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▪ This course will cover:

–Basic ideas, problem, solutions, and applications of statistical 
machine learning

• Supervised & unsupervised learning

• Models & algorithms: linear regression, SVM, perceptron, …

–Statistical learning theory

• Probably approximately correct (PAC) learning

▪ Advanced topics:

–Online learning, structured prediction, sparse modeling, …

Statistical learning theory:
Foundations of recent data analysis technologies
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▪ Pattern recognition and machine learning / Bishop

▪ The elements of statistical learning / Hastie & Tibshirani

▪ Understanding machine learning / Shalev-Shwartz & Ben-David

Textbooks?:
Most of the topics can be found in...
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▪ Evaluations will be based on:

1. Report submission

2. Final exam

Evaluations:
Report based on data analysis & final exam



5 KYOTO UNIVERSITY

1. What is machine learning?

2. Machine learning applications

3. Some machine learning topics

1. Recommender systems

2. Anomaly detection

Introduction:
Basic ideas of machine learning and applications
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What is machine learning?

!?
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▪ Many successes of “Artificial Intelligence”:

– Q.A. machine beating quiz champions

– Go program surpassing top players

– Machine vision is better at recognizing objects than 
humans

▪ Current A.I. boom owes machine learning

– Especially, deep learning

“The third A.I. boom”:
Machine learning is a core technology
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▪ Originally started as a branch of artificial intelligence

– has its more-than-50-years history

– Computer programs that “learns” from experience

– Based on logical inference

What is machine learning?：
A branch of artificial intelligence
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▪ Rise of “statistical” machine learning

– Successes in bioinformatics, natural language processing, 
and other business areas

– Victory of IBM’s Watson QA system, Google’s Alpha Go

▪ Recently rather considered as a data analysis technology

– “Big data” and “Data scientist”

• Data scientist is “the sexiest job in the 21st century”

▪ Success of deep learning

– The 3rd AI boom

What is machine learning?：
A data analytics technology
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▪ Two categories of the use of machine learning:

1. Prediction (supervised learning)

• “What will happen in future data?”

• Given past data, predict about future data

2. Discovery (unsupervised learning)

• “What is happening in data in hand?”

• Given past data, find insights in them

What can machine learning do?: 
Prediction and discovery
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▪ We model the intelligent machine as a mathematical function

▪ Relationship of input and output 𝑓: 𝐱 → 𝑦

– Input 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝐷
⊤ ∈ ℝ𝐷 is a 𝐷-dimensional vector

– Output 𝑦 is one dimensional

• Regression: real-valued output 𝑦 ∈ ℝ

• Classification: discrete output 𝑦 ∈ 𝐶1, 𝐶2, … , 𝐶𝑀

Prediction machine: 
A function from a vector to a scalar

𝑓

𝐱 𝑦

Customer 
action history

Next action
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▪Model 𝑓 takes an input 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝐷)
⊤ and 

outputs a real value

𝑓 (𝐱) = 𝑤1𝑥1+ 𝑤2𝑥2 +⋯+ 𝑤𝐷𝑥𝐷

– Model parameter 𝐰 = 𝑤1, 𝑤2, … , 𝑤𝐷
⊤ ∈ ℝ𝐷

A model for regression: 
Linear regression model

𝑥1

𝑥2

𝑥3

𝑓

× 𝑤1

× 𝑤2

× 𝑤3

+ Annual earnings

Years of education

Amount of fortune

Height
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▪Model 𝑓 takes an input 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝐷)
⊤ and 

outputs a value from +1,−1

𝑓 𝐱 = sign 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝐷𝑥𝐷
–Model parameter 𝐰 = 𝑤1, 𝑤2, … , 𝑤𝐷

⊤ ∈ ℝ𝐷：

• 𝑤𝑑 : contribution of 𝑥𝑑 to the output (if 𝑤𝑑> 0,

𝑥𝑑 > 0 contributes to +1, 𝑥𝑑 < 0 contributes to -1)

A model for classification: 
Linear classification model

𝑥1

𝑥2

𝑥3

× 𝑤1

× 𝑤2

× 𝑤3

+ 𝑓+

sign()

Buy / Not buy

Age

Income

Blood pressure
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▪ What we want is the function 𝑓

– We estimate 𝑓 from data

▪ Two learning problem settings: supervised and unsupervised

– Supervised learning: input-output pairs are given

• 𝐱(1), 𝑦(1) , 𝐱(2), 𝑦(2) , … , 𝐱(𝑁), 𝑦(𝑁) ∶ 𝑁 pairs 

– Unsupervised learning: only inputs are given

• 𝐱(1), 𝐱(2), … , 𝐱(𝑁) ∶ 𝑁 inputs

Formulations of machine learning problems:
Supervised learning and unsupervised learning

f

𝐱 𝑦
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Machine learning applications
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▪ Recent advances in ML:

– Methodologies to handle uncertain and enormous data

– Black-box tools

▪ Not limited to IT areas, ML is wide-spreading over non-IT 
areas

– Healthcare, airline, automobile, material science, education, 
…

Growing ML applications:
Emerging applications from IT areas to non-IT areas
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▪ Marketing

– Recommendation

– Sentiment analysis

–Web ads optimization

▪ Finance

– Credit risk estimation

– Fraud detection

▪ Science

– Biology

–Material science

Various applications of machine learning:
From on-line shopping to system monitoring

▪ Web

– Search

– Spam filtering

– Social media

▪ Healthcare

–Medical diagnosis

▪ Multimedia

– Image/voice understanding

▪ System monitoring

– Fault detection
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An application of supervised classification learning:
Sentiment analysis

▪ Judge if a document (𝐱) is positive or not (𝑦 ∈ +1,−1 ) 
toward a particular product or service

▪ For example, we want to know reputation of our newly 
launched service 𝑆

▪ Collect tweets by searching the word “𝑆”,  and analyze them

-------
--------
--------

𝑓

𝐱 𝑦
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An application of supervised learning:
Some hand labeling followed by supervised learning

▪ First, give labels to some of the collected documents

▪ 10,000 tweets hit the word “𝑆”

▪ Manually read 300 of them and give labels

▪ ”I used 𝑆, and found it not bad.” →

▪ “I gave up 𝑆. The power was not on.” →

▪ “I like 𝑆.” →

▪ Use the collected 300 labels to train a predictor. 
Then apply the predictor to the rest 9,700 documents
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How to represent a document as a vector:
bag-of-words representation

▪ Represent a document 𝐱 using words appearing in it

▪ Note: design of the feature vector is left to users

Number of “good”

...

Number of “not”

Number of “like”

bag-of-words representation

-------
--------
--------
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▪Model 𝑓 takes an input 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝐷)
⊤ and 

outputs a value from +1,−1

𝑓 𝐱 = sign 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝐷𝑥𝐷
–Model parameter 𝐰 = 𝑤1, 𝑤2, … , 𝑤𝐷

⊤ ∈ ℝ𝐷：

• 𝑤𝑑 : contribution of 𝑥𝑑 to the output

(𝑥𝑑 > 0 contributes to +1, 𝑥𝑑 < 0 contributes to -1)

A model for classification: 
Linear classification model

𝑥1

𝑥2

𝑥3

× 𝑤1

× 𝑤2

× 𝑤3

+ 𝑓+

sign()
#not

#good

#like
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▪ Material science aims at discovering and designing new 
materials with desired properties

▪ Volume, density, elastic coefficient, thermal conductivity, …

▪ Traditional approach: 

1. Determine chemical structure

2. Synthesize the chemical compounds

3. Measure their physical properties

An application of supervised regression learning:
Discovering new materials
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Computational approach to material discovery:
Still needs high computational costs

▪ Computational approach: First-order principle calculations 
based on quantum physics to run simulation to estimate 
physical properties

▪ First-order calculation still requires high computational costs

–Proportional to the cubic number of atoms

–Sometimes more than a month…
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Data driven approach to material discovery:
Regression to predict physical properties

▪ Predict the result of first-order principle calculation from data

Feature vector 
representation of chemical 

compounds

Predict physical 
properties of new 

compounds

1.39
128 
0.62Physical 

properties

𝑓(𝒙)

Estimate regression models of 
physical properties from data

𝑓(𝒙)

𝒙

𝒙A＝

𝒙B＝

Compound A

Compound B

New 
compound 
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Recommendation systems
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▪ Amazon offers a list of products I am likely to buy (based on 
my purchase history)

Recommender systems: 
Personalized information filter
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▪ A major battlefield of machine learning algorithms

– Netflix challenge (with $100 million prize)

▪ Recommender systems are present everywhere: 

– Product recommendation
in online shopping stores

– Friend recommendation on SNSs

– Information recommendation
(news, music, …)

– …

Ubiquitous recommender systems: 
Recommender systems are present everywhere
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▪ A matrix with rows (customers) and columns (products)

– Each element = review score

▪ Given observed parts of the matrix,
predict the unknown parts (   ?    )

１ ？ ５ ？

？ ２ ４ ？

？ ３ ？ ５

review

product

customer

A formulation of recommendation problem: 
Matrix completion
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▪ GroupLens: an earliest algorithm (for news recommendation)

– Inherited by MovieLens (for Movie recommendation)

▪ Find people similar to the target customer, and
predict missing reviews with theirs

Basic idea of recommendation algorithms: 
“Find people like you”

１ ？ ５ ？

？ 3 ４ ５？

？ ３ ？ ５

target
customer

A similar 
customer

Missing review
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▪ Define customer similarity by correlation

▪ Prediction by weighted averaging with correlations：

ො𝑦𝑖,𝑗 = ത𝑦𝑖 + 

𝑘≠𝑖

𝑟𝑖,𝑘 𝑦𝑘,𝑗 − ത𝑦𝑘 / 

𝑘≠𝑖

𝑟𝑖𝑗

GroupLens:
Weighted prediction using correlations among customers

（ of observed parts ）

correlation

correlation

weighted 
averaging

１ ？ ５ 3

？ 3 ４ 4.５

？ ３ ？ ５

Pearson correlation 
between users 𝑖 and 𝑘 Mean score of customer 𝑘Mean score of user 𝑖
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▪ Assumption of GroupLens algorithm:
Each row is represented by a linear combination of the other 
rows (i.e. linearly dependent)

⇒ The matrix is not full-rank （≒ low-rank）

▪ Low-rank assumption helps matrix completion

Low-rank assumption for matrix completion: 
GroupLens implicitly assumes low-rank matrices
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▪ Low-rank matrix: product of two (thin) matrices

▪ Each row of 𝑼 and 𝑽 is an embedding of each customer (or 
product) onto low-dimensional latent space

𝑋 ＝ 𝑈
𝑉⊤ rank 𝑘

customer

product

Low-rank matrix factorization: 
Projection onto low-dimensional latent space

less # of parameters

𝑈
latent
space
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▪ Find a best low-rank approximation of a given matrix

▪ Singular value decomposition (SVD)

–

w.r.t. the constraints: 𝑼⊤𝑼 = 𝑰, 𝑽⊤𝑽 = 𝑰

– The 𝑘 leading eigenvectors of 𝑿⊤𝑿 best approximate

～

Low-rank matrix decomposition methods:
Singular value decomposition (SVD)

minimize ∥ 𝑿 − 𝒀 ∥F
2 s.t. rank 𝒀 ≤ 𝑘

Approx.

𝑋 𝑼
𝑽⊤

Diagonal matrix
(singular values)

𝑫

𝒀
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▪ SVD is not directly applicable to matrices with missing values

– Our goal is to fill in missing values in a partially observed 
matrix

▪ For completion problem:

– Direct application of SVD to a (somehow) filled matrix

– Iterative applications: iterations of completion and 
decomposition

▪ For large scale data:
Gradient descent using only observed parts

▪ Convex formulation: Trace norm constraint

Strategies for matrices with missing values:
EM algorithm, gradient descent, and trace norm
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▪ Matrices can represent only one kind of relations

– Various kinds of relations (actions): 
Review scores, purchases, browsing product information, …

– Correlations among actions might help

▪ Multinomial relations: 

– (customer, product, action)-relation: 
(Alice, iPad, buy) represents “Alice bought an iPad.”

– (customer, product, time)-relation:
(John, iPad, July 12th) represents “John bought an iPad on 
July 12th.”

Predicting more complex relations:
Multinomial relations
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▪ Multidimensional array: Representation of complex relations 
among multiple objects

–Types of relations (actions, time, conditions, …)

–Relations among more than two objects

▪ Hypergraph: allows variable number of objects involved in 
relations

Multi-dimensional arrays: 
Representation of multinomial relations

customer

product
time hyper-edge
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VU

W

GX ～

▪ Generalization of matrix decomposition to multidimensional 
arrays

– A small core tensor and multiple factor matrices

▪ Increasingly popular in machine learning/data mining

core tensor

factor matrixfactor matrixsingular values

Tensor decomposition:
Generalization of low-rank matrix decomposition

Singular value decomposition Tensor decomposition
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▪ CP decomposition: A natural extension of SVD 
(with a diagonal core)

▪ Tucker decomposition: A more compact model
(with a dense core)

CP decomposition Tucker decomposition

diagonal core 
tensor

VU

W

GX ～VU

W

GX ～

Tensor decompositions: 
CP decomposition and Tucker decomposition

dense core 
tensor
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▪ Personalized tag recommendation (user×webpage×tag）

– predicts tags a user gives a webpage

▪ Social network analysis (user×user×time)

– analyzes time-variant relationships

▪ Web link analysis
（webpage×webpage×anchor text）

▪ Image analysis （image×person×angle×light×…）

Applications of tensor decomposition:
Tag recommendation, social network analysis, …
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Anomaly detection



41 KYOTO UNIVERSITY

Anomaly detection:
Early warning for system failures reduces costs

▪ A failure of a large system can cause a huge loss

– Breakdown of production lines in a factory, infection of computer 
virus/intrusion to computer systems, credit card fraud, terrorism, …

▪ Modern systems have many sensors to collect data

▪ Early detection of failures from data collected from sensors
Production line

Automobile Anomaly detection

Time series data
from sensors Early detection of

serious system failures
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▪ We want to find precursors of failures in data

–Assumption: Precursors of failures are hiding in data

▪ Anomaly: An “abnormal” patterns appearing in data

– In a broad sense, state changes are also included:
appearance of news topics, configuration changes, …

▪ Anomaly detection techniques find such patterns from data 
and report them to system administrators

Anomaly detection techniques: 
Find “abnormal” behaviors in data
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Difficulty in anomaly detection:
Failures are rare events

▪ If target failures are known ones, they are detected by using 
supervised learning:

1. Construct a predictive model from past failure data

2. Apply the model to system monitoring

▪ However, serious failures are usually rare, and often new ones
→ (Almost) no past data are available

▪ Supervised learning is not applicable
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An alternative idea: 
Model the normal times, detect deviations from them

▪ Difficult to model anomalies → Model normal times

–Data at normal times are abundant

▪ Report “strange” data according to the normal time model

–Observation of rare data is a precursor of failures

𝑝(𝑥)
Detection
• Rare observations
• Drastic changes

Production line

Automobile

Time series data
from sensors

Model
normal 
behaviors
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▪ Suppose a 1-dimensional case (e.g. temperature)

▪ Find the value range of the normal data (e.g. 20-50 ℃)

▪ Detect values deviates from the range, and report them as 
anomalies（e.g. 80℃ is not in the normal range)

A simple unsupervised approach:  
Anomaly detection using thresholds

minimum maximum

median

75%-tile25%-tile

mean Box plot

X

anomaly
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▪ More complex cases:

–Multi-dimensional data

–Several operation modes in the systems

▪ Divide normal time data {𝐱(1), 𝐱(2), … , 𝐱(𝑁)} into 𝐾 groups

–Groups are represented by centers {𝛍(1), 𝛍(2), … , 𝛍(𝑁)}

𝐱(1)

𝐱(2) 𝐱(3)

𝐱(4)

𝐱(6)

𝐱(8)𝐱(7)

𝐱(5)

Clustering for high-dimensional anomaly detection: 
Model the normal times by grouping the data

traffic volumes among 
computers, 
command/message 
frequencies, 
averages/variances/cor
relations  of sensor 
measurements
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▪ Divide normal time data {𝐱(1), 𝐱(2), … , 𝐱(𝑁)} into 𝐾 groups

–Groups are represented by centers {𝛍(1), 𝛍(2), … , 𝛍(𝐾)}

▪ Data 𝐱 is an “outlier” if it lies far from all of the centers
＝system failures, illegal operations, instrument faults

𝐱(1)

𝐱(2) 𝐱(3)

𝐱(4)

𝐱(6)

𝐱(8)𝐱(7)

𝐱(5)

“typical” data

“outlier”

𝛍(1)

𝛍(2)

𝛍(3)

𝐱

Clustering for high-dimensional anomaly detection: 
Find anomalies not belonging to the groups
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▪ Repeat until convergence:

1. Assign each data 𝐱(𝑖) to its nearest center 𝛍(𝑘)

2. Update each center to the center of the assigned data

𝐾-means algorithm: 
Iterative refinement of groups

𝐱(𝑖)𝛍(1)
𝛍(2)

𝛍(3)

𝛍(3)
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▪ Most anomaly detection applications require real-time system 
monitoring

▪ Data instances arrive in a streaming manner:

– 𝐱(1), 𝐱(2), … , 𝐱 𝑡 , … : at each time 𝑡, new data 𝐱 𝑡 arrives

▪ Each time a new data arrives, evaluate its anomaly 

▪ Also, models are updated in on-line manners:

– In the one dimensional case, the threshold is sequentially 
updated

– In clustering, groups (clusters) are sequentially updated

Anomaly detection in time series: 
On-line anomaly detection
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▪ Data arrives in a streaming manner,  and
apply clustering and anomaly detection at the same time

1. Assign each data 𝐱(𝑖) to its nearest center 𝛍(𝑘)

2. Slightly move the center to the data

Sequential 𝐾-means: 
Simultaneous estimation of clusters and outliers

If the distance is large, 
report the data as an 

anomaly

𝐱(𝑖)𝛍(1)
𝛍(2)

𝛍(3)

𝛍(3)
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Limitation of unsupervised anomaly detection:
Details of failures are unknown

▪ In supervised anomaly detection, we know what the failures 
are

▪ In unsupervised anomaly detection, 
we can know something is happening in the data, 
but cannot know what it is

–Failures are not defined in advance

▪ Based on the reports to system administrators,
they have to investigate what is happening, what are the 
reasons, and what they should do
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Recent topics
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▪ Artificial neural networks were hot in 1980s, but burnt low 
after that…

▪ In 2012, a deep NN system won in the ILSVRC image 
recognition competition with 10% improvement

▪ Major IT companies (such as Google and Facebook) invest 
much in deep learning technologies

▪ Big trend in machine learning research

Emergence of deep learning: 
Significant improvement of prediction accuracy
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▪ Essentially, multi-layer neural networks

–Regarded as stacked linear classification models

• First to semi-final layers bear feature extraction

• Final layer makes predictions

▪ Deep stacking introduces high non-linearity in the model and 
ensures high representational power

Deep neural network:
Deeply stacked NN for high representational power

𝑥1

𝑥2

× 𝑤11

× 𝑤12

× 𝑤21

+

𝑓
+

sign()

× 𝑤22

+ +

sign()

× 𝑤1

× 𝑤2

+ +

sign()

1st layer 2nd (final) layer
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▪ Differences from the ancient NNs:

–Far more computational resources are available now

–Deep network structure: from wide-and-shallow to narrow-
and-deep

–New techniques: Dropout, ReLU, Adversarial learning, …

▪ Unfortunately we will not cover DNNs in this lecture …. 

What is the difference from the past NN?:
Deep structures and new techniques with modern flavors


