial \ell\left(\mathbf{w}^{\top} \mathbf{X}^{(i)}\right)}{\partial \mathbf{w}}+\lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$ needs $O(N)$ computation
- Approximate this with only one instance: $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx N \frac{\partial \ell\left(\mathbf{w}^{\top} \mathbf{x}^{(j)}\right)}{\partial \mathbf{w}}+\lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$ (Stochastic approximation)
- Also we can do this with $1<M<N$ instances:

$$
\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{N}{M} \sum_{j \in \text { MiniBatch }} \frac{\partial \ell\left(\mathbf{w}^{\top} \mathbf{x}^{(j)}\right)}{\partial \mathbf{w}}+\lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}
$$

(Mini batch)

Support Vector Machine and Kernel Methods

- One of the most important achievements in machine learning
-Proposed in 1990s by Cortes \& Vapnik
-Suitable for small to middle sized data
- A learning algorithm of linear classifiers
-Derived in accordance with the "maximum margin principle"
-Understood as hinge loss + L2-regularization
- Capable of non-linear classification through kernel functions
-SVM is one of the kernel methods

Loss function of support vector machine:

 Hinge loss- In SVM, we use hinge loss as a convex upper bound of 0-1 loss

$$
\ell^{(i)}\left(y^{(i)}, \mathbf{w}^{\top} \mathbf{x}^{(i)} ; \mathbf{w}\right)=\max \left\{1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}, 0\right\}
$$

- Squared hinge loss max $\left\{\left(1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)^{2}, 0\right\}$ is also sometimes used

Two formulations of SVM training:

Soft-margin SVM and hard margin SVM

1. "Soft-margin" SVM: hinge-loss +L 2 regularization

$$
\mathbf{w}^{*}=\operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \max \left\{1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}, 0\right\}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

-This is a convex optimization problem $)^{-}$
2. "Hard-margin": constraint on the loss (to be zero)

$$
\mathbf{w}^{*}=\operatorname{argmin}_{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \text { s.t. } \sum_{i=1}^{N} \max \left\{1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}, 0\right\}=0
$$

-Equivalently, the constraint is written as

$$
1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)} \leq 0(\text { for all } i=1,2, \ldots, N)
$$

-The originally proposed SVM formulation was in this form

Geometric interpretation:

Hard-margin SVM maximizes the margin

- $\min \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \leftrightarrow \max \frac{1}{\|\mathbf{w}\|_{2}}\left(\frac{1}{\|\mathbf{w}\|_{2}}\right.$ is called margin $)$
- $\frac{\mathbf{w}^{\top}\left(x^{+}-x^{-}\right)}{\|w\|_{2}}$: Sum of distance from separating hyperplane to a positive instance \mathbf{x}^{+}and the distance to a negative instance \mathbf{x}^{-}
- Margin is the minimum of $\frac{\mathbf{w}^{\top}\left(\mathbf{x}^{+}-\mathbf{x}^{-}\right)}{\|\mathbf{w}\|_{2}}$
- Since $1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)} \leq 0$ for $\forall i$,

$$
\frac{\mathbf{w}^{\top}\left(\mathbf{x}^{+}-\mathbf{x}^{-}\right)}{\|\mathbf{w}\|_{2}} \text { is lower bounded by } \frac{2}{\|\boldsymbol{w}\|_{2}}
$$

- $\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}$ s.t. $1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)} \leq 0(i=1,2, \ldots, N)$
- Lagrange multipliers $\left\{\alpha_{i}\right\}_{i}$:

$$
\min _{\mathbf{w}^{\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \geq 0}} \max _{2}\left(\frac{1}{2}\|\mathbf{w}\|_{2}^{2}+\sum_{i=1}^{N} \alpha_{i}\left(1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right)
$$

-If $1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}>0$ for some i, we have $\alpha_{i}=\infty$

- The objective function becomes ∞, that cannot be optimal
-If $1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)} \leq 0$ for some i, we have either
$\alpha_{i}=0$ or $\left(1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)=0$, i.e. objective function remains the same as the original one $\left(\frac{1}{2}\|w\|_{2}^{2}\right)$

Solution of hard-margin SVM (Step II):

Dual formulation as a quadratic programming problem

- By changing the order of min and max:

$$
\begin{gathered}
\min _{\mathbf{w}} \max _{\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \geq 0}\left(\frac{\|\mathbf{w}\|_{2}^{2}}{2}+\sum_{i=1}^{N} \alpha_{i}\left(1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right) \\
\max _{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \geq 0} \min _{\mathbf{w}}\left(\frac{\|\mathbf{w}\|_{2}^{2}}{2}+\sum_{i=1}^{N} \alpha_{i}\left(1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}\right)\right)
\end{gathered}
$$

- Solving min gives $\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y^{(i)} \mathbf{x}^{(i)}$, which finally results in

$$
\max _{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \geq 0} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}
$$

Support vectors:

SVM model depends only on support vectors

- The dual problem:

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y^{(i)} \mathbf{x}^{(i)}
$$

$$
\max _{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \geq 0} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}
$$

- Support vectors: the set of i such that $\alpha_{i}>0$
-For such i, 1-y ${ }^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}=0$ holds
-They are the closest instance to the separating hyperplane
- Non-support vectors ($\alpha_{i}=0$) do not contribute to the model:
$\mathbf{w}^{\top} \mathbf{x}=\sum_{j=1}^{N} \alpha_{j} y^{(j)} \mathbf{x}^{(j)^{\top}} \mathbf{x}$

Solution of soft-margin SVM:

A similar dual problem with additional constraints

- Equivalent formulation of soft-margin SVM:

$$
\begin{aligned}
& \min _{\mathbf{w}}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{N} e_{i} \underbrace{\text { s.t. } 1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)} \leq e_{i}}_{\begin{array}{c}
\text { Hinge loss } \\
\text { (Slack variable) }
\end{array}} \\
& \quad(i=1,2, \ldots, N)
\end{aligned}
$$

- Results in a similar dual problem with additional constraints:

$$
\begin{gathered}
\max _{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \geq 0} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)} \\
0 \leq \alpha_{i} \leq C \quad(i=1,2, \ldots, N)
\end{gathered}
$$

An important fact about SVM:

Data access through inner products between data

- The dual form objective function and the classifier access to data always through inner products $\mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}$
-Optimization problem (dual form):

$$
\max _{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \geq 0} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}
$$

- Model : $y=\sum_{j=1}^{N} \alpha_{j} y^{(j)} \mathbf{x}^{(i)}{ }^{\top} \mathbf{x}$
-The inner product $\mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}$ is interpreted as similarity

Kernel methods:

Data access through kernel function

- The dual form objective function and the classifier access to data always through inner products $\mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}$
- The inner product $\mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}$ is interpreted as similarity
- Can we use some similarity function $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$ instead of $\mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}$? - Yes (under certain conditions)

$$
\max _{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \geq 0} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

$$
\text { -Model : } \mathbf{w}^{\top} \mathbf{x}=\sum_{j=1}^{N} \alpha_{j} y^{(j)} K\left(\mathbf{x}^{(j)}, \mathbf{x}\right)
$$

Kernel functions:

Introducing non-linearity in linear models

- Consider a (nonlinear) mapping $\boldsymbol{\phi}: \mathfrak{R}^{D} \rightarrow \mathfrak{R}^{D^{\prime}}$
- D-dimensional space to $D^{\prime}(\gg D)$-dimensional space - Vector \mathbf{x} is mapped to a high-dimensional vector $\boldsymbol{\phi}(\mathbf{x})$
- Define kernel $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\boldsymbol{\phi}\left(\mathbf{x}^{(i)}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}^{(j)}\right)$ in the D^{\prime} dimensional space
- SVM is a linear classifier in the D^{\prime}-dimensional space, while is a non-linear classifier in the original D-dimensional space

Advantage of kernel methods:

Computationally efficient (when D^{\prime} is large)

- Advantage of using kernel function

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\boldsymbol{\phi}\left(\mathbf{x}^{(i)}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}^{(j)}\right)
$$

- Usually we expect the computation cost of K depends on D^{\prime}
$-D^{\prime}$ can be high-dimensional (possibly infinite dimensional)
- If we can somehow compute $\boldsymbol{\phi}\left(\mathbf{x}^{(i)}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}^{(j)}\right)$ in time depending on D, the dimension of $\boldsymbol{\phi}$ does not matter
- Problem size:
D^{\prime} (number of dimensions) $\rightarrow N$ (number of data)
-Advantageous when D^{\prime} is very large or infinite

Example of kernel functions: Polynomial kernel can consider high-order cross terms

- Combinatorial features: Not only the original features $x_{1}, x_{2}, \ldots, x_{D}$, we use their cross terms (e.g. $x_{1} x_{2}$)
-If we consider M-th order cross terms, we have $O\left(D^{M}\right)$ terms
- Polynomial kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}+c\right)^{M}$
-E.g. when $c=0, M=2, D=2$,

$$
\begin{aligned}
& K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(x_{1}^{(i)} x_{1}^{(j)}+x_{2}^{(i)} x_{2}^{(j)}\right)^{2} \\
& =\left(x_{1}^{(i)^{2}}, x_{2}^{(i)^{2}}, \sqrt{2} x_{1}^{(i)} x_{2}^{(i)}\right)\left(x_{1}^{(j)^{2}}, x_{2}^{(j)^{2}}, \sqrt{2} x_{1}^{(j)} x_{2}^{(j)}\right)
\end{aligned}
$$

- Note that it can be computed in $O(D)$

Example of kernel functions:

Gaussian kernel with infinite feature space

- Gaussian kernel (RBF kernel): $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{\left\|x_{i}-\mathbf{x}_{j}\right\|_{2}^{2}}{\sigma}\right)$
-Can be interpreted as an inner product in an infinitedimensional space

Discrimination surface with Gaussian kernel

Gaussian kernel (RBF kernel)

Kernel methods for non-vectorial data:

 Kernels for sequences, trees, and graphs- Kernel methods can handle any kinds of objects (even nonvectorial objects) as long as efficiently computable kernel functions are available
-Kernels for strings, trees, and graphs, ...
Active

http://www.bic.kyoto-u.ac.jp/coe/img/akutsu_fig_e_02.gif

Representer theorem:

Theoretical underpinning of kernel methods

- Can we use some similarity function as a kernel function?
-Yes (under certain conditions)
- Kernel methods rely on the fact that the optimal parameter is represented as a linear combination of input vectors:

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y^{(i)} \mathbf{x}^{(i)}
$$

-Gives the dual form classifier

$$
\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\sum_{j=1}^{N} \alpha_{j} y^{(j)} \mathbf{x}^{(j)^{\top}} \mathbf{x}\right)
$$

- Representer theorem guarantees this (if we use L2-regularizer)
(Simple) proof of representer theorem:
Obj. func. depends only on linear combination of inputs
- Assumption: Loss ℓ for i-th data depends only on $\mathbf{w}^{\top} \mathbf{x}^{(i)}$ -Objective function: $L(\mathbf{w})=\sum_{i=1}^{N} \ell\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)+\lambda\|\mathbf{w}\|_{2}^{2}$
- Divide the optimal parameter \mathbf{w}^{*} into two parts $\mathbf{w}+\mathbf{w}^{\perp}$: -w: Linear combination of input data $\left\{\mathbf{x}^{(i)}\right\}_{i}$
$-\mathbf{w}^{\perp}$: Other parts (orthogonal to all input data $\left\{\mathbf{x}^{(i)}\right\}$)
- $L\left(\mathbf{w}^{*}\right)$ depends only on $\mathbf{w}: \sum_{i=1}^{N} \ell^{(i)}\left(\mathbf{w}^{* \top} \mathbf{x}^{(i)}\right)+\lambda\left\|\mathbf{w}^{*}\right\|_{2}^{2}$

$$
=\sum_{i=1}^{N} \ell(\mathbf{w}^{\top} \mathbf{x}^{(i)}+\underbrace{\mathbf{w}^{\perp^{\top}} \mathbf{x}^{(i)}}_{=0})+\lambda(\|\mathbf{w}\|_{2}^{2}+\underbrace{2 \mathbf{w}^{\top} \mathbf{w}^{\perp}}_{=0}+\underbrace{\left.\left\|\mathbf{w}^{\perp}\right\|_{2}^{2}\right)}_{\text {Minimized to }}
$$

Primal objective function:

Kernel representation is also available in the primal form

- Primal objective function of SVM:

$$
L(\mathbf{w})=\sum_{i=1}^{N} \max \left\{1-y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}, 0\right\}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

Using

- Primal objective function using kernel: $\left\langle\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y^{(i)} \mathbf{x}^{(i)}\right.$ $L(\boldsymbol{\alpha})$

$$
=\sum_{i=1}^{N} \max \left\{1-y^{(i)} \sum_{j=1}^{N} \alpha_{j} y^{(j)} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right), 0\right\}
$$

$$
+\lambda \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

Support vector regression:

Use ϵ-insensitive loss instead of hinge loss

- Instead of the hinge loss, use ϵ-insensitive loss:

$$
\ell^{(i)}\left(y^{(i)}, \mathbf{w}^{\top} \mathbf{x}^{(i)} ; \mathbf{w}\right)=\max \left\{\left|y_{i}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right|-\epsilon, 0\right\}
$$

- Incurs zero loss if the difference between the prediction and the target $\left|y_{i}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right|$ is less than $\epsilon>0$

