

Kyoto University

Statistical Learning Theory - Classification -

Hisashi Kashima

Classification

Classification: Supervised learning for predicting discrete variable

- Goal: Obtain a function $f: \mathcal{X} \to \mathcal{Y}$ (\mathcal{Y} : discrete domain)
 - -E.g. $x \in \mathcal{X}$ is an image and $y \in \mathcal{Y}$ is the type of object appearing in the image
 - -Two-class classification: $\mathcal{Y} = \{+1, -1\}$
- Training dataset:

N pairs of an input and an output $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$

http://www.vision.caltech.edu/Image_Datasets/Caltech256/

Kyoto University

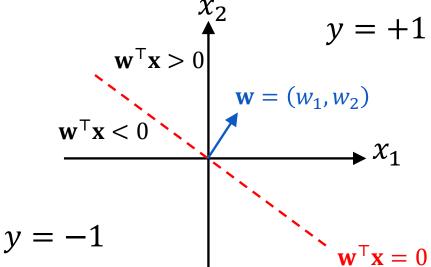
Some applications of classification: From binary to multi-class classification

- Binary (two-class)classification:
 - Purchase prediction: Predict if a customer \mathbf{x} will buy a particular product (+1) or not (-1)
 - Credit risk prediction: Predict if a obligor \mathbf{x} will pay back a debt (+1) or not (-1)
- Multi-class classification (≠ Multi-label classification):
 - Text classification: Categorize a document x into one of several categories, e.g., {politics, economy, sports, ...}
 - Image classification: Categorize the object in an image x into one of several object names, e.g., {AK5, American flag, backpack, ...}
 - Action recognition: Recognize the action type ({running, walking, sitting, ...}) that a person is taking from sensor data x

Model for classification: Linear classifier

- Linear classification: Linear regression model $y = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}(w_1x_1 + w_2x_2 + \dots + w_Dx_D)$
 - $-|\mathbf{w}^{\top}\mathbf{x}|$ indicates the intensity of belief
 - $-\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$ gives a separating hyperplane

-w: normal vector perpendicular to the separating hyperplane



Learning framework: Loss minimization and statistical estimation

Two learning frameworks

1. Loss minimization: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(y^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})$

- Loss function ℓ : directly handles utility of predictions
- Regularization term $R(\mathbf{w})$
- 2. Statistical estimation (likelihood maximization): $L(\mathbf{w}) = \prod_{i=1}^{N} f_{\mathbf{w}}(y^{(i)} | \mathbf{x}^{(i)})$
 - Probabilistic model: generation process of class labels
 - Prior distribution $P(\mathbf{w})$
- They are often equivalent : {
 Loss = Probabilistic model Regularization = Prior

Classification problem in loss minimization framework: Minimize loss function + regularization term

- Minimization problem: $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} L(\mathbf{w}) + R(\mathbf{w})$
 - -Loss function $L(\mathbf{w})$: Fitness to training data
 - -Regularization term $R(\mathbf{w})$: Penalty on the model complexity to avoid overfitting to training data (usually norm of \mathbf{w})
- Loss function should reflect the number of misclassifications on training data

-Zero-one loss:

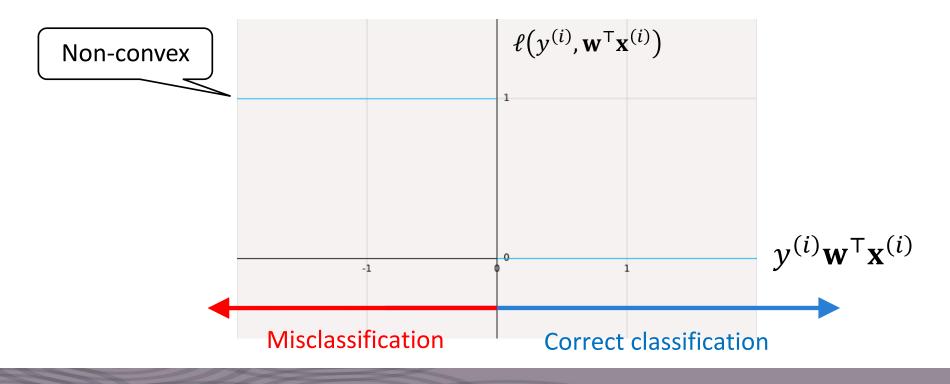
$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) = \begin{cases} 0 \quad (y^{(i)} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) \\ 1 \quad (y^{(i)} \neq \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) \end{cases}$$
Incorrect classification
Kyoto University

Zero-one loss:

Number of misclassification is hard to minimize

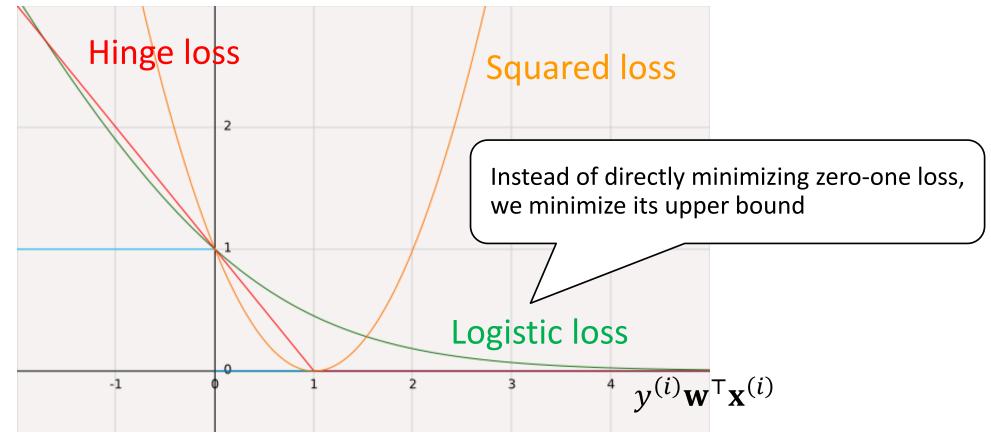
Zero-one loss:
$$\ell(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) = \begin{cases} 0 & (y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} > 0) \\ 1 & (y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} \le 0) \end{cases}$$

Non-convex function is hard to optimize directly



Convex surrogates of zero-one loss: Different functions lead to different learning machines

- Convex surrogates: Upper bounds of zero-one loss
 - -Hinge loss \rightarrow SVM, Logistic loss \rightarrow logistic regression, ...

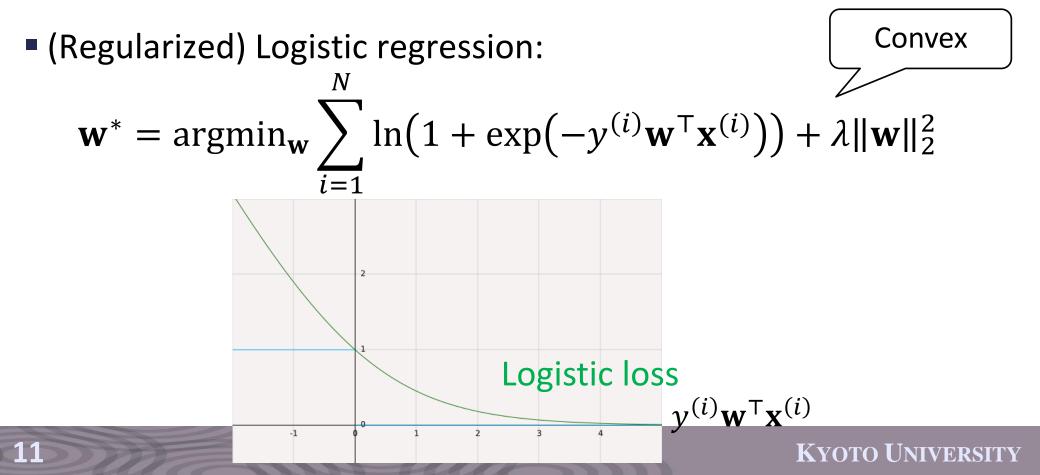


Logistic regression

Logistic regression: Minimization of logistic loss is a convex optimization

Logistic loss:

$$\ell(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) = \frac{1}{\ln 2} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$$



Statistical interpretation: Logistic loss min. as MLE of logistic regression model

- Minimization of logistic loss is equivalent to maximum likelihood estimation of logistic regression model
- Logistic regression model (conditional probability):

$$f_{\mathbf{w}}(y = 1 | \mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}} \mathbf{x})}$$

• σ : Logistic function (σ : $\Re \rightarrow (0,1)$)

• Log likelihood: $L(\mathbf{w}) = \sum_{i=1}^{N} \log f_{\mathbf{w}}(y^{(i)} | \mathbf{x}^{(i)}) = -\sum_{i=1}^{N} \log(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}))$ $\left(= \sum_{i=1}^{N} \delta(y^{(i)} = 1) \log \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})} + \delta(y^{(i)} = -1) \log\left(1 - \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}\right) \right)$

KYOTO UNIVERSITY

 $\sigma()$

Parameter estimation of logistic regression : Numerical nonlinear optimization

• Objective function of (regularized) logistic regression: N

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w}\|_{2}^{2}$$

- Minimization of logistic loss / MLE of logistic regression model has no closed form solution
- Numerical nonlinear optimization methods are used

-Iterate parameter updates: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$

$$w d w + d$$

Parameter update : Find the best update minimizing the objective function

• By update
$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$$
, the objective function will be:

$$L_{\mathbf{w}}(\mathbf{d}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}(\mathbf{w} + \mathbf{d})^{\top}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w} + \mathbf{d}\|_{2}^{2}$$

- Find \mathbf{d}^* that minimizes $L_{\mathbf{w}}(\mathbf{d})$:
 - $-\mathbf{d}^* = \operatorname{argmin}_{\mathbf{d}} L_{\mathbf{w}}(\mathbf{d})$

Finding the best parameter update : Approximate the objective with Taylor expansion

Taylor expansion:

$$L_{\mathbf{w}}(\mathbf{d}) = L(\mathbf{w}) + \mathbf{d}^{\top} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\top} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^{3})$$

-Gradient vector:
$$\nabla L(\mathbf{w}) = \left(\frac{\partial L(\mathbf{w})}{\partial w_1}, \frac{\partial L(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial L(\mathbf{w})}{\partial w_D}\right)^{\mathsf{T}}$$

• Steepest direction -Hessian matrix: $[H(\mathbf{w})]_{i,j} = \frac{\partial^2 L(\mathbf{w})}{\partial w_i \partial w_j}$

KYOTO UNIVERSITY

3rd-order term

Newton update : Minimizes the second order approximation

Approximated Taylor expansion (neglecting the 3rd order term):

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^3)$$

• Derivative w.r.t.
$$\mathbf{d}: \frac{\partial L_{\mathbf{w}}(\mathbf{d})}{\partial \mathbf{d}} \approx \nabla L(\mathbf{w}) + H(\mathbf{w})\mathbf{d}$$

- Setting it to be **0**, we obtain $\mathbf{d} = -\mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$
- Newton update formula: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ $\mathbf{w}^{-H(\mathbf{w})^{-1}\nabla L(\mathbf{w})} = \mathbf{w}^{-H(\mathbf{w})^{-1}\nabla L(\mathbf{w})}$

Modified Newton update: Second order approximation + linear search

• The correctness of the update $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$ depends on the second-order approximation:

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\top} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\top} H(\mathbf{w}) \mathbf{d}$$

-This is not actually true for most cases

• Use only the direction of $H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ and update with $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$

• Learning rate $\eta > 0$ is determined by linear search: $\eta^* = \operatorname{argmax}_{\eta} L(\mathbf{w} - \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w}))$

(Steepest) gradient descent: Simple update without computing inverse Hessian

Computing the inverse of Hessian matrix is costly

-Newton update: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$

- (Steepest) gradient descent: -Replacing $H(\mathbf{w})^{-1}$ with I gives $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \nabla L(\mathbf{w})$
 - $\nabla L(\mathbf{w})$ is the steepest direction
 - Learning rate η is determined by line search

$$\mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{\bullet}$$

[Review]: Gradient descent

- Steepest gradient descent is the simplest optimization method:
- Update the parameter in the steepest direction of the objective function

$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \nabla L(\mathbf{w})$$

Gradient of logistic regression: Gradient descent of

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \frac{\partial(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))}{\partial \mathbf{w}}$$

$$= -\sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) y^{(i)}\mathbf{x}^{(i)}$$

$$= -\sum_{i=1}^{N} (1 - f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})) y^{(i)}\mathbf{x}^{(i)}$$
Can be easily computed with the current prediction probabilities

Mini batch optimization: Efficient training using data subsets

• Objective function for N instances: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda R(\mathbf{w})$

• Its derivative
$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$$
 needs $O(N)$ computation

• Approximate this with only one instance: $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx N \frac{\partial \ell(\mathbf{w}^{\top} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$ (Stochastic approximation)

• Also we can do this with 1 < M < N instances:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{N}{M} \sum_{j \in \text{MiniBatch}} \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}} \quad \text{(Mini batch)}$$

Support Vector Machine and Kernel Methods

Support vector machine (SVM): One of the most successful learning methods

- One of the most important achievements in machine learning
 - -Proposed in 1990s by Cortes & Vapnik
 - -Suitable for small to middle sized data
- A learning algorithm of linear classifiers
 - -Derived in accordance with the "maximum margin principle"
 - -Understood as hinge loss + L2-regularization
- Capable of non-linear classification through kernel functions
 - -SVM is one of the kernel methods

Loss function of support vector machine: Hinge loss

- In SVM, we use hinge loss as a convex upper bound of 0-1 loss $\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \max\{1 y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\}$
- Squared hinge loss max{(1 y⁽ⁱ⁾w^Tx⁽ⁱ⁾)², 0} is also sometimes used

Two formulations of SVM training: Soft-margin SVM and hard margin SVM

1. "Soft-margin" SVM: hinge-loss + L2 regularization

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \max\{1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}, 0\} + \lambda \|\mathbf{w}\|_2^2$$

- –This is a convex optimization problem $\ensuremath{\textcircled{\odot}}$
- 2. "Hard-margin": constraint on the loss (to be zero) $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_2^2 \text{ s.t. } \sum_{i=1}^N \max\{1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}, 0\} = 0$

-Equivalently, the constraint is written as $1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \leq 0$ (for all i = 1, 2, ..., N)

-The originally proposed SVM formulation was in this form

Geometric interpretation: Hard-margin SVM maximizes the margin

•
$$\min \frac{1}{2} \parallel \mathbf{w} \parallel_2^2 \leftrightarrow \max \frac{1}{\lVert \mathbf{w} \rVert_2} \left(\frac{1}{\lVert \mathbf{w} \rVert_2} \text{ is called margin} \right)$$

• $\frac{w'(x^+-x^-)}{\|w\|_2}$: Sum of distance from separating hyperplane to a positive instance x^+ and the distance to a negative instance x^-

Margin is the minimum of
$$\frac{\mathbf{w}^{\mathsf{T}}(\mathbf{x}^{+}-\mathbf{x}^{-})}{\|\mathbf{w}\|_{2}}$$

- Since $1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} \leq 0$ for $\forall i$,
 $\frac{\mathbf{w}^{\mathsf{T}}(\mathbf{x}^{+}-\mathbf{x}^{-})}{\|\mathbf{w}\|_{2}}$ is lower bounded by $\frac{2}{\|\mathbf{w}\|_{2}}$
 $\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$

Solution of hard-margin SVM (Step I): Introducing Lagrange multipliers

•
$$\min_{\mathbf{w}} \frac{1}{2} \| \mathbf{w} \|_{2}^{2}$$
 s.t. $1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \le 0$ $(i = 1, 2, ..., N)$

• Lagrange multipliers $\{\alpha_i\}_i$:

27

$$\min_{\mathbf{w}} \max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \left(\frac{1}{2} \| \mathbf{w} \|_2^2 + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) \right)$$

 $- \text{lf } 1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} > 0$ for some *i*, we have $\alpha_i = \infty$

• The objective function becomes ∞ , that cannot be optimal $- \inf 1 - y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)} \leq 0$ for some i, we have either $\alpha_i = 0$ or $(1 - y^{(i)} \mathbf{w}^{\top} \mathbf{x}^{(i)}) = 0$, i.e. objective function remains the same as the original one $(\frac{1}{2} \parallel \mathbf{w} \parallel_2^2)$

Solution of hard-margin SVM (Step II): Dual formulation as a quadratic programming problem

By changing the order of min and max:

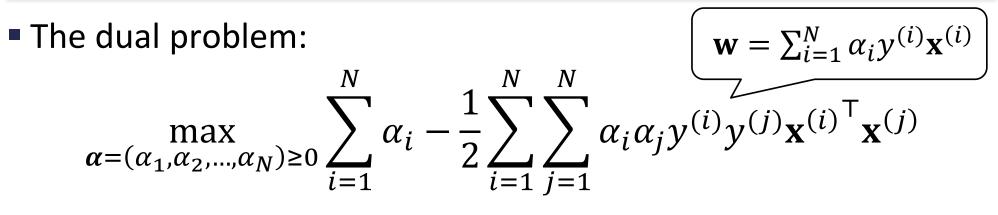
$$\min_{\mathbf{w}} \max_{\substack{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0}} \left(\frac{\|\mathbf{w}\|_2^2}{2} + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^\top \mathbf{x}^{(i)}) \right)$$

$$\bigcup_{\substack{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0}} \min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|_2^2}{2} + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^\top \mathbf{x}^{(i)}) \right)$$

• Solving min gives $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)}$, which finally results in

$$\max_{\alpha = (\alpha_1, \alpha_2, ..., \alpha_N) \ge 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$$

Support vectors: SVM model depends only on support vectors



- Support vectors: the set of *i* such that $\alpha_i > 0$
 - -For such *i*, $1 y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} = 0$ holds
 - -They are the closest instance to the separating hyperplane
- Non-support vectors ($\alpha_i = 0$) do not contribute to the model: $\mathbf{w}^{\mathsf{T}}\mathbf{x} = \sum_{j=1}^{N} \alpha_j y^{(j)} \mathbf{x}^{(j)^{\mathsf{T}}} \mathbf{x}$

Solution of soft-margin SVM: A similar dual problem with additional constraints

Equivalent formulation of soft-margin SVM:

Results in a similar dual problem with additional constraints:

$$\max_{\alpha = (\alpha_1, \alpha_2, ..., \alpha_N) \ge 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$$

 $0 \le \alpha_i \le C \ (i = 1, 2, ..., N)$

An important fact about SVM: Data access through inner products between data

• The dual form objective function and the classifier access to data always through inner products $\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}$

-Optimization problem (dual form):

$$\max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$$

-Model :
$$y = \sum_{j=1}^{N} \alpha_j y^{(j)} \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}$$

-The inner product $\mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}$ is interpreted as similarity

Kernel methods: Data access through kernel function

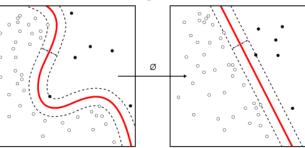
- The dual form objective function and the classifier access to data always through inner products $\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}$
- The inner product $\mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}$ is interpreted as similarity
- Can we use some similarity function $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ instead of $\mathbf{x}^{(i)^{\mathsf{T}}}\mathbf{x}^{(j)}$? Yes (under certain conditions)

$$\max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_i^N \sum_j^N \alpha_i \alpha_j y^{(i)} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

-Model: $\mathbf{w}^{\mathsf{T}}\mathbf{x} = \sum_{j=1}^{N} \alpha_j y^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x})$

Kernel functions: Introducing non-linearity in linear models

- Consider a (nonlinear) mapping $\boldsymbol{\phi}: \mathfrak{R}^D \to {\mathfrak{R}^D}'$
 - -D-dimensional space to $D'(\gg D)$ -dimensional space
 - –Vector ${f x}$ is mapped to a high-dimensional vector ${m \phi}({f x})$
- Define kernel $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$ in the D'-dimensional space
- SVM is a linear classifier in the D'-dimensional space, while is a non-linear classifier in the original D-dimensional space



https://en.wikipedia.org/wiki/Support_vector_machine#/ media/File:Kernel_Machine.svg

Advantage of kernel methods: Computationally efficient (when D' is large)

Advantage of using kernel function

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$$

- Usually we expect the computation cost of K depends on D'-D' can be high-dimensional (possibly infinite dimensional)
- If we can somehow compute $\phi(\mathbf{x}^{(i)})^{\dagger}\phi(\mathbf{x}^{(j)})$ in time depending on D, the dimension of ϕ does not matter
- Problem size:
 - D'(number of dimensions) $\rightarrow N$ (number of data)
 - -Advantageous when D' is very large or infinite

Example of kernel functions: Polynomial kernel can consider high-order cross terms

- Combinatorial features: Not only the original features $x_1, x_2, ..., x_D$, we use their cross terms (e.g. x_1x_2)
 - -If we consider M-th order cross terms, we have $O(D^M)$ terms

Polynomial kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)} + c)^{\mathsf{M}}$$

-E.g. when
$$c = 0, M = 2, D = 2,$$

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \left(x_1^{(i)} x_1^{(j)} + x_2^{(i)} x_2^{(j)}\right)^2$$

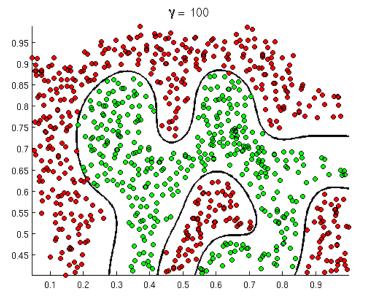
$$= \left(x_1^{(i)^2}, x_2^{(i)^2}, \sqrt{2}x_1^{(i)} x_2^{(i)}\right) \left(x_1^{(j)^2}, x_2^{(j)^2}, \sqrt{2}x_1^{(j)} x_2^{(j)}\right)$$

-Note that it can be computed in O(D)

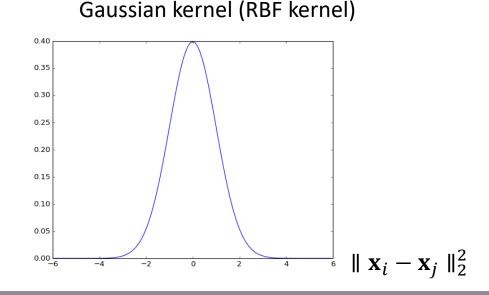
Example of kernel functions: Gaussian kernel with infinite feature space

- Gaussian kernel (RBF kernel): $K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i \mathbf{x}_j\|_2^2}{\sigma}\right)$
 - Can be interpreted as an inner product in an infinitedimensional space

Discrimination surface with Gaussian kernel

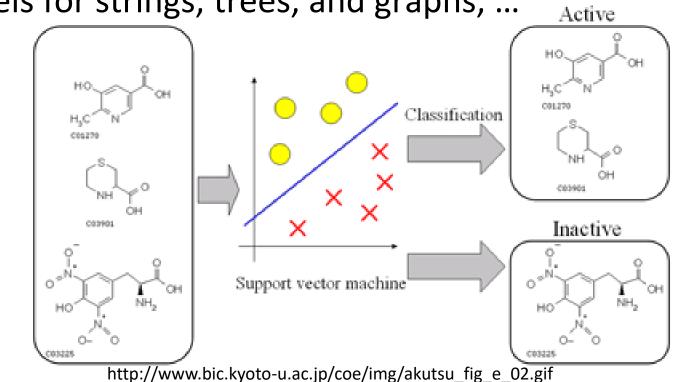


http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Machi neLearning&doc=exercises/ex8/ex8.html



Kernel methods for non-vectorial data: Kernels for sequences, trees, and graphs

 Kernel methods can handle any kinds of objects (even nonvectorial objects) as long as efficiently computable kernel functions are available



-Kernels for strings, trees, and graphs, ...

Representer theorem: Theoretical underpinning of kernel methods

- Can we use some similarity function as a kernel function?
 - -Yes (under *certain conditions*)
- Kernel methods rely on the fact that the optimal parameter is represented as a linear combination of input vectors:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

-Gives the dual form classifier $\operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}\left(\sum_{j=1}^{N} \alpha_{j} y^{(j)} \mathbf{x}^{(j)^{\mathsf{T}}} \mathbf{x}\right)$

Representer theorem guarantees this (if we use L2-regularizer)

(Simple) proof of representer theorem: Obj. func. depends only on linear combination of inputs

• Assumption: Loss ℓ for *i*-th data depends only on $\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}$

-Objective function:
$$L(\mathbf{w}) = \sum_{i=1}^{N} \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda \|\mathbf{w}\|_{2}^{2}$$

- Divide the optimal parameter \mathbf{w}^* into two parts $\mathbf{w} + \mathbf{w}^{\perp}$:
 - -w: Linear combination of input data $\{\mathbf{x}^{(i)}\}_{i}$
 - $-\mathbf{w}^{\perp}$: Other parts (orthogonal to all input data $\{\mathbf{x}^{(i)}\}$)
- $L(\mathbf{w}^*)$ depends only on \mathbf{w} : $\sum_{i=1}^N \ell(\mathbf{w}^{*\top}\mathbf{x}^{(i)}) + \lambda \|\mathbf{w}^*\|_2^2$ = $\sum_{i=1}^N \ell(\mathbf{w}^{\top}\mathbf{x}^{(i)} + \mathbf{w}^{\perp\top}\mathbf{x}^{(i)}) + \lambda(\|\mathbf{w}\|_2^2 + 2\mathbf{w}^{\top}\mathbf{w}^{\perp} + \|\mathbf{w}^{\perp}\|_2^2)$ = 0 Minimized to = 0

Primal objective function:

Kernel representation is also available in the primal form

Primal objective function of SVM:

N

$$L(\mathbf{w}) = \sum_{i=1}^{N} \max\{1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\} + \lambda \|\mathbf{w}\|_{2}^{2}$$

Primal objective function using kernel:
$$L(\boldsymbol{\alpha})$$
$$= \sum_{i=1}^{N} \max\{1 - y^{(i)}\sum_{j=1}^{N} \alpha_{j}y^{(j)}K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), 0\}$$
$$+ \lambda \sum_{i=1}^{N}\sum_{j=1}^{N} \alpha_{i}\alpha_{j}y^{(i)}y^{(j)}K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

Support vector regression: Use ϵ -insensitive loss instead of hinge loss

• Instead of the hinge loss, use ϵ -insensitive loss: $\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \max\{|y_i - \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}| - \epsilon, 0\}$

• Incurs zero loss if the difference between the prediction and the target $|y_i - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}|$ is less than $\epsilon > 0$

