Statistical Learning Theory
- Regression -

Hisashi Kashima
Linear Regression
Regression:
Supervised learning for predicting a real valued variable

- Regression learning is one of supervised learning problem settings with wide applications

- Goal: Obtain a function \(f: \mathcal{X} \to \mathcal{R} \) (\(\mathcal{R} \): real value)
 - Usually, input domain \(\mathcal{X} \) is a \(D \)-dimensional vector space
 - E.g. \(x \in \mathcal{X} \) is a house and \(y \in \mathcal{R} \) is its price (housing dataset in UCI Machine Learning Repository)

- Training dataset: \(N \) pairs of an input and an output
 \[\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(N)}, y^{(N)})\} \]
 - We use the training dataset to estimate \(f \)
Some applications of regression: From marketing prediction to chemo-informatics

Some applications:

– Price prediction: Predict the price y of a product x
– Demand prediction: Predict the demanded amount y of a product x
– Sales prediction: Predict the sales amount y of a product x
– Chemical activity: Predict the activity level y of a compound x

Other applications:

– Time series prediction: Predict the value y at the next time step given the past measurements x
– Classification (has a discrete output domain)
Model: Linear regression model

- Model: How does y depend on x?
- We consider the simplest choices: Linear regression model

$$y = w^Tx = w_1x_1 + w_2x_2 + \ldots + w_Dx_D$$

-Prediction model of the price of a house:
Handling discrete features: Dummy variables

- We assume input \mathbf{x} is a real vector
 - In the house price prediction example, features can be age, walk time to the nearest station, crime rate in the area, ...
 - They are considered as real values

- How do we handle discrete features as real values?
 - Binary features: \{Male, Female\} are encoded as \{0,1\}
 - One-hot encoding: \{Kyoto, Osaka, Tokyo\} are encoded with \((1,0,0), (0,1,0), \) and \((0,0,1) \)
 - Called dummy variables
Objective function of training: Squared loss

- Objective function (to minimize):
 Disagreement measure of the model to the training dataset
 - Loss function: \(\ell(y^{(i)}, w^T x^{(i)})\) for the \(i\)-th instance
 - Objective function: \(L(w) = \sum_{i=1}^{N} \ell(y^{(i)}, w^T x^{(i)})\)

- Squared loss function:
 \[\ell(y^{(i)}, w^T x^{(i)}) = (y^{(i)} - w^T x^{(i)})^2\]

- Absolute loss, Huber loss: more robust choices

- Optimal parameter \(w^*\) is the one that minimizes \(L(w)\):
 \[w^* = \text{argmin}_w L(w)\]
Solution of linear regression problem: One dimensional case

- Let us start with a case where inputs and outputs are both one-dimensional

- Objective function to minimize:
 \[L(w) = \sum_{i=1}^{N} (y^{(i)} - wx^{(i)})^2 \]

- Solution: \[w^* = \frac{\sum_{i=1}^{N} y^{(i)}x^{(i)}}{\sum_{i=1}^{N} x^{(i)^2}} = \frac{\text{Cov}(x,y)}{\text{Var}(x)} \]

- Solve \[\frac{\partial L(w)}{\partial w} = 0 \]
Solution of linear regression problem:
General multi-dimensional case

- Matrix and vector notations:
 - Design matrix $X = [x^{(1)}, x^{(2)}, ..., x^{(N)}]^T$
 - Target vector $y = (y^{(1)}, y^{(2)}, ..., y^{(N)})^T$

- Objective function:
 \[
 L(w) = \sum_{i=1}^{N} (y^{(i)} - w^T x^{(i)})^2 = \|y - Xw\|_2^2 \\
 = (y - Xw)^T (y - Xw)
 \]

- Solution: $w^* = \arg\min_w L(w) = (X^T X)^{-1} X^T y$
Example: House price prediction

- **Design matrix:**
 \[X = [x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}]^{\top} = \begin{pmatrix} 15 \\ 10 \\ 1.0 \\ 1.0 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 0.1 \\ 7.0 \end{pmatrix}, \begin{pmatrix} 35 \\ 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 40 \\ 70 \\ 1.0 \end{pmatrix} \]

- **Target vector:**
 \[y = (y^{(1)}, y^{(2)}, y^{(3)}, y^{(4)})^{\top} = (140, 85, 220, 115)^{\top} \]
Regularization
Ridge regression:
Include penalty on the norm of \(\mathbf{w} \) to avoid instability

- Existence of the solution \(\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X} \mathbf{y} \) requires that \(\mathbf{X}^\top \mathbf{X} \) is non-singular, i.e. full-rank
 - This is often secured when the number of data instances \(N \) is much larger than the number of dimensions \(D \)

- Regularization: Adding some constant \(\lambda > 0 \) to the diagonals of \(\mathbf{X}^\top \mathbf{X} \) for numerical stability
 - Modified solution: \(\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y} \)

- Back to its objective function, the new solution corresponds to
 \[
 L(\mathbf{w}) = \| \mathbf{y} - \mathbf{X} \mathbf{w} \|_2^2 + \lambda \| \mathbf{w} \|_2^2
 \]
 - \(\lambda \| \mathbf{w} \|_2^2 \) is called a (L2-)regularization term
Overfitting:
Degradation of predictive performance for future data

- Previously, we introduced the regularization term to avoid numerical stability

- Another interpretation: To avoid overfitting to the training data
 - Our goal is to make correct predictions for future data, not for the training data
 - Overfitting: Too much adaptation to the training data degrades predictive performance on future data

- When the number of data instances N is less than the number of dimensions D, the solution is not unique
 - Infinite number of solutions exist
Occam’s razor: Adopt the simplest model

- We have infinite number of models that equally fit to the training data (=minimize the loss function)
 - Some perform well, some perform badly
- Which is the “best” model among them?
- Occam’s razor principle: “Take the simplest model”
 - We will discuss why the simple model is good later in the “statistical learning theory”
- What is the measure of simplicity?
 For example, number of features = the number of non-zero elements in \(w \)
Occam’s razor: prefers models with smaller number of variables

- Occam’s razor principle prefers

\[f = w_1 x_1 + w_2 x_2 + w_3 x_3 \]

Years of education \(x_1 \) \(\times w_1 \)
Amount of fortune \(x_2 \) \(\times w_2 \)
Height \(x_3 \) \(\times 0 \)

Annual earnings

Zero weight \(w_3 = 0 \) is equivalent to absence of the corresponding variable \(x_3 \)
0-norm regularization:
Reduces the number of non-zero elements in \(\mathbf{w} \)

- **Number of non-zero elements in** \(\mathbf{w} \) = “0-norm of \(\mathbf{w} \)”

- Use 0-norm constraint:
 \[
 \text{minimize}_\mathbf{w} \quad \| \mathbf{y} - \mathbf{Xw} \|_2^2 \quad \text{s.t.} \quad \| \mathbf{w} \|_0 \leq \eta
 \]
 or 0-norm penalty:
 \[
 \text{minimize}_\mathbf{w} \quad \| \mathbf{y} - \mathbf{Xw} \|_2^2 + \lambda \| \mathbf{w} \|_0
 \]
 – There is some one-to-one correspondence between \(\eta \) and \(\lambda \)

- However, they are non-convex optimization problems ...
 – Hard to find the optimal solution

Number of features used in the model
Ridge regression: 2-norm regularization as a convex surrogate for 0-norm

- Instead of the zero-norm $\|w\|_0$, we use 2-norm $\|w\|_2^2$

- Ridge regression: $L(w) = \|y - Xw\|_2^2 + \lambda \|w\|_2^2$

 - Can be seen as a relaxed(?) version of
 $L(w) = \|y - Xw\|_2^2 + \lambda \|w\|_0$

 - The closed form solution: $w^* = (X^TX + \lambda I)^{-1}X^Ty$
Lasso:
1-norm regularization further induces sparsity

- Instead, we can use 1-norm $\|w\|_1 = |w_1| + |w_2| + \cdots + |w_D|$

- Lasso: $L(w) = \|y - Xw\|_2^2 + \lambda \|w\|_1$
 - Convex optimization, but no closed form solution

- Sparsity inducing norm: 1-norm induces sparse w^*
Statistical Interpretation
Interpretation as statistical inference:
Regression as maximum likelihood estimation

- So far we have formulated the regression problem in *loss minimization framework*
 - Function (prediction model) $f : \mathcal{X} \rightarrow \mathbb{R}$ is deterministic
 - Least squares: Minimization of the sum of squared losses

- We have not considered any statistical inference

- Actually, we can interpret the previous formulation in a statistical inference framework, namely, *maximum likelihood estimation*
Maximum likelihood estimation (MLE): Find the parameter that best reproduces training data

- We consider f as a conditional distribution $f_w(y|x)$

- Maximum likelihood estimation (MLE):

 - Find w that maximizes the likelihood function:

 $$L(w) = \prod_{i=1}^{N} f_w(y^{(i)}|x^{(i)})$$

 - Likelihood function: Probability that the training data is reproduced by the model

 - We assume i.i.d. (which will be explained next)

 - It is often convenient to use log likelihood instead:

 $$L(w) = \sum_{i=1}^{N} \log f_w(y^{(i)}|x^{(i)})$$
Important assumption on data: Identically and independently distributed

- We assume data are *identically and independently distributed*:
 - Data instances are generated from the same data generation mechanism (i.e. probability distribution)
 - Furthermore, past data (training data) and future data (test data) have the same property
 - Data instances are independent of each other
Probabilistic version of the linear regression model: Gaussian linear model

- Probabilistic version of the linear regression model $y = \mathbf{w}^\top \mathbf{x}$

- $y \sim \mathcal{N}(\mathbf{w}^\top \mathbf{x}, \sigma^2)$: Gaussian distribution with mean $\mathbf{w}^\top \mathbf{x}$ and variance σ^2

\[
f_{\mathbf{w}}(y|\mathbf{x}) = \mathcal{N}(\mathbf{w}^\top \mathbf{x}, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y - \mathbf{w}^\top \mathbf{x})^2}{2\sigma^2}\right)
\]

- In other words, $y = \mathbf{w}^\top \mathbf{x} + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$
Relation between least squares and MLE: Maximum likelihood is equivalent to least squares

- Log-likelihood function:

\[
L(w) = \sum_{i=1}^{N} \log f_w(y^{(i)} | x^{(i)})
\]

\[
= \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma}} \exp \left(- \frac{(y^{(i)} - w^\top x^{(i)})^2}{2\sigma^2} \right)
\]

\[
= - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y^{(i)} - w^\top x^{(i)})^2 + \text{const.}
\]

- Maximization of \(L(w) \) is equivalent to minimization of the squared loss \(\sum_{i=1}^{N} (y^{(i)} - w^\top x^{(i)})^2 \)
Some More Applications
Time series prediction: Auto regressive (AR) model

- Time series data: A sequence of real valued data \(x_1, x_2, ..., x_t, ... \in \mathbb{R} \) associated with time stamps \(t = 1, 2, ... \)

- Time series prediction: Given \(x_1, x_2, ..., x_{t-1} \), predict \(x_t \)

- Auto regressive (AR) model:
 \[
 x_t = w_1 x_{t-1} + w_2 x_{t-2} + \cdots + w_D x_{t-D}
 \]

- \(x_t \) is determined by the recent length-\(D \) history

- AR model as a linear regression model \(y = w^T x : \)
 \[
 -w = (w_1, w_2, ..., w_D)^T
 \]
 \[
 -x = (x_{t-1}, x_{t-2}, ..., x_{t-D})^T
 \]
Classification as regression: Regression is also applicable to classification

- Binary classification: $y \in \{+1, -1\}$
- Apply regression to predict $y \in \{+1, -1\}$
- Rigorously, such application is not valid
 - Since an output is either $+1$ or -1, the Gaussian noise assumption does not hold
 - However, since solution of regression is often easier than that of classification, this application can be compromise
- Fisher discriminant: Instead of $\{+1, -1\}$, use $\left\{ + \frac{1}{N^+}, - \frac{1}{N^-} \right\}$
 - $N^+ (N^-)$ is the number of positive (negative) data
Nonlinear Regression
Nonlinear regression: Introducing nonlinearity in linear models

- So far we have considered only linear models
- How to introduce non-linearity in the models?

1. Introduce nonlinear basis functions:
 - Transformed features: e.g. $x \rightarrow \log x$
 - Cross terms: e.g. $x_1, x_2 \rightarrow x_1 x_2$
 - Kernels: $x \rightarrow \phi(x)$ (some nonlinear mapping to a high-dimensional space)

2. Intrinsically nonlinear models:
 - Regression tree / random forest
 - Neural network
Nonlinear transformation of features:
Simplest way to introduce nonlinearity in linear models

- Nonlinear basis function: \(x \rightarrow \log x, e^x, x^2, \frac{1}{x}, \ldots \)

 - Sometimes used for converting the range
 - E.g. \(\log: \mathbb{R}^+ \rightarrow \mathbb{R}, \exp: \mathbb{R} \rightarrow \mathbb{R}^+ \)

- Interpretations of log transformation:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = \beta x + \alpha)</th>
<th>(\log y = \beta x + \alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase of (x) by 1 will increase (y) by (\beta)</td>
<td>Increase of (x) by 1 will multiply (y) by (1 + \beta)</td>
</tr>
<tr>
<td>(\log x)</td>
<td>(y = \beta \log x + \alpha)</td>
<td>(\log y = \beta \log x + \alpha)</td>
</tr>
<tr>
<td></td>
<td>Doubling (x) will increase (y) by (\beta)</td>
<td>Doubling (x) will multiply (y) by (1 + \beta)</td>
</tr>
</tbody>
</table>
Cross terms:
Can include synergetic effects among different features

- Not only the original features x_1, x_2, \ldots, x_D, use their cross terms products $\{x_d x_{d'}\}_{d,d'}$

- Model has a matrix parameter \mathbf{W}:

$$
y = \text{Trace} \left(\begin{bmatrix} w_{1,1} & \cdots & w_{1,D} \\ \vdots & \ddots & \vdots \\ w_{D,1} & \cdots & w_{D,D} \end{bmatrix}^T \begin{bmatrix} x_1^2 & x_1 x_2 & \cdots & x_1 x_D \\ x_2 x_1 & x_2^2 & \cdots & x_2 x_D \\ \vdots & \vdots & \ddots & \vdots \\ x_D x_1 & x_D x_2 & \cdots & x_D^2 \end{bmatrix} \right)

= \mathbf{x}^T \mathbf{W}^T \mathbf{x}

- $L(\mathbf{W}) = \sum_{i=1}^{N} \left(y^{(i)} - \mathbf{x}^{(i)^T} \mathbf{W}^T \mathbf{x}^{(i)} \right)^2 + \lambda \| \mathbf{W} \|_F^2$

(e.g. factorization machines)
Kernels:
Linear model in a high-dimensional feature space

- High dimensional non-linear mapping: \(x \rightarrow \phi(x) \)
 - \(\phi: \mathbb{R}^D \rightarrow \mathbb{R}^{\bar{D}} \) is some nonlinear mapping from \(D \)-dimensional space to a \(\bar{D} \)-dimensional space (\(D \ll \bar{D} \))

- Linear model \(y = \mathbf{w}^T \phi(x) \)

- Kernel regression model: \(y = \sum_{i=1}^{N} \alpha^{(i)} k(x^{(i)}, x) \)
 - Kernel function \(k(x^{(i)}, x) = \langle \phi(x^{(i)}), \phi(x) \rangle \): inner product
 - Kernel trick: Instead of working in the \(\bar{D} \)-dimensional space, we use an equivalent form in an \(N \)-dimensional space

 - Foundation of kernel machines, e.g. SVM, Gaussian process, ...
Bayesian Statistical Interpretation
Bayesian interpretation of regression: Ridge regression as MAP estimation

- We consider another statistical interpretation of linear regression in terms of Bayesian statistics
 - Which justifies ridge regression

- Ridge regression as MAP estimation
 - Posterior distribution of parameters
 - Maximum A Posteriori (MAP) estimation

Least square regression ↔ Maximum likelihood estimation

Ridge regression ↔ MAP estimation
In maximum likelihood estimation (MLE), we obtain \mathbf{w} that maximizes data *likelihood*:

$$ P(\mathbf{y} | \mathbf{X}, \mathbf{w}) = \prod_{i=1}^{N} f_{\mathbf{w}}(y^{(i)} | x^{(i)}) $$

or

$$ \log P(\mathbf{y} | \mathbf{X}, \mathbf{w}) = \sum_{i=1}^{N} \log f_{\mathbf{w}}(y^{(i)} | x^{(i)}) $$

— The probability of the data reproduced with the parameter: $P(\text{Data} | \text{Parameters})$

In Bayesian modeling, we consider the *posterior distribution* $P(\text{Parameters} | \text{Data})$

— Posterior distribution is the distribution over model parameters given data
Posterior distribution:
Log posterior = log likelihood + log prior

- Posterior distribution:
 \[P(\text{Parameters} \mid \text{Data}) = \frac{P(\text{Data} \mid \text{Parameters})P(\text{Parameters})}{P(\text{Data})} \]
 (Bayes’ formula)

- Log posterior:
 \[
 \log P(\text{Parameters} \mid \text{Data}) = \log P(\text{Data} \mid \text{Parameters}) + \log P(\text{Parameters}) - \log P(\text{Data})
 \]
 - log \(P(\text{Data}) \) is a constant term and often neglected because it does not depend on the parameters
Maximum a posteriori (MAP) estimation: Find parameter that maximizes the posterior

- Maximum a posteriori (MAP) estimation finds the parameter that maximizes the (log) posterior:
 \[\text{Parameters}^* = \arg\max_{\text{Parameters}} \log P(\text{Parameters} | \text{Data}) \]

- Maximization of the log posterior:
 \[
 \log P(\text{Parameters} | \text{Data}) = \log P(\text{Data} | \text{Parameters}) + \log P(\text{Parameters}) + \text{const.}
 \]

 - MLE considers only \(\log P(\text{Data} | \text{Parameters}) \)
 - MAP has an additional term (log prior): \(\log P(\text{Parameters}) \)
Ridge regression as MAP estimation: MAP with Gaussian linear model + Gaussian prior

- Log posterior: \(\log P(\text{Parameters} \mid \text{Data}) = \log P(\text{Data} \mid \text{Parameters}) + \log P(\text{Parameters}) + \text{const.} \)

 - Log likelihood: \(\sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi \sigma'}} \exp \left(- \frac{(y^{(i)} - w^T x^{(i)})^2}{2\sigma'^2} \right) \)

 - Prior \(P(w) = \frac{1}{\sqrt{2\pi \sigma}} \exp \left(- \frac{w^T w}{2\sigma^2} \right) \) (Gaussian prior)

- Ridge regression is equivalent to MAP estimation:

 \[
 w^* = \arg\min_w \frac{1}{2\sigma'^2} \sum_{i=1}^{N} (y^{(i)} - w^T x^{(i)})^2 + \frac{1}{2\sigma^2} \|w\|_2^2
 \]
Regression:
Supervised learning for predicting a real valued variable

- A supervised learning problem to make real-valued predictions

- Regression problem is often formulated as a least-square minimization problem
 - Closed form solution is given

- Regularization framework to avoid overfitting
 - Reduce the number of features: 0-norm, 2-norm (ridge regression), 1-norm (lasso)

- Nonlinear regression

- Statistical interpretations: maximum likelihood estimation, maximum a posteriori (MAP) estimation