
1 KYOTO UNIVERSITY

KYOTO UNIVERSITY

DEPARTMENT OF INTELLIGENCE SCIENCE

AND TECHNOLOGY

Statistical Learning Theory
- Classification -

Hisashi Kashima

2 KYOTO UNIVERSITY

Classification

3 KYOTO UNIVERSITY

▪ Goal: Obtain a function 𝑓: 𝒳 → 𝒴 (𝒴: discrete domain)

–E.g. 𝑥 ∈ 𝒳 is an image and 𝑦 ∈ 𝒴 is the type of object
appearing in the image

–Two-class classification: 𝒴 = {+1, −1}

▪ Training dataset:
𝑁 pairs of an input and an output

𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

Classification:
Supervised learning for predicting discrete variable

http://www.vision.caltech.edu/Image_Datasets/Caltech256/

4 KYOTO UNIVERSITY

▪ Binary (two-class)classification:

– Purchase prediction: Predict if a customer 𝐱 will buy a particular product
(+1) or not (-1)

– Credit risk prediction: Predict if a obligor 𝐱 will pay back a debt (+1) or
not (-1)

▪ Multi-class classification (≠ Multi-label classification):

– Text classification: Categorize a document 𝐱 into one of several
categories, e.g., {politics, economy, sports, …}

– Image classification: Categorize the object in an image 𝐱 into one of
several object names, e.g., {AK5, American flag, backpack, …}

– Action recognition: Recognize the action type ({running, walking,
sitting, …}) that a person is taking from sensor data 𝐱

Some applications of classification:
From binary to multi-class classification

5 KYOTO UNIVERSITY

▪ Linear classification: Linear regression model
𝑦 = sign 𝐰⊤𝐱 = sign 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝐷𝑥𝐷

– 𝐰⊤𝐱 indicates the intensity of belief

–𝐰⊤𝐱 = 0 gives a separating hyperplane

–𝐰: normal vector perpendicular to the separating hyperplane

Model for classification:
Linear classifier

𝑥1

𝑥2

𝐰 = 𝑤1, 𝑤2

𝐰⊤𝐱 = 0

𝐰⊤𝐱 > 0

𝐰⊤𝐱 < 0

𝑦 = +1

𝑦 = −1

6 KYOTO UNIVERSITY

▪ Two learning frameworks

1. Loss minimization: 𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖

• Loss function ℓ: directly handles utility of predictions

• Regularization term 𝑅 𝐰

2. Statistical estimation (likelihood maximization):

𝐿 𝐰 = ς𝑖=1
𝑁 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖))

• Probabilistic model: generation process of class labels

• Prior distribution 𝑃 𝐰

▪ They are often equivalent :

Learning framework:
Loss minimization and statistical estimation

ቊ
Loss = Probabilistic model

Regularization = Prior

7 KYOTO UNIVERSITY

▪ Minimization problem: 𝐰∗ = argmin𝐰 𝐿 𝐰 + 𝑅(𝐰)

–Loss function 𝐿 𝐰 : Fitness to training data

–Regularization term 𝑅(𝐰) : Penalty on the model complexity
to avoid overfitting to training data (usually norm of 𝐰)

▪ Loss function should reflect the number of misclassifications on
training data

–Zero-one loss:

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 = ൞
0 𝑦 𝑖 = sign 𝐰⊤𝐱 𝑖

1 𝑦 𝑖 ≠ sign 𝐰⊤𝐱 𝑖

Classification problem in loss minimization framework:
Minimize loss function + regularization term

Correct classification

Incorrect classification

8 KYOTO UNIVERSITY

▪ Zero-one loss: ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 = ൝
0 𝑦 𝑖 𝐰⊤𝐱 𝑖 > 0

1 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 0

▪ Non-convex function is hard to optimize directly

Zero-one loss:
Number of misclassification is hard to minimize

𝑦 𝑖 𝐰⊤𝐱 𝑖

Correct classificationMisclassification

ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖
Non-convex

9 KYOTO UNIVERSITY

▪ Convex surrogates: Upper bounds of zero-one loss

–Hinge loss → SVM, Logistic loss → logistic regression, ...

Convex surrogates of zero-one loss:
Different functions lead to different learning machines

Squared loss

Logistic loss

Hinge loss

𝑦 𝑖 𝐰⊤𝐱 𝑖

Instead of directly minimizing zero-one loss,
we minimize its upper bound

10 KYOTO UNIVERSITY

Logistic regression

11 KYOTO UNIVERSITY

▪ Logistic loss:

ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 =
1

ln2
ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖

▪ (Regularized) Logistic regression:

𝐰∗ = argmin𝐰

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

Logistic regression:
Minimization of logistic loss is a convex optimization

Logistic loss
𝑦 𝑖 𝐰⊤𝐱 𝑖

Convex

12 KYOTO UNIVERSITY

▪ Minimization of logistic loss is equivalent to maximum
likelihood estimation of logistic regression model

▪ Logistic regression model (conditional probability):

𝑓𝐰 𝑦 = 1 𝐱) = 𝜎(𝐰⊤𝐱) =
1

1+exp −𝐰⊤𝐱

• 𝜎: Logistic function (𝜎: ℜ → 0,1)

▪ Log likelihood:

𝐿 𝐰 =

𝑖=1

𝑁

log 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖)) = −

𝑖=1

𝑁

log 1 + exp −𝑦(𝑖)𝐰⊤𝐱

=

𝑖=1

𝑁

𝛿 𝑦 𝑖 = 1 log
1

1 + exp −𝐰⊤𝐱
+ 𝛿 𝑦 𝑖 = −1 log 1 −

1

1 + exp −𝐰⊤𝐱

Statistical interpretation:
Logistic loss min. as MLE of logistic regression model

𝐰⊤𝐱

𝜎

13 KYOTO UNIVERSITY

▪ Objective function of (regularized) logistic regression:

𝐿 𝐰 =

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

▪ Minimization of logistic loss / MLE of logistic regression model
has no closed form solution

▪ Numerical nonlinear optimization methods are used

– Iterate parameter updates: 𝐰NEW ← 𝐰 + 𝐝

Parameter estimation of logistic regression :
Numerical nonlinear optimization

𝐰 𝐰 + 𝐝
𝐝

14 KYOTO UNIVERSITY

▪ By update 𝐰NEW ← 𝐰 + 𝐝, the objective function will be:

𝐿𝐰 𝐝 =

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 (𝐰 + 𝐝)⊤𝐱(𝑖) + 𝜆 𝐰 + 𝐝 2
2

▪ Find 𝐝∗ that minimizes 𝐿𝐰 𝐝 :

–𝐝∗ = argmin𝐝 𝐿𝐰 𝐝

Parameter update :
Find the best update minimizing the objective function

15 KYOTO UNIVERSITY

▪ Taylor expansion:

𝐿𝐰 𝐝 = 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

–Gradient vector: 𝛻𝐿 𝐰 =
𝜕𝐿 𝐰

𝜕𝑤1
,

𝜕𝐿 𝐰

𝜕𝑤2
, … ,

𝜕𝐿 𝐰

𝜕𝑤𝐷

⊤

• Steepest direction

–Hessian matrix: 𝐻 𝐰 𝑖,𝑗 =
𝜕2𝐿 𝐰

𝜕𝑤𝑖𝜕𝑤𝑗

Finding the best parameter update :
Approximate the objective with Taylor expansion

3rd-order term

16 KYOTO UNIVERSITY

▪ Approximated Taylor expansion (neglecting the 3rd order term):

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

▪ Derivative w.r.t. 𝐝:
𝜕𝐿𝐰 𝐝

𝜕𝐝
≈ 𝛻𝐿 𝐰 + 𝑯 𝐰 𝐝

▪ Setting it to be 𝟎, we obtain 𝐝 = −𝑯 𝐰 −1𝛻𝐿 𝐰

▪ Newton update formula:
𝐰NEW ← 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰

Newton update :
Minimizes the second order approximation

𝐰 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰
−𝑯 𝐰 −1𝛻𝐿 𝐰

17 KYOTO UNIVERSITY

▪ The correctness of the update 𝐰NEW ← 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰
depends on the second-order approximation:

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝

–This is not actually true for most cases

▪ Use only the direction of 𝑯 𝐰 −1𝛻𝐿 𝐰 and update with
𝐰NEW ← 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

▪ Learning rate 𝜂 > 0 is determined by linear search:

𝜂∗ = argmax𝜂 𝐿 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

Modified Newton update:
Second order approximation + linear search

18 KYOTO UNIVERSITY

▪ Computing the inverse of Hessian matrix is costly

–Newton update: 𝐰NEW ← 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

▪ (Steepest) gradient descent:

–Replacing 𝑯 𝐰 −1 with 𝑰 gives
𝐰NEW ← 𝐰 − 𝜂𝛻𝐿 𝐰

• 𝛻𝐿 𝐰 is the steepest direction

• Learning rate 𝜂 is determined by line search

(Steepest) gradient descent:
Simple update without computing inverse Hessian

𝐰 𝐰 − 𝜂𝛻𝐿 𝐰
−𝜂𝛻𝐿 𝐰

Gradient of
objective function

19 KYOTO UNIVERSITY

▪ Steepest gradient descent is the simplest optimization method:

▪ Update the parameter in the steepest direction of the objective
function

𝐰NEW ← 𝐰 − 𝜂𝛻𝐿 𝐰

–Gradient: 𝛻𝐿 𝐰 =
𝜕𝐿 𝐰

𝜕𝑤1
,

𝜕𝐿 𝐰

𝜕𝑤2
, … ,

𝜕𝐿 𝐰

𝜕𝑤𝐷

⊤

–Learning rate 𝜂 is determined by line search

[Review]:
Gradient descent

𝐰 𝐰 − 𝜂𝛻𝐿 𝐰
−𝜂𝛻𝐿 𝐰

20 KYOTO UNIVERSITY

▪ 𝐿 𝐰 = σ𝑖=1
𝑁 ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

▪
𝜕𝐿 𝐰

𝜕𝐰
= σ𝑖=1

𝑁 1

1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

𝜕 1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

𝜕𝐰

= −

𝑖=1

𝑁
1

1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖
exp −𝑦 𝑖 𝐰⊤𝐱 𝑖 𝑦 𝑖 𝐱 𝑖

= −

𝑖=1

𝑁

(1 − 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖))) 𝑦 𝑖 𝐱 𝑖

Gradient of logistic regression:
Gradient descent of

Can be easily computed with the
current prediction probabilities

21 KYOTO UNIVERSITY

▪ Objective function for 𝑁 instances:

𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝐰⊤𝐱 𝑖 + 𝜆𝑅 𝐰

▪ Its derivative
𝜕𝐿 𝐰

𝜕𝐰
= σ𝑖=1

𝑁 𝜕ℓ 𝐰⊤𝐱 𝑖

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
needs 𝑂 𝑁

computation

▪ Approximate this with only one instance:
𝜕𝐿 𝐰

𝜕𝐰
≈ 𝑁

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Stochastic approximation)

▪ Also we can do this with 1 < 𝑀 < 𝑁 instances:
𝜕𝐿 𝐰

𝜕𝐰
≈

𝑁

𝑀
σ𝑗∈MiniBatch

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Mini batch)

Mini batch optimization:
Efficient training using data subsets

22 KYOTO UNIVERSITY

Support Vector Machine
and Kernel Methods

23 KYOTO UNIVERSITY

▪ One of the most important achievements in machine learning

–Proposed in 1990s by Cortes & Vapnik

–Suitable for small to middle sized data

▪ A learning algorithm of linear classifiers

–Derived in accordance with the “maximum margin principle”

–Understood as hinge loss + L2-regularization

▪ Capable of non-linear classification through kernel functions

–SVM is one of the kernel methods

Support vector machine (SVM):
One of the most successful learning methods

24 KYOTO UNIVERSITY

▪ In SVM, we use hinge loss as a convex upper bound of 0-1 loss

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 ; 𝐰 = max{1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 , 0}

▪ Squared hinge loss max{ 1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 2
, 0} is also

sometimes used

Loss function of support vector machine:
Hinge loss

𝑦 𝑖 𝐰⊤𝐱 𝑖

Hinge lossZero-one loss

25 KYOTO UNIVERSITY

1. “Soft-margin” SVM: hinge-loss + L2 regularization

𝐰∗ = argmin𝐰

𝑖=1

𝑁

max{1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 , 0} + 𝜆 𝐰 2
2

–This is a convex optimization problem ☺

2. “Hard-margin”: constraint on the loss (to be zero)

𝐰∗ = argmin𝐰
1

2
𝐰 2

2 s.t. σ𝑖=1
𝑁 max{1 − 𝑦 𝑖 𝒘⊤𝐱 𝑖 , 0} = 0

–Equivalently, the constraint is written as

1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 0 (for all 𝑖 = 1,2, … , 𝑁)

–The originally proposed SVM formulation was in this form

Two formulations of SVM training:
Soft-margin SVM and hard margin SVM

26 KYOTO UNIVERSITY

Geometric interpretation:
Hard-margin SVM maximizes the margin

▪ min
1

2
∥ 𝐰 ∥2

2 ↔ max
1

∥𝐰∥2
(

1

∥𝐰∥2
is called margin)

▪
𝐰⊤ 𝐱+−𝐱−

∥𝐰∥2
: Sum of distance from separating hyperplane to a

positive instance 𝐱+ and the distance to a negative instance 𝐱−

▪Margin is the minimum of
𝐰⊤ 𝐱+−𝐱−

∥𝐰∥2

– Since 1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 0 for ∀𝑖,

𝐰⊤ 𝐱+−𝐱−

∥𝐰∥2
is lower bounded by

2

∥𝐰∥2

𝑥1

𝑥2

𝐰 = 𝑤1, 𝑤2

𝐰⊤𝐱 = 0

𝐱+

𝐱−

27 KYOTO UNIVERSITY

▪ min𝐰
1

2
∥ 𝐰 ∥2

2 s.t. 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖 ≤ 0 (𝑖 = 1,2, … , 𝑁)

▪ Lagrange multipliers 𝛼𝑖 𝑖 :

min𝐰 max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

1

2
∥ 𝐰 ∥2

2 +

𝑖=1

𝑁

𝛼𝑖 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖

– If 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖 > 0 for some 𝑖, we have 𝛼𝑖 = ∞

• The objective function becomes ∞, that cannot be optimal

– If 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖 ≤ 0 for some 𝑖, we have either

𝛼𝑖 = 0 or 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖 = 0 , i.e. objective function
remains the same as the original one (1

2
∥ 𝐰 ∥2

2)

Solution of hard-margin SVM (Step I):
Introducing Lagrange multipliers

28 KYOTO UNIVERSITY

▪ By changing the order of min and max:

min𝐰 max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

∥ 𝐰 ∥2
2

2
+

𝑖=1

𝑁

𝛼𝑖 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

min𝐰

∥ 𝐰 ∥2
2

2
+

𝑖=1

𝑁

𝛼𝑖 1 − 𝑦(𝑖)𝐰⊤𝐱 𝑖

▪ Solving min gives 𝐰 = σ𝑖=1
𝑁 𝛼𝑖𝑦(𝑖)𝐱 𝑖 , which finally results in

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

𝑖=1

𝑁

𝛼𝑖 −
1

2

𝑖=1

𝑁

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦(𝑖)𝑦(𝑗)𝐱 𝑖 ⊤
𝐱 𝑗

Solution of hard-margin SVM (Step II):
Dual formulation as a quadratic programming problem

29 KYOTO UNIVERSITY

▪ The dual problem:

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

𝑖=1

𝑁

𝛼𝑖 −
1

2

𝑖=1

𝑁

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦(𝑖)𝑦(𝑗)𝐱 𝑖 ⊤
𝐱 𝑗

▪ Support vectors: the set of 𝑖 such that 𝛼𝑖 > 0

–For such 𝑖, 1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 = 0 holds

–They are the closest instance to the separating hyperplane

▪ Non-support vectors (𝛼𝑖 = 0) do not contribute to the model:

𝐰⊤𝐱 = σ𝑗=1
𝑁 𝛼𝑗𝑦(𝑗)𝐱(𝑗)⊤

𝐱

Support vectors:
SVM model depends only on support vectors

𝐰 = σ𝑖=1
𝑁 𝛼𝑖𝑦(𝑖)𝐱 𝑖

30 KYOTO UNIVERSITY

▪ Equivalent formulation of soft-margin SVM:

min𝐰 𝐰 2
2 + 𝐶

𝑖=1

𝑁

𝑒𝑖

s. t. 1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 𝑒𝑖

(𝑖 = 1,2, … , 𝑁)

▪ Results in a similar dual problem with additional constraints:

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

𝑖=1

𝑁

𝛼𝑖 −
1

2

𝑖=1

𝑁

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦 𝑖 𝑦 𝑗 𝐱 𝑖 ⊤
𝐱 𝑗

0 ≤ 𝛼𝑖≤ 𝐶 (𝑖 = 1,2, … , 𝑁)

Solution of soft-margin SVM:
A similar dual problem with additional constraints

Hinge loss
(Slack variable)

31 KYOTO UNIVERSITY

▪ The dual form objective function and the classifier access to

data always through inner products 𝐱 𝑖 ⊤
𝐱 𝑗

–Optimization problem (dual form):

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

𝑖=1

𝑁

𝛼𝑖 −
1

2

𝑖

𝑁

𝑗

𝑁

𝛼𝑖𝛼𝑗𝑦 𝑖 𝑦 𝑗 𝐱 𝑖 ⊤
𝐱 𝑗

–Model：𝑦 = σ𝑗=1
𝑁 𝛼𝑗𝑦 𝑗 𝐱 𝑖 ⊤

𝐱

–The inner product 𝐱 𝑖 ⊤
𝐱 𝑗 is interpreted as similarity

An important fact about SVM:
Data access through inner products between data

32 KYOTO UNIVERSITY

▪ The dual form objective function and the classifier access to

data always through inner products 𝐱 𝑖 ⊤
𝐱 𝑗

▪ The inner product 𝐱 𝑖 ⊤
𝐱 𝑗 is interpreted as similarity

▪ Can we use some similarity function 𝐾 𝐱 𝑖 , 𝐱 𝑗 instead of

𝐱 𝑖 ⊤
𝐱 𝑗 ? – Yes (under certain conditions)

max
𝜶= 𝛼1,𝛼2,…,𝛼𝑁 ≥0

𝑖=1

𝑁

𝛼𝑖 −
1

2

𝑖

𝑁

𝑗

𝑁

𝛼𝑖𝛼𝑗𝑦 𝑖 𝑦 𝑗 𝐾 𝐱 𝑖 , 𝐱 𝑗

–Model：𝐰⊤𝐱 = σ𝑗=1
𝑁 𝛼𝑗𝑦 𝑗 𝐾 𝐱 𝑗 , 𝐱

Kernel methods:
Data access through kernel function

33 KYOTO UNIVERSITY

▪ Consider a (nonlinear) mapping 𝝓: ℜ𝐷 → ℜ𝐷′

–𝐷-dimensional space to 𝐷′ ≫ 𝐷 -dimensional space

–Vector 𝐱 is mapped to a high-dimensional vector 𝝓(𝐱)

▪ Define kernel 𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝝓 𝐱 𝑖 ⊤
𝝓(𝐱 𝑗) in the 𝐷′-

dimensional space

▪ SVM is a linear classifier in the 𝐷′-dimensional space, while is a
non-linear classifier in the original 𝐷-dimensional space

Kernel functions:
Introducing non-linearity in linear models

https://en.wikipedia.org/wiki/Support_vector_machine#/
media/File:Kernel_Machine.svg

34 KYOTO UNIVERSITY

▪ Advantage of using kernel function

𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝝓 𝐱 𝑖 ⊤
𝝓(𝐱 𝑗)

▪ Usually we expect the computation cost of 𝐾 depends on 𝐷′

–𝐷′ can be high-dimensional (possibly infinite dimensional)

▪ If we can somehow compute 𝝓 𝐱 𝑖 ⊤
𝝓(𝐱 𝑗) in time

depending on 𝐷, the dimension of 𝝓 does not matter

▪ Problem size:
𝐷′(number of dimensions) → 𝑁(number of data)

–Advantageous when 𝐷′ is very large or infinite

Advantage of kernel methods:
Computationally efficient (when 𝐷′ is large)

35 KYOTO UNIVERSITY

▪ Combinatorial features: Not only the original features
𝑥1, 𝑥2, … , 𝑥𝐷, we use their cross terms (e.g. 𝑥1𝑥2)

– If we consider 𝑀-th order cross terms, we have O 𝐷𝑀 terms

▪ Polynomial kernel: 𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝐱 𝑖 ⊤
𝐱 𝑗 + 𝑐

𝑀

–E.g. when 𝑐 = 0, 𝑀 = 2, 𝐷 = 2,

𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝑥1
𝑖

𝑥1
𝑗

+ 𝑥2
𝑖

𝑥2
𝑗

2

= 𝑥1
𝑖 2

, 𝑥2
𝑖 2

, 2𝑥1
𝑖

𝑥2
𝑖

𝑥1
𝑗 2

, 𝑥2
𝑗 2

, 2𝑥1
𝑗

𝑥2
𝑗

–Note that it can be computed in O 𝐷

Example of kernel functions:
Polynomial kernel can consider high-order cross terms

𝐱 𝑖 =
𝑥1

(𝑖)

𝑥2
(𝑖)

36 KYOTO UNIVERSITY

▪ Gaussian kernel (RBF kernel): 𝐾 𝐱𝑖 , 𝐱𝑗 = exp −
∥𝐱𝑖−𝐱𝑗∥2

2

𝜎

–Can be interpreted as an inner product in an infinite-
dimensional space

Example of kernel functions:
Gaussian kernel with infinite feature space

∥ 𝐱𝑖 − 𝐱𝑗 ∥2
2http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Machi

neLearning&doc=exercises/ex8/ex8.html

Gaussian kernel (RBF kernel)

Discrimination surface with Gaussian kernel

37 KYOTO UNIVERSITY

▪ Kernel methods can handle any kinds of objects (even non-
vectorial objects) as long as efficiently computable kernel
functions are available

–Kernels for strings, trees, and graphs, …

Kernel methods for non-vectorial data:
Kernels for sequences, trees, and graphs

http://www.bic.kyoto-u.ac.jp/coe/img/akutsu_fig_e_02.gif

38 KYOTO UNIVERSITY

▪ Can we use some similarity function as a kernel function?

–Yes (under certain conditions)

▪ Kernel methods rely on the fact that the optimal parameter is
represented as a linear combination of input vectors:

𝐰 =

𝑖=1

𝑁

𝛼𝑖𝑦(𝑖)𝐱 𝑖

–Gives the dual form classifier

sign 𝐰⊤𝐱 = sign σ𝑗=1
𝑁 𝛼𝑗𝑦 𝑗 𝐱 𝑗 ⊤

𝐱

▪ Representer theorem guarantees this (if we use L2-regularizer)

Representer theorem:
Theoretical underpinning of kernel methods

39 KYOTO UNIVERSITY

▪ Assumption: Loss ℓ for 𝑖-th data depends only on 𝐰⊤𝐱 𝑖

–Objective function: 𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝐰⊤𝐱 𝑖 + 𝜆 𝐰 2

2

▪ Divide the optimal parameter 𝐰∗ into two parts 𝐰 + 𝐰⊥:

–𝐰: Linear combination of input data 𝐱 𝑖
𝑖

–𝐰⊥: Other parts (orthogonal to all input data 𝐱 𝑖)

▪ 𝐿 𝐰∗ depends only on 𝐰: σ𝑖=1
𝑁 ℓ 𝐰∗⊤𝐱 𝑖 + 𝜆 𝐰∗

2
2

=

𝑖=1

𝑁

ℓ 𝐰⊤𝐱 𝑖 + 𝐰⊥⊤
𝐱 𝑖 + 𝜆 𝐰 2

2 + 2𝐰⊤𝐰⊥ + 𝐰⊥
2

2

(Simple) proof of representer theorem:
Obj. func. depends only on linear combination of inputs

= 0 = 0 Minimized to = 0

40 KYOTO UNIVERSITY

▪ Primal objective function of SVM:

𝐿 𝐰 =

𝑖=1

𝑁

max{1 − 𝑦 𝑖 𝐰⊤𝐱 𝑖 , 0} + 𝜆 𝐰 2
2

▪ Primal objective function using kernel:
𝐿 𝛂

=

𝑖=1

𝑁

max{1 − 𝑦 𝑖

𝑗=1

𝑁

𝛼𝑗𝑦 𝑗 𝐾 𝐱 𝑖 , 𝐱 𝑗 , 0}

+ 𝜆

𝑖=1

𝑁

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦 𝑖 𝑦 𝑗 𝐾 𝐱 𝑖 , 𝐱 𝑗

Primal objective function:
Kernel representation is also available in the primal form

Using
𝐰 = σ𝑖=1

𝑁 𝛼𝑖𝑦(𝑖)𝐱 𝑖

41 KYOTO UNIVERSITY

▪ Instead of the hinge loss, use 𝜖-insensitive loss:

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 ; 𝐰 = max{ 𝑦𝑖 − 𝐰⊤𝐱 𝑖 − 𝜖, 0}

▪ Incurs zero loss if the difference between the prediction and

the target 𝑦𝑖 − 𝐰⊤𝐱 𝑖 is less than 𝜖 > 0

Support vector regression:
Use 𝜖-insensitive loss instead of hinge loss

𝜖−𝜖

𝜖-insensitive loss

Squared loss

