

Statistical Learning Theory Final Exam 2022

** READ THE FOLLOWING INSTRUCTIONS CAREFULLY **

(There is a risk that your answer will not be graded correctly if the instructions are not followed)

- * The exam has two parts (PART I and PART II)
- * Use the first answer sheet for PART I, and the second sheet for PART II.
- * You can use both sides of each sheet.
- * Write your name and ID on the <u>both</u> answer sheets.
- * Answer all of the questions in English.

<u>PART I</u>

Q.1 Fill in the blanks.

(1) Ridge regression is L[]-regularized linear regression

(2) Ridge regression can be interpreted as [] estimation a Bayesian inference framework under some assumptions.

(3) [] is used as a measure of the complexity of a classifier class of infinite size.

(4) One example of a real-world applications of the multi-class classification problem is [].

(5) The [] loss is a convex upper bound of the zero-one loss.

Q.2 Let us consider a pairwise comparison problem. We have *n* training data instances $\left\{\left(\mathbf{x}_{i}^{(1)}, \mathbf{x}_{i}^{(2)}, y_{i}\right)\right\}_{i=1,2,...,n}$

where, for each $i \in \{1, 2, ..., n\}$, $\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)} \in \mathbb{R}^D$ denote the feature vectors of two input objects sampled in an i.i.d manner. $y_i \in \{+1, -1\}$ indicates which of the two objects is ranked higher than the other; namely, $y_i = +1$ indicates $\mathbf{x}_i^{(1)}$ is superior to $\mathbf{x}_i^{(2)}$, and $y_i = -1$ indicates the opposite. We consider the following model that gives the conditional probability $p(y = +1|\mathbf{x}^{(1)}, \mathbf{x}^{(2)})$ of the comparison label y being +1 given inputs $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in \mathbb{R}^D$, which is defined as

$$p(y = +1|\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \frac{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(1)})}{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(1)}) + \exp(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(2)})},$$

- ...

where $\mathbf{w} \in \mathbb{R}^{D}$ is the model parameter and \top indicates the transpose of a vector .

(1) Give the objective function (to maximize) for estimating w by maximum likelihood estimation.

(2) Give a stochastic gradient descent update formula (i.e., steepest gradient descent using only $(\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}, y_i)$)

for the objective function you gave in Q.1. (Note that this is actually gradient "ascent" because the Q.1 is a maximization problem.)

(3) Now we consider replacing the above model using a neural network, that is, $p(y = +1 | \mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = f(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})$. What is a potential concern in such modeling? And, what is a possible way to address this issue?

PART II

Q.3 We have *n* data instances $\{\mathbf{x}_i\}_{i=1,2,...,n}$, where for each $i \in \{1,2,...,n\}$, $\mathbf{x}_i \in \mathbb{R}^D$. Assume that $\sum_{i=1}^n \mathbf{x}_i = \mathbf{0}$. Show that the principal component analysis (PCA) is equivalent to linear autoencoder model for an orthonormal matrix.

$$\widehat{\boldsymbol{U}} = \operatorname{argmax} \sum_{i=1}^{n} tr(\boldsymbol{U}^T \mathbf{x}_i \, \mathbf{x}_i^T \boldsymbol{U}), s. t. \, \boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}$$

Q.4 Let us denote $p'(\mathbf{x}, y)$ a probability density function with $p(\mathbf{x}, y) \neq p'(\mathbf{x}, y)$. Derive the empirical risk of J' under the assumption $p(y|\mathbf{x}) = p'(y|\mathbf{x})$ using $\{(\mathbf{x}_i, y_i)\}_{i=1,2,...,n} \sim p(\mathbf{x}, y)$ and the importance weight function $r(\mathbf{x}) = p'(\mathbf{x})/p(\mathbf{x})$.

$$J' = -\iint (y \log (f(\mathbf{x})) + (1 - y) \log(1 - f(\mathbf{x}))) \quad p'(\mathbf{x}, y) d\mathbf{x} dy$$

Q.5 Explain the key difference between the wrapper method and the filter method in feature selection.

Q.6 Explain how to formulate the node classification problem using a Graph Neural Network model with equations.