
Statistical Learning Theory 

 Final Exam 2022 
** READ THE FOLLOWING INSTRUCTIONS CAREFULLY ** 

(There is a risk that your answer will not be graded correctly if the instructions are not followed) 

* The exam has two parts (PART I and PART II) 

* Use the first answer sheet for PART I, and the second sheet for PART II.  

* You can use both sides of each sheet. 

* Write your name and ID on the both answer sheets. 

* Answer all of the questions in English. 

PART I 

Q.1 Fill in the blanks. 

(1) Ridge regression is L[   ]-regularized linear regression 

(2) Ridge regression can be interpreted as [   ] estimation a Bayesian inference framework under some 

assumptions.  

(3) [   ] is used as a measure of the complexity of a classifier class of infinite size. 

(4) One example of a real-world applications of the multi-class classification problem is [   ]. 

(5) The [   ] loss is a convex upper bound of the zero-one loss. 

 

Q.2 Let us consider a pairwise comparison problem. We have 𝑛 training data instances {(𝐱𝑖
(1)

, 𝐱𝑖
(2)

, 𝑦𝑖)}
𝑖=1,2,…,𝑛

, 

where, for each 𝑖 ∈ {1,2, … , 𝑛}, 𝐱𝑖
(1)

, 𝐱𝑖
(2)

∈ ℝ𝐷 denote the feature vectors of two input objects sampled in an i.i.d 

manner. 𝑦𝑖 ∈ {+1, −1}  indicates which of the two objects is ranked higher than the other; namely, 𝑦𝑖 = +1 

indicates 𝐱𝑖
(1)

is superior to 𝐱𝑖
(2)

, and 𝑦𝑖 = −1 indicates the opposite. We consider the following model that gives 

the conditional probability 𝑝(𝑦 = +1|𝐱(1), 𝐱(2)) of the comparison label 𝑦 being +1 given inputs 𝐱(1), 𝐱(2) ∈

ℝ𝐷, which is defined as 

𝑝(𝑦 = +1|𝐱(1), 𝐱(2)) =
exp(𝐰⊤𝐱(1))

exp(𝐰⊤𝐱(1)) + exp(𝐰⊤𝐱(2))
 , 

where 𝐰 ∈ ℝ𝐷 is the model parameter and ⊤ indicates the transpose of a vector . 

(1) Give the objective function (to maximize) for estimating 𝐰 by maximum likelihood estimation. 

(2) Give a stochastic gradient descent update formula (i.e., steepest gradient descent using only (𝐱𝑖
(1)

, 𝐱𝑖
(2)

, 𝑦𝑖)) 

for the objective function you gave in Q.1. (Note that this is actually gradient “ascent” because the Q.1 is a 

maximization problem.) 

(3) Now we consider replacing the above model using a neural network, that is, 𝑝(𝑦 = +1|𝐱(1), 𝐱(2)) =

𝑓(𝐱(1), 𝐱(2)). What is a potential concern in such modeling? And, what is a possible way to address this issue? 

  

 
Easy, huh? 

 



 

PART II 

Q.3 We have 𝑛 data instances {𝐱𝑖}𝑖=1,2,…,𝑛, where for each 𝑖 ∈ {1,2, … , 𝑛}, 𝐱𝑖 ∈ ℝ𝐷. Assume that ∑ 𝐱𝑖
𝑛
𝑖=1 = 𝟎. 

Show that the principal component analysis (PCA) is equivalent to linear autoencoder model for an orthonormal 

matrix.  

�̂� = argmax ∑ 𝑡𝑟(𝑼𝑻𝐱𝑖

𝑛

𝑖=1

𝐱𝑖
𝑇𝑼), 𝑠. 𝑡. 𝑼𝑻𝑼 = 𝑰 

Q.4 Let us denote 𝑝′(𝐱, 𝑦) a probability density function with 𝑝(𝐱, 𝑦) ≠ 𝑝′(𝐱, 𝑦). Derive the empirical risk of 𝐽′ 

under the assumption 𝑝(𝑦|𝐱) = 𝑝′(𝑦|𝐱) using {(𝐱𝑖, 𝑦𝑖)}𝑖=1,2,…,𝑛 ∼ 𝑝(𝐱, 𝑦) and the importance weight function 

𝑟(𝐱) = 𝑝′(𝐱)/𝑝(𝐱).  

𝐽′ =  − ∬(𝑦 log (𝑓(𝐱)) + (1 − 𝑦) log(1 − 𝑓(𝐱))) 𝑝′(𝐱, 𝑦)d𝐱 d𝑦 

Q.5 Explain the key difference between the wrapper method and the filter method in feature selection. 

Q.6 Explain how to formulate the node classification problem using a Graph Neural Network model with 

equations.  

 


