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Regression:
Supervised learning for predicting a real valued variable

= Regression learning is one of supervised learning problem
settings with wide applications

* Goal: Obtain a function f: X’ = R (R : real value)
—Usually, input domain X is a D-dimensional vector space

eE.g. x € Xisahouseandy € Ris its price
(housing dataset in UCI Machine Learning Repository)

" Training dataset: NV pairs of an input and an output
{(x(l), y(l)), (X(Z)' y(Z)), - (X(N), y(N))}

—We use the training dataset to estimate f

3 KyoTo UNIVERSITY



Some applications of regression:
From marketing prediction to chemo-informatics
= Some applications:

—Price prediction: Predict the price y of a product x

—Demand prediction: Predict the demanded amount y of a
product x

—Sales prediction: Predict the sales amount y of a product x

—Chemical activity: Predict the activity level y of a compound x

= Other applications:

—Time series prediction: Predict the value y at the next time
step given the past measurements x

—Classification (has a discrete output domain
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Model:
Linear regression model

* Model: How does y depend on x?

= We consider the simplest choices: Liner regression model
Y =W'X = Wwix; + Wyxy + - + WpXp

—Prediction model of the price of a house:

Age. @—'XW1 \
R e e o ¢ S
(CHimeTate] (c—{x ws
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Handling discrete features:
Dummy variables

= We assume input X is a real vector

—In the house price prediction example, features can be age,
walk time to the nearest station, crime rate in the area, ...

e They are considered as real values

= How do we handle discrete features as real values?
—Binary features: {Male, Female} are encoded as {0,1}

—One-hot encoding: {Kyoto, Osaka, Tokyo} are encoded with
(1,0,0), (0,1,0), and (0,0,1)

—Called dummy variables
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Objective function of training:
Squared loss

* Objective function (to minimize):
Disagreement measure of the model to the training dataset

—Loss function: f(y(i), wa(i)) for the i-th instance
—Objective function: L(w) = 3V, £(y®, wTx®)
= Squared loss function:
2(y®,wTx®) = (y® — wTx®)?
—Absolute loss, Huber loss: more robust choices

= Optimal parameter w* is the one that minimizes L(w):
w* = argmin,, L(w)
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Solution of linear regression problem:
One dimensional case

" Let us start with a case where inputs and outputs are both one-
dimensional

= Objective function to minimize:

N
L(w) = E(y(i) — wx®)?
=1

= Solution: w* =

oL(w)
ow
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Solution of linear regression problem:
General multi-dimensional case

= Matrix and vector notations:
T
—Design matrix X = [x(l),x(z), ...,X(N)]

—Target vectory = (y,y@, y(N))T

= Objective function

L(w) = Z(y@ wTx®)” = |ly - Xwil3
=(y— XW)T(y Xw)
= Solution: w* = argmin,, L(w) = (X' X) Xy
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Example:
House price prediction

= Design matrix:

X = [X(n,X(z),X(s),X@)]T

= Target vector:
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[ Regularization J
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Ridge regression:
Include penalty on the norm of w to avoid instability

= Existence of the solution w* = (X" X) ™1 Xy requires that
XX is non-singular, i.e. full-rank

—This is often secured when the number of data instances N is
much larger than the number of dimensions D

= Regularization: Adding some constant A > 0 to the diagonals of
X" X for numerical stability

—Modified solution: w* = (X'X + A~ 1X Ty
= Back to its objective function, the new solution corresponds to
L(w) = ly — Xwl|3 + Allw]|
—Allw|| is called a (L2-)regularization term
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Overfitting:
Degradation of predictive performance for future data

= Previously, we introduced the regularization term to avoid
numerical stability

= Another interpretation: To avoid overfitting to the training data

—Qur goal is to make correct predictions for future data, not for
the training data

—OQverfitting: Too much adaptation to the training data
degrades predictive performance on future data

= \When the number of data instances N is less than the number
of dimensions D, the solution is not unique

—Infinite number of solutions exist
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Occam’s razor:
Adopt the simplest model

= We have infinite number of models that equally fit to the
training data (=minimize the loss function)

—Some perform well, some perform badly
=" Which is the “best” model among them?

= Occam’s razor principle: “Take the simplest model”

—We will discuss why the simple model is good later in the
“statistical learning theory”

=" What is the measure of simplicity?
For example, number of features = the number of non-zero
elementsinw
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Occam’s razor:
Prefers models with smaller number of variables

= Occam’s razor principle prefers

Years of education @)——{x w, f=wixg +woxy + wais
Amount of fortune @—» X Wy » + ——»@ Annual earnings

Height (O——{x 0

Zero weight w3 = 0 is equivalent to 1
to absence of the corresponding variable x5

Years of education @——[x w, [ =wixs + WoX, + WiXs
Amount of fortune @—» X W, » + —»@ Annual earnings

Height @—» X Wg
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0-norm regularization:
Reduces the number of non-zero elements in w

= Number of hon-zero elements in w = “0O-norm of w”

Number of
features used in

= Use 0-norm constraint: the model

minimize,, ||y — Xw||5 s.t. [|[w]lo <7

or 0-norm penalty:
minimize,, ||y — Xwl||5+ A|lwll,

—There is some one-to-one correspondence between n and A

=" However, they are non-convex optimization problems ...

—Hard to find the optimal solution
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Ridge regression :
2-norm regularization as a convex surrogate for 0-norm

= Instead of the zero-norm ||w||y, we use 2-norm ||w]|5

R
5 2 15

i Convex ]

Can be d reid ed ! on-convex

—The closed form solution: w* = (X'X + AI)"1X Ty
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= Ridge regression: L(w) = |ly — Xw||5 + A|lw]|5
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Lasso :
1-norm regularization further induces sparsity

" Instead, we can use 1-norm ||W]||; = |wq| + |wy| + -+ + [wp]

-6

= Lasso: L(w) = |ly — Xw||5 + A||w]l;
—Convex optimization, but no closed form solution

= Sparsity inducing norm: 1-norm induces sparse w™
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[ Statistical Interpretation J
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Interpretation as statistical inference :
Regression as maximum likelihood estimation

= So far we have formulated the regression problem in
loss minimization framework

—Function (prediction model) f: X' — R is deterministic

—Least squares: Minimization of the sum of squared losses
= We have not considered any statistical inference

= Actually, we can interpret the previous formulation in a
statistical inference framework, namely, maximum likelihood
estimation
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Maximum likelihood estimation (MLE):
Find the parameter that best reproduces training data

= We consider f as a conditional distribution f, (y|x)

= Maximum likelihood estimation (MLE): ﬁ gfggggﬁ;i' }

—Find w that maximizes the likelihood function:
L(w) = [T fu P x®)

e Likelihood function: Probability that the training data is
reproduced by the model

e We assume i.i.d. (which will be explained next)

—It is often convenient to use log likelihood instead:

N
Lw) = ) log fu(@D[x®)
=1
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Important assumption on data:
ldentically and independently distributed

= We assume data are identically and independently distributed:

—Data instances are generated from the same data generation
mechanism (i.e. probability distribution)

e Furthermore, past data (training data) and future data (test
data) have the same property

—Data instances are independent of each other
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Probabilistic version of the linear regression model:
Gaussian linear model

= Probabilistic version of the linear regression model y = w'x

Yy ~ N(WTX, 02): Gaussian distribution with mean w'x and
variance g

1 (y —w'x)?
= N(w'x, %) = = \
fW(ylx) (W X,0 ) \/%O' exp( 20_2
Linear

—In other words, y = W'X + €, where € ~ N(O, 02) regression
model

23 KYoTo UNIVERSITY




Relation between least squares and MLE:
Maximum likelihood is equivalent to least squares
" Log-likelihood function'

L(w) = 2 l0g fu(y O 1x0)

2 ( (y(i)_wTX(i))Z)
log exp — >

e
2022(3/(‘) w x(‘)) + const.

= Maximization of L(w) is equivalent to minimization of the
N 2
squared loss Y (v — wTx®)
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[ Some More Applications J
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Time series prediction:
Auto regressive (AR) model

" Time series data: A sequence of real valued data
X1,X9, e, X¢, ... € R associated with time stampst = 1,2, ...

" Time series prediction: Given x{, X», ..., X;_1, predict x;

= Auto regressive (AR) model:
X = W1X¢_1 + WoXe_o + -+ WpXi_p

—X; is determined by the recent length-D history

= AR model as a linear regression model y = w'x:

—W = (Wl, Wy, ..., WD)T o \ s o030 %6 change/year
_ T LA N
—X = (X¢—1,X¢—2, =) X¢—p) I VAVAR WY\

0 T T T T T
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Classification as regression:
Regression is also applicable to classification

= Binary classification: y € {+1, —1}
= Apply regression to predict y € {+1, —1}
= Rigorously, such application is not valid

—Since an output is either +1 or -1,
the Gaussian noise assumption does not hold

—However, since solution of regression is often easier than that
of classification, this application can be compromise

* Fisher discriminant: Instead of {+1, —1}, use {+ %, — #}

—N*1(N7)is the number of positive (negative) data
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[ Nonlinear Regression J

28 KYoTo UNIVERSITY




Nonlinear regression:
Introducing nonlinearity in linear models

= So far we have considered only linear models

" How to introduce non-linearity in the models?
1. Introduce nonlinear basis functions:

e Transformed features: e.g. x — logx
e Cross terms: e.g. X1, X, = X1X>

e Kernels: X = ¢(X) (some nonlinear mapping to a high-
dimensional space)

2. Intrinsically nonlinear models:

e Regressoin tree / random forest
e Neural network
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Nonlinear transformation of features:

Simplest way to introduce nonlinearity in linear models

= Nonlinear basis function: x — logx,ex,xz,%,
—Sometimes used for converting the range
eE.g.log:R" -> R, exp: R - R
" Interpretations of log transformation:
y logy
y=0Fx+a logy=0x+a

30

Increase of x by 1 will
increase y by 8

Increase of x by 1 will
multiply yby 1 + 8

log x

y=pFlogx + «

Doubling x will increase y by

B

logy =flogx + a

Doubling x will multiply y by
1+p0
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Cross terms:
Can include synergetic effects among different features

= Not only the original features x4, x,, ..., Xp, use their cross

terms products {XqXg'}

= Model has a matrix parameter W'

-, _
- 1T ] X X1 X X1Xp \
/ Wl,l ) Wl’D 1 122 ve
_ : XaX1 X5 X2Xp
y = Trace . . .
WD,1 e WD,D . ° 02
\' - |XpX1 XpXz2 -+ Xp /
=x'W'x

. . N\ 2
(W) =3V, (y(l) _ X(l)TWTx(t)) + AW

(e.g. factorization machines)
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Kernels:
Linear model in a high-dimensional feature space

= High dimensional non-linear mapping: x = ¢(x)

—Pp:RP - RD is some nonlinear mapping from D-dimensional
space to a D-dimensional space (D <« D)

= Linear model y = W' ¢p(x)
" Kernel regression model: y = Z’i\’:l a® k(x(i),x)
—Kernel function k(x(i),x) = (qb(x(i)), ¢(x)): inner product

—Kernel trick: Instead of working in the D-dimensional space, we
use an equivalent form in an N -dimensional space

e Foundation of kernel machines, e.g. SVM, Gaussian process, ...
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[ Bayesian Statistical Interpretation J
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Bayesian interpretation of regression:
Ridge regression as MAP estimation

= We consider another statistical interpretation of linear
regression in terms of Bayesian statistics

—Which justifies ridge regression
= Ridge regression as MAP estimation
—Posterior distribution of parameters

—Maximum A Posteriori (MAP) estimation

Least square regression <____ > Maximum likelihood estimation

Ridge regression <__——_> MAP estimation
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Bayesian modeling:
Posterior distribution instead of likelihood

" |n maximum likelihood estimation (MLE), we obtain w that
maximizes data likelihood:

P(yl X, w) =[Ii, fu@PIX®)
orlogP(y | X,w) = 3N, log f, (y D |x®)

—The probability of the data reproduced with the parameter:
P(Data | Parameters)

= |[n Bayesian modeling, we consider the posterior distribution
P( Parameters | Data)

—Posterior distribution is the distribution over model
parameters given data
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Posterior distribution:
Log posterior = log likelihood + log prior

= Posterior distribution:
P(Data | Parameters )P (Parameters)

P(Data)

P(Parameters | Data) =
(Bayes’ formula)

" Log posterior:
log P( Parameters | Data)

= log P( Data | Parameters ) + log P(Parameters)

\ J \ J
| |

Likelihood Prior
—log P(Data)

e P(Data) is a constant term and often neglected
because it does not depend on the parameters
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Maximum a posteriori (MAP) estimation:
Find parameter that maximizes the posterior

=" Maximum a posteriori (MAP) estimation finds the parameter
that maximizes the (log) posterior:
Parameters™ = argmaxp,rameters 102 P( Parameters | Data )

= Maximization of the log posterior:
log P( Parameters | Data )
= log P( Data | Parameters ) + log P(Parameters) + const.

e MLE considers only log P( Data | Parameters )
« MAP has an additional term (log prior) : log P(Parameters)
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Ridge regression as MAP estimation:
MAP with Gaussian linear model + Gaussian prior
= Log posterior: log P( Parameters | Data) =
log P( Data | Parameters ) + log P(Parameters) + const.
N\ J o\ J
Y Y
Log likelihood LO( prior

1 (yD-wTx®) )

e Log-likelihood: Y.}, log exp

V2mo! 2%

T

exp( ad W) (Gaussian prior)

2072

e Prior P(w) =

1
\2TTOo

= Ridge regression is equivalent to MAP estimation:

. 1
—3 ) 0 = wxO) 4 fjwi
=1

. .
W = argmin,,
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Regression:
Supervised learning for predicting a real valued variable

= A supervised learning problem to make real-valued predictions

= Regression problem is often formulated as a least-square
minimization problem

—Closed form solution is given

= Regularization framework to avoid overfitting

—Reduce the number of features: 0-norm, 2-norm (ridge
regression), 1-norm (lasso)

=" Nonlinear regression

= Statistical interpretations: maximum likelihood estimation,
maximum a posteriori (MAP) estimation
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