KyoTo UNIVERSITY

Statistical Learning Theory
- Classification -

Hisashi Kashima

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY




[ Classification J

2 KYOTO UNIVERSITY



Classification:
Supervised learning for predicting discrete variable

* Goal: Obtain a function f: X = Y (Y: discrete domain)

—E.g. x € X isanimage and y € U is the type of object
appearing in the image

—Two-class classification: Y = {+1, —1}

" Training dataset:
N pairs of an input and an output

{(x(l), y(l)), . (X(N)’ y(N))}

http://www.vision.caltech.edu/Image Datasets/Caltech256/
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Some applications of classification:

From binary to multi-class classification
" Binary (two-class)classification:

— Purchase prediction: Predict if a customer X will buy a particular product
(+1) or not (-1)

— Credit risk prediction: Predict if a obligor x will pay back a debt (+1) or
not (-1)

= Multi-class classification (# Multi-label classification):

— Text classification: Categorize a document X into one of several
categories, e.g., {politics, economy, sports, ...}

— Image classification: Categorize the object in an image X into one of
several object names, e.g., {AK5, American flag, backpack, ...}

— Action recognition: Recognize the action type ({running, walking,
sitting, ...}) that a person is taking from sensor data x
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Model for classification:
Linear classifier

" Linear classification: Linear regression model
y = sign(w'x) = sign(wyx; + wox, + - + wpxp)

- ‘WTX‘ indicates the intensity of belief
—w 'x = 0 gives a separating hyperplane

—w: hormal vector perpendicular to the separating hyperplane

X2
A y = +1
wix>0
A S
\\ w = (wy,w,)
T \\
w'x<o0 S
4 » X1
N
\\
\\
— _1 \\\
y wix=0
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Learning framework:
Loss minimization and statistical estimation

=" Two learning frameworks
1. Loss minimization: L(w) = Z?’zli’(y(i),wa(i))
e Loss function £: directly handles utility of predictions
e Regularization term R(w)
2. Statistical estimation (likelihood maximization):
L(w) = [TiZ; fw P [x®)
e Probabilistic model: generation process of class labels

* Prior distribution P(w)
Loss = Probabilistic model
Regularization = Prior
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Classification problem in loss minimization framework:
Minimize loss function + regularization term

* Minimization problem: w* = argmin,, L(w) + R(w)
—Loss function L(w) : Fitness to training data

—Regularization term R(w) : Penalty on the model complexity
to avoid overfitting to training data (usually norm of w)

= | oss function should reflect the number of misclassifications on
training data

—Zero-one |loss: Correct classification ]
0 (y® :%MWTx<i>))
2O (yO,wTx®) = | |
1 (y(‘) # sign(wa(‘)))

Incorrect classification
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Zero-one loss:
Number of misclassification is hard to minimize

0 (yPwTx® >0)

= Zero-one loss: 2(y®, wTx®) = | |
( ) 1 (yPw™x® <o)

= Non-convex function is hard to optimize directly

() wT@
[ Non-coﬂ {’(}’ U w'x\ )

yOwTx®
< >

Misclassification Correct classification
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Convex surrogates of zero-one loss:
Different functions lead to different learning machines

= Convex surrogates: Upper bounds of zero-one loss

—Hinge loss = SVM, Logistic loss — logistic regression, ...

Hiné.g loss

Squared loss

Instead of directly minimizing zero-one loss,
we minimize its upper bound

Logistic loss

1 0 T 2 3 a y(i)WTX(i)
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[ Logistic regression J
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Logistic regression:
Minimization of logistic loss is a convex optimization

= Logistic loss:

2(y®W, wTxW) = %ln(l + exp(—yDwTxWV))

" (Regularized) Logistic regression: anex ]

N
w* = argminwz ln(l + exp(—y(i)wa(i))) + Allwl|5
=1

l

Logistic loss
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Statistical interpretation:

Logistic loss min. as MLE of logistic regression model

" Minimization of logistic loss is equivalent to maximum
likelihood estimation of logistic regression model

" | ogistic regression model (conditional probability):
1
fw(y =1|x) = a(wa) — o )

1+exp(—wTx)

e 0: Logistic function (o: R — (0,1))

" Log likelihood:
N N

Lw) = ) log fiy (P xD) = — > log(1 + exp(—yPwTx))
2 2

W
W' X

N
. 1 . 1
Z 5(y 1)log 1+ exp(—wTx) * 5()1 l)log <1 1+ exp(—wa)>

=1
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Parameter estimation of logistic regression :
Numerical nonlinear optimization

" Objective function of (regularized) logistic regression:

N
L(w) = z In(1 + exp(—yPwTxD)) + A||wl|3
i=1

= Minimization of logistic loss / MLE of logistic regression model
has no closed form solution

= Numerical nonlinear optimization methods are used
—lterate parameter updates: wNEW « w + d

A% A%
o o
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Parameter update :
Find the best update minimizing the objective function

EW

= By update wNEW «— w + d, the objective function will be:

N
Lu(@) = ) In(1 +exp(—y©O(w + d)TxV)) + 2llw + I
=1

= Find d* that minimizes L, (d):

—d* = argming L,,(d)
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Finding the best parameter update :
Approximate the objective with Taylor expansion

" Taylor expansion: [ 3rd-ordertim_]
1

L,(d) =L(w)+d"VL(w) + EdTH(w)d + 0(d?)

OL(w) IL(wW) 6L(w))T

)

—Gradient vector: VL(w) = (

’ III’

aWD

dwq = 0dw,

e Steepest direction

_ 9%L(w)
B 6wi6w]-

—Hessian matrix: [H(W)]; ;
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Newton update :
Minimizes the second order approximation

= Approximated Taylor expansion (neglecting the 3 order term):

L,(d) =~ L(w) +d"VL(w) + %dTH(w)d%-—Q{d%

0Lw(d)
ad

= Setting it to be 0, we obtaind = —H(w) 1VL(w)

= Derivative w.r.t. d: ~ VL(w) + Hlw)d

= Newton update formula:
wVEW  w— Hw)"1VL(w)

w _H(W)-'VL(w) w— H(w) 1VL(w)
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Modified Newton update:
Second order approximation + linear search

= The correctness of the update wNEW « w — H(w)~1VL(w)
depends on the second-order approximation:

1
Ly(d) ~ L(w) +d"VL(w) + > d"H(w)d

—This is not actually true for most cases

= Use only the direction of H(w)~1VL(w) and update with
wVEW  w —nH(w)™17L(w)

" Learning raten > 0 is determined by linear search:
n* = argmax, L(w — nH(w) 'VL(w))
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(Steepest) gradient descent:
Simple update without computing inverse Hessian

= Computing the inverse of Hessian matrix is costly

—Newton update: WNEW «— w — nH(w) " 1VL(w)

= (Steepest) gradient descent: Gradient of }
objective function
—Replacing H(w)~1 with I gives

wVEW  w —nVL(w)

e VL(W) is the steepest direction
e Learning rate n is determined by line search

w _nVL(W) w—nVL(w)
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[Review]:
Gradient descent

= Steepest gradient descent is the simplest optimization method:

=" Update the parameter in the steepest direction of the objective

function

NEW

w —w—nVL(w)

) )

T

aW1 6W2

—Learning rate n is determined by line search L nw
P o
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Gradient of logistic regression:
Gradient descent of

= L(w) =X, In(1 + exp(—yPwx®))

_OL(W) _ N 1 d(1+exp(—yPwTx®))
ow  “1=1lipexp(—y@OwTx®) ow
N
1 . . N
— _ —vODwTx (DY 4, () (@)
= . — X w'Xx X
.2 1+ exp(—y®@wTx®) p(= )y

1=1

N
= = ) (1= OO0 yOx®
=1

Can be easily computed with the
current prediction probabilities
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Mini batch optimization:
Efficient training using data subsets

= Objective function for N instances:
Lw) =Y, 6(wTxD) + AR (W)

(1)
" |ts derivative aL(w) =y, ob(w x) + A IRW) 1 eeds O(N)

ow ow
computation

= Approximate this with only one instance:
OL(w) ~ N(%(WTXU)) n /,[aR(w)

ow ow ow

(Stochastic approximation)

= Also we can do this with 1 < M < N instances:
T+ ()
OL(w) otw X )+ A—aR(w) (Mini batch)

ow ow ow

~ Z] €EMiniBatch
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Support Vector Machine
and Kernel Methods
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Support vector machine (SVM):
One of the most successful learning methods

" One of the most important achievements in machine learning
—Proposed in 1990s by Cortes & Vapnik
—Suitable for small to middle sized data

= A learning algorithm of linear classifiers
—Derived in accordance with the “maximum margin principle”

—Understood as hinge loss + L2-regularization

= Capable of non-linear classification through kernel functions

—SVM is one of the kernel methods
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Loss function of support vector machine:

Hinge loss

" |n SVM, we use hinge loss as a convex upper bound of 0-1 loss
Oy wTx®W; w) = max{1 — yOwTx®, 0}

» Squared hinge loss max{(l — y(i)wa(i))z, 0} is also

sometimes used

Zero-one loss

Hinge loss

yOwTx®
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Two formulations of SVM training:
Soft-margin SVM and hard margin SVM

1. “Soft-margin” SVM: hinge-loss + L2 regularization

N
W' = argminwz max{1 — y®OwTx® 0} + A|lwl|3
i=1

—This is a convex optimization problem ®

2. “Hard-margin”: constraint on the loss (to be zero)
wh = argminw% lwl|Z s.t. ¥V max{1 — yPwTx®, 0} =0
—Equivalently, the constraint is written as
1 — y(i)wa(i) <0 (foralli =1,2,...,N)

—The originally proposed SVM formulation was in this form
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Geometric interpretation:
Hard-margin SVM maximizes the margin
1 1

.1
*min= || w |5 © max (
2
2 Iwll, liwll,

is called margin)

Iwll,
positive instance x* and the distance to a negative instance X~
X9 n
. . wl(xt—x7) t .
= Margin is the minimum of .
Iwll, \\\ w = (W, w,)
— Since 1 — yWwTx® < 0 for Vi, RN > X1
w'l(xt—x7). 2 \\
( ) is lower bounded by . “wix=0

Iwll,

26
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Solution of hard-margin SVM (Step |):
Introducing Lagrange multipliers

0 minW;1 | w I§ s.t. 1 — y(i)wa(i) <0(i=1,2..,N)

= Lagrange multipliers {a;}; :

N
1 . .
. - 2 (1 — vOwTw®
min,, a=(a1glzé,l.?.(,a1v)20 (2 w5 + E a;(1—y®wTx ))

i=1
—1f 1 — yOwTx® > 0 for some i, we have a; = ©

e The objective function becomes oo, that cannot be optimal
—If1 — y(i)wTX(i) < 0 for some i, we have either

a; = 0or (1 — y(i)wTX(i)) = 0, i.e. objective function

remains the same as the original one (% Il 'wli3)
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Solution of hard-margin SVM (Step Il):
Dual formulation as a quadratic programming problem

= By changing the order of min and max:

Wiz <
_ 2 _ o (Dar T (D)
W (s manyzo | 2 +,za‘(1 yOwix®)
=1
4 Iwiz <
- (1 — v DT @
az(al,g??iaN)Zomlnw 5 +Zal(1 YW X )
1=

= Solving min gives w = Zl 1 O y(i)x(i) which finally results in

max z 2 2 a1y DyDx® TxO)
a=(aq,as,...,ay)20

=1 j=
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Support vectors:
SVM model depends only on support vectors

" The dual problem: @/Zl L y(l)x(i)}

N
max a; — % z aiajy(i)y(j)x(i)Tx(j)

a=(aq,as,...,an)=20
J=1

AMZ
Ingb

L L

" Support vectors: the set of i such that a; > 0
—Forsuch i, 1 — y®PwTx® = 0 holds
—They are the closest instance to the separating hyperplane

= Non-support vectors (a¢; = 0) do not contribute to the model:

WTX — j= 1ay(])X(J)T
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Solution of soft-margin SVM:
A similar dual problem with additional constraints

= Equivalent formulation of soft- margin SVM:

Hinge |
min,, ||w]||5 + C 2 e; | sméﬂ%/zr?as;le) }

s.t.1—yOwT X(‘) < g;

(i=1.2,..,N)

= Results in a similar dual problem with additional constraints:

max z 2 2 oy Dy Dx® T x0)
a=(aq,as,...an)=20

=1 j=

0<a<C (i=12,..,N)
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An important fact about SVM:
Data access through inner products between data

" The dual form objective function and the classifier access to

~T .
data always through inner products x(D xU)

—Optimization problem (dual form)°

max 2 z z a1,y Dy Dx®Tx0)
a=(aq,ay,..,ay)=0

—Model @ y = ¥ ajy(f)x(i)Tx

~T .
—The inner product X xU) is interpreted as similarity
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Kernel methods:
Data access through kernel function

" The dual form objective function and the classifier access to

~T .
data always through inner products x(D xU)

~T .
= The inner product X9 xU) js interpreted as similarity

= Can we use some similarity function K(x(i),x(j)) instead of

~T .
x(D xU)? —ves (under certain conditions)

N

(D), () (D) ()

po(e, A >OZ zza a;y Dy VK (xW, xV))
=

—Model : wTx = ¥, a;y VK (xV), x)
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Kernel functions:
Introducing non-linearity in linear models

= Consider a (nonlinear) mapping ¢: R? > RP’
—D-dimensional space to D' (>> D)-dimensional space
—Vector X is mapped to a high-dimensional vector ¢p(x)

= Define kernel K (x¥),x0)) = qb(x(i))Tqb(x(j)) inthe D'-
dimensional space

= SVM is a linear classifier in the D’-dimensional space, while is a
non-linear classifier in the original D-dimensional space
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Advantage of kernel methods:
Computationally efficient (when D' is large)

= Advantage of using kernel function
K(x®, x0) = ¢(X<i>)T¢(Xu>)
= Usually we expect the computation cost of K depends on D’

—D' can be high-dimensional (possibly infinite dimensional)

" |f we can somehow compute qb(x(i))Tqb(x(j)) in time
depending on D, the dimension of ¢ does not matter

" Problem size:
D' (number of dimensions) — N(number of data)

—Advantageous when D' is very large or infinite
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Example of kernel functions:
Polynomial kernel can consider high-order cross terms

= Combinatorial features: Not only the original features
X1,Xo, ..., Xp, W€ Use their cross terms (e.g. x{x»)

—If we consider M-th order cross terms, we have O(DM) terms

= Polynomial kernel: K (xV,x)) = (x(i)Tx(f) + C)M
—E.g.whenc=0,M =2,D = 2, o (ﬁ”)
K(X(i),x(j)) _ (x( )xij) g)ng))
— (xpz (i) \/—xioxgo) (xi”z ()? \/—xinxg]))

—Note that it can be computed in O(D
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Example of kernel functions:
Gaussian kernel with infinite feature space

2
Ix;—x;ll2
o

= Gaussian kernel (RBF kernel): K(xi,xj) = exp (—

—Can be interpreted as an inner product in an infinite-
dimensional space

Discrimination surface with Gaussian kernel

095

Gaussian kernel (RBF kernel)
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http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Machi 0005 = =2 o 2 n 5 || X; — Xj ||%
nelLearning&doc=exercises/ex8/ex8.html
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Kernel methods for non-vectorial data:
Kernels for sequences, trees, and graphs

= Kernel methods can handle any kinds of objects (even non-
vectorial objects) as long as efficiently computable kernel
functions are available

—Kernels for strings, trees, and graphes, ...

Active
Ir -\\' ."f o "‘\1
MO, Lm
e N l :!T
H;"rﬁ]'#lﬂ{“ () e N
He” o (:] I::' Classification W"_ﬁg
Liakks
e D x HH "fc':'
| o+
[;r""hhf":ﬂ : :: W :H: I""-._ e _,J'I
- X
o T X Inactive
?- o ;oo ﬁ
: pﬂ.‘ﬂﬂ: . 1'--1"??‘ Support vector n:m:]un.:::: o Hﬂ'“-x].-ﬂl__J,_ﬂl
"II_':I-' " . "‘H_;. H::." w-IF-Q' r‘I"J_
.-N-H. .-r.lﬁ
I'\i‘.'_ﬁm'l-q}. - _.,r" '-.____:la-u."l - -

http://www.bic.kyoto-u.ac.jp/coe/img/akutsu_fig e 02.gif
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Representer theorem:
Theoretical underpinning of kernel methods

= Can we use some similarity function as a kernel function?

—Yes (under certain conditions)

= Kernel methods rely on the fact that the optimal parameter is
represented as a linear combination of input vectors:

N
W = z oy Ox®
=1

—G@Gives the dual form classifier
sign(w 'x) = sign (Z?Ll a]-y(f)x(j)Tx)

= Representer theorem guarantees this (if we use L2-regularizer)
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(Simple) proof of representer theorem:
Obj. func. depends only on linear combination of inputs

= Assumption: Loss € for i-th data depends only on w'x®
—Objective function: L(w) = XN, £(wTx®) + A||wl|3
= Divide the optimal parameter w* into two parts w + w:

—W: Linear combination of input data {x(i)}i
—w: Other parts (orthogonal to all input data {x(V})

= L(w*) depends only on w: Y7, f(w*Tx(i)) + Alw*||5

N
= 2 (WO £ wiTxO) 4 A (Iwl + 2w +w ),
=1

Y
=0 =0 Minimizedto=0
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Primal objective function:
Kernel representation is also available in the primal form

= Primal objective function of SVM:

L(w) = Z max{1 — yOwTx®_ 0} + 1||w]|2

i=1 ™
Using
" Primal objective function using kernel: W = Z’i\’zl aiy(i)x(i)
L(a) /

2 max{1 — y® Z iy DK (x®,x0), 0}

+ ,12 2 a0y Oy DK (x®, xN)

i=1j=1

40
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Support vector regression:
Use e-insensitive loss instead of hinge loss

" Instead of the hinge loss, use e-insensitive loss:
2Oy wTxW; w) = max{|y; — wTx®| — ¢, 0}

" [ncurs zero loss if the difference between the prediction and
the target |yi — wa(i)‘ is lessthane > 0

\'-. .-'/ Squared loss

€-insensitive loss
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