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Statistical learning theory:
Foundations of recent data analysis technologies

= This course will cover:

—Basic ideas, problems, solutions, and applications of statistical
machine learning

e Supervised & unsupervised learning
e Models & algorithms: linear regression, SVM, neural nets, ...

—Statistical learning theory
e Theoretical foundation of statistical machine learning

—Hands-on practice

= Advanced topics: sparse modeling, semi-supervised learning,
transfer learning, ...

2 KYOTO UNIVERSITY



Textbooks?:
Most of the topics can be found in...

= Pattern recognition and machine learning / Bishop
* The elements of statistical learning / Hastie & Tibshirani

= Understanding machine learning / Shalev-Shwartz & Ben-David

UNDERSTANDING

Trevor Hastie
Robert Tibshirani IVl AC H I N E

| '“,,H,,;,,,,,f - LEARNING

Statistical Leaming
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Evaluations:
Final exam (or a substitute) + weekly exercise

= Evaluation is mostly based on the final exam

e However, we may substitute a report submission/an
online work for the final exam depending on the situation

= As supplementary evaluation information, weekly quiz
submissions on PandA will also be considered in the evaluation.
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Introduction:
Basic ideas of machine learning and applications

1. What is machine learning?
2. Machine learning applications

3. Some machine learning topics
1. Recommender systems

2. Anomaly detection
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[ What is machine learning? J
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“The third A.l. boom”:
Machine learning is a core technology

" You can see many successes of “Artificial Intelligence”:
— Q.A. machine beating quiz champions
— Qo program surpassing top players

— Machine vision is better at recognizing objects than
humans

= Current A.l. boom owes machine learning

— Especially, deep learning
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What is machine learning? .
A branch of artificial intelligence

= QOriginally started as a branch of artificial intelligence
— has its more-than-50-years history
— Computer programs that “learns” from experience

— Based on logical inference
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What is machine learning? :
A data analytics technology

|II

= Rise of “statistical” machine learning

— Successes in bioinformatics, natural language processing,
and other business areas

— Victory of IBM’s Watson QA system, Google’s Alpha Go

= Recently rather considered as a data analysis technology

— “Big data” and “Data scientist”
e Data scientist is “the sexiest job in the 21st century”
= Success of deep learning

— The 3rd Al boom

9 KyoTo UNIVERSITY



What can machine learning do?:
Prediction and discovery

= Two categories of the use of machine learning:

1. Prediction (supervised learning)

e “What will happen in future data?”
e Given past data, predict about future data

2. Discovery (unsupervised learning)

e “What is happening in data in hand?”
e Given past data, find insights in them
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Prediction machine:
A function from a vector to a scalar

= We model the intelligent machine as a mathematical function
= Relationship of input and output f:x —> vy
— Inputx = (x{, %5, ...,xp)" € RP is a D-dimensional vector
— Output y is one dimensional

e Regression: real-valued output y € R
e C(lassification: discrete output y € {Cy,C,, ..., Cy}

[ Customer

somimny | - g} o |
f
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A model for regression:

Linear regression model

* Model f takes an input x = (x, x,, ..., xp) " and

outputs a real value

f(X) = wix;+ wyx, +--+ wpx,

— Model parameter w = (W, W, ...,wp)' € R

Years of education @—+

XWl

Amount of fortune @—>

XWZ

——»@ Annual earnings

Height @—»

XW3
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A model for classification:
Linear classification model

* Model f takes an input X = (x, x5, ..., Xp)" and
outputs a value from {+1, —1}

f(x) =sign(wyx; + wox, + -+ wpxp)

—Model parameter w = (wy,w,, ...,wp) ' € R? :

e W, : contribution of x; to the output (if w; > 0,
x4 > 0 contributes to +1, x; < 0 contributes to -1)

Age (xp)——X wy sign()
Income @_. X W, o+ o ——>@ Buy / Not buy
Blood pressure @—> X W
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Formulations of machine learning problems:
Supervised learning and unsupervised learning

= What we want is the function f

— We estimate f from data

= Two learning problem settings: supervised and unsupervised

— Supervised learning: input-output pairs are given

o {(xM,yM),(x@,y@), ., (x™,y™} : N pairs
— Unsupervised learning: only inputs are given

° {X(l),X(z), _",X(N)} : N inputs X - @ - y
f
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[ Machine learning applications J
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Growing ML applications:
Emerging applications from IT areas to non-IT areas

= Recent advances in ML offer:
— Methodologies to handle uncertain and enormous data

— Black-box tools

= Not limited to IT areas, ML is wide-spreading over non-IT
areas

— Healthcare, airline, automobile, material science, education,
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Various applications of machine learning:
From on-line shopping to system monitoring
= Marketing = Web

— Recommendation — Search

— Spam filtering

— Sentiment analysis

— Web ads optimization —Social media
= Finance = Healthcare P‘;
— Credit risk estimation samme —Medical diagnosis ¥

— Fraud detection *" Multimedia

= Science —Image/voice understanding H

L ) 1 A
= System monitoring Djé
— Fault detection NS

— Biology

— Material science
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An application of supervised classification learning:
Sentiment analysis

= Judge if a document (X) is positive or not (y € {+1, —1})
toward a particular product or service

= For example, we want to know reputation of our newly
launched service S

= Collect tweets by searching the word “S”, and analyze them

:_:_:_:_:_i %g
X @ - Y
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An application of supervised learning:
Some hand labeling followed by supervised learning

= First, give labels to some of the collected documents

= 10,000 tweets hit the word “S”

" Manually read 300 of them and give labels
=’ used S, and found it not bad.” — é
= “| gave up S. The power was not on.” = Q
= I like S.” > &

= Use the collected 300 labels to train a predictor.
Then apply the predictor to the rest 9,700 documents
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How to represent a document as a vector:
bag-of-words representation

= Represent a document X using words appearing in it

/f Number of “good”
[ .:1;'1\ = y
o | Number of “not” } 7
L .— A .

f

!

\J;D) \[ Number of “like” }
bag-of-words representation

N -2
e 4 sy
W 3\
5,' p
o
A L
¥
!
o \
/
= i
|
]
p
- &
. >
=
EEV

" Note: design of the feature vector is left to users
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A model for classification:
Linear classification model

* Model f takes an input X = (x, x5, ..., Xp)" and
outputs a value from {+1, —1}

f(x) =sign(wyx; + wox, + -+ wpxp)

—Model parameter w = (wy,w,, ...,wp) ' € R? :

* W, : contribution of x; to the output
(x4 > 0 contributes to +1, x; < 0 contributes to -1)

XWw
1 sign()

X W, M+ ] __,@ég

XW3

1]
299
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An application of supervised regression learning:
Discovering new materials

= Material science aims at discovering and designing new
materials with desired properties

" Volume, density, elastic coefficient, thermal conductivity, ...

" Traditional approach:

1. Determine chemical structure
2. Synthesize the chemical compounds

3. Measure their physical properties
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Computational approach to material discovery:
Still needs high computational costs

= Computational approach: First-order principle calculations
based on quantum physics to run simulation to estimate

physical properties
= First-order calculation still requires high computational costs

—Proportional to the cubic number of atoms

—Sometimes more than a month...
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Data driven approach to material discovery:
Regression to predict physical properties

= Predict the result of first-order principle calculation from data

33 (Y fw) k-3
_| 3 1 )
@ %% » A=\ » conll\lsg\:md

Compound A \ 0,532 ) \f(x)
%= (g0 ) »
é‘zoié.é » XB = ﬁi » . Physical (:):2:82

X  properties

Compound B \ 0 15 )
Feature vector Estimate regression models of Predict physical
representation of chemical physical properties from data properties of new
compounds compounds
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[ Recommendation systems J

@
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Recommender systems:
Personalized information filter

= Amazon offers a list of products | am likely to buy (based on
my purchase history)

pe
amazoncop PAZFT  Amameti ol 2H8 SMLE-A 0 HET-E2 =
e
hyay- e TAITHT. AN e aTCIm \2! LA
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Ubiquitous recommender systems:
Recommender systems are present everywhere

= A major battlefield of machine learning algorithms

— 2006-2009: Netflix challenge (with S100 million prize)

= Recommender systems are present everywhere:

— Product recommendation
in online shopping stores

— Friend recommendation on SNSs

— Information recommendation
(news, music, ...)
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A formulation of recommendation problem:
Matrix completion

= A matrix with rows (customers) and columns (products)

— Each element = review score € {1,2,3,4,5,7}

= Given observed parts of the matrix,
predict the unknown parts (| ? | )

@ \J"T(,Qi product }
? 5

?

4 ? L review }

=
S| 2 2 ~
o . 3 . 5

[ customer %‘&3 1

A

o

{ )
- 2

S ?

N
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Basic idea of recommendation algorithms:

“Find people like you”

" Grouplens: an earliest algorithm (for news recommendation)

— Inherited by MovielLens (for Movie recommendation)

" Find people similar to the target customer, and
predict missing reviews with theirs

[ target e
customer “

A similar ™~
[ customer j>”

29

:

IT 0 Q

? 5 ? Missing review }
3|4 |57
3 ? 5
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GrouplLens:
Weighted prediction using correlations among customers

= Define customer similarity by correlation (of observed parts )

" Prediction by weighted averaging with correlations

Vij = ¥i + Z Tige ( Vij —
_— kiif—Péﬁ\ correlation

[ Mean score of user i J L between users i and k

Mean score of customer k

[Ej albp
e
o >
correlation@ - ' > 3
% 3 4 |4 5 weighted
averagin
correlation - eing
o 3 ? 5
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Low-rank assumption for matrix completion:
GrouplLens implicitly assumes low-rank matrices

=  Assumption of Grouplens algorithm:
Each row is represented by a linear combination of the other

rows (i.e. linearly dependent)

= The matrix is not full-rank (= low-rank)

" Low-rank assumption helps matrix completion
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Low-rank matrix factorization:

Projection onto low-dimensional latent space
" Low-rank matrix: product of two (thin) matrices

product

U

customer X

L]T'

} rank k

m parameters}

= Eachrowof UandV is an embedding of each customer (or
product) onto low-dimensional latent space

-

— Similar users/items are put ¢

close to each other
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Low-rank matrix decomposition methods:

Singular value decomposition (SVD)

" Find a best low-rank approximation of a given matrix

minimize | X —¥ 12 s.t. rank(Y) < k

= Singular value decomposition (SVD)

X

Approx.

U

B

VT

Diagonal matrix }

3 (singular values)

w.r.t. the constraints: U'U = I, V'V = I

— The k leading eigenvectors of X' X best approximate
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Strategies for matrices with missing values:
EM algorithm, gradient descent, and trace norm

= SVDis not directly applicable to matrices with missing values

— Our goal is to fill in missing values in a partially observed
matrix

= For completion problem:
— Direct application of SVD to a (somehow) filled matrix

— lterative applications: iterations of completion and
decomposition

= For large scale data:
Gradient descent using only observed parts

= Convex formulation: Trace norm constraint
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Predicting more complex relations:
Multinomial relations

= Matrices can represent only one kind of relations

— Various kinds of relations (actions):
Review scores, purchases, browsing product information, ...

— Correlations among actions might help

= Multinomial relations:

— (customer, product, action)-relation:
(Alice, iPad, buy) represents “Alice bought an iPad.”

— (customer, product, time)-relation:
(John, iPad, July 12t") represents “John bought an iPad on
July 12th.”
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Multi-dimensional arrays:
Representation of multinomial relations

= Multidimensional array: Representation of complex relations
among multiple objects

—Types of relations (actions, time, conditions, ...)

—Relations among more than two objects

= Hypergraph: allows variable number of objects involved in
relations

time hyper-edge
productw g [ yP \gJ_J ﬁ
P o
customer
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Tensor decomposition:
Generalization of low-rank matrix decomposition

= Generalization of matrix decomposition to multidimensional
arrays

— A small core tensor and multiple factor matrices

= Increasingly popular in machine learning/data mining

[ singular values [factor matrix} [ factor m&
N W

X ~ U il :>X ~ Ul [gll |V

Singular value decomposition  Tensor decompositio

core tensor




Tensor decompositions:
CP decomposition and Tucker decomposition

= CP decomposition: A natural extension of SVD
(with a diagonal core)

" Tucker decomposition: A more compact model
(with a dense core)

diagonal core dense core
tensor tensor
W W
X ~ U \V/ X ~ (U G \V}
CP decomposition Tucker decomposition
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Applications of tensor decomposition:
Tag recommendation, social network analysis, ...

= Personalized tag recommendation (userxwebpagextag)

— predicts tags a user gives a webpage

= Social network analysis (userxuserXxtime)

— analyzes time-variant relationships

= Web link analysis
(webpagexwebpagexanchor text)

= |mage analysis (imageXpersonxanglexlightx...)
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[ Anomaly detection J
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Anomaly detection:
Early warning for system failures reduces costs

= A failure of a large system can cause a huge loss

— Breakdown of production lines in a factory, infection of computer
virus/intrusion to computer systems, credit card fraud, terrorism, ...

= Modern systems have many sensors to collect data

= Early detection of failures from data collected from sensors

Production line Time series data
/\.Z & s from sensors Early detection of
y S , ~ serious system failures
L We— Sk 2 >
> 3 ; .
> ) TN
Automobile > = —— Anomaly detection

.........

KYOTO UNIVERSITY



Anomaly detection techniques:
Find “abnormal” behaviors in data

=" We want to find precursors of failures in data

—Assumption: Precursors of failures are hiding in data

= Anomaly: An “abnormal” patterns appearing in data

—In a broad sense, state changes are also included:
appearance of news topics, configuration changes, ...

= Anomaly detection techniques find such patterns from data
and report them to system administrators
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Difficulty in anomaly detection:
Failures are rare events

" |f target failures are known ones, they are detected by using
supervised learning:

1. Construct a predictive model from past failure data

2. Apply the model to system monitoring

" However, serious failures are usually rare, and often new ones
— (Almost) no past data are available

= Supervised learning is not applicable
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An alternative idea:
Model the normal times, detect deviations from them

= Difficult to model anomalies > Model normal times

—Data at normal times are abundant

" Report “strange” data according to the normal time model

—QObservation of rare data is a precursor of failures

Production I|ne Time series data
y VeV from sensors
"/.*: R 9 —— > e e
| Model Detection

Vv Vv

utomobile jias e e normz.all * Rare observations
s behaviors * Drastic changes
% -
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A simple unsupervised approach:
Anomaly detection using thresholds

" Suppose a 1-dimensional case (e.g. temperature)
" Find the value range of the normal data (e.g. 20-50 °C)

" Detect values deviates from the range, and report them as
anomalies (e.g. 80°C is not in the normal range)

? anomaly \

\/ ]
minimum 25%-til7 75%-tile maximum
median mean BOX plOt

45 KYoTo UNIVERSITY




Clustering for high-dimensional anomaly detection:
Model the normal times by grouping the data

" More complex cases:
—Multi-dimensional data
—Several operation modes in the systems
= Divide normal time data {x(V), x®, ..., x(")} into K groups

—Groups are represented by centers {uY, n(®, .., p¥

® x@
x@) © E)
@ x(2)
4 e
6 X
ﬂ:raffic volumes among X( ‘
computers,
command/message (7) O
frequencies, X O (8)
averages/variances/cor X
relations of sensor

measurements
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47

Clustering for high-dimensional anomaly detection:
Find anomalies not belonging to the groups

= Divide normal time data {x(l),x(z), ...,X(N)} into K groups
—Groups are represented by centers {pY, n(?, ..., p€1}

" Data x is an “outlier” if it lies far from all of the centers
= system failures, illegal operations, instrument faults

“typical” data J

S

X
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K-means algorithm:
Iterative refinement of groups

= Repeat until convergence:
1. Assign each data x() to its nearest center u(")

(2)
H ®

2. Update each center to the center of the assigned data

2 e
e
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Anomaly detection in time series:
On-line anomaly detection

" Most anomaly detection applications require real-time system
monitoring

= Data instances arrive in a streaming manner:
—xM x@ x® - ateachtimet, new data x(V arrives
" Each time a new data arrives, evaluate its anomaly

" Also, models are updated in on-line manners:

—In the one dimensional case, the threshold is sequentially
updated

—In clustering, groups (clusters) are sequentially updated
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Sequential K-means:
Simultaneous estimation of clusters and outliers

= Data arrives in a streaming manner, and
apply clustering and anomaly detection at the same time

1. Assign each data x() to its nearest center u(")

Nno)
(1) (D) 3 O
1 X (3)
o e ) f the di slarge,
@ the distance is large,
report the data as an
anomaly
2. Slightly move the center to the data J
(3)
@ _M
e
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Limitation of unsupervised anomaly detection:
Details of failures are unknown

" |n supervised anomaly detection, we know what the failures
are

" |n unsupervised anomaly detection,
we can know something is happening in the data,
but cannot know what it is

—Failures are not defined in advance

= Based on the reports to system administrators,
they have to investigate what is happening, what are the
reasons, and what they should do
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[ Recent topics J
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Emergence of deep learning:
Significant improvement of prediction accuracy

= Artificial neural networks were hot in 1980s, but burnt low
after that...

" |n 2012, a deep NN system won in the ILSVRC image
recognition competition with 10% improvement

" Major IT companies (such as Google and Facebook) invest
much in deep learning technologies

= Big trend in machine learning research
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Deep neural network:
Deeply stacked NN for high representational power

" Essentially, multi-layer neural networks

—Regarded as stacked linear classification models

e First to semi-final layers bear feature extraction
e Final layer makes predictions

= Deep stacking introduces high non-linearity in the model and

ensures high representational power
sign()

X W11
>'1 + = X W sign()
X Wqy — |
: - >: — 0
W21 > 4+ ‘e | X w,
X Wy

Y Y
1st layer 2nd (final) layer
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A model for classification:
Linear classification model

= Model f takes an input X = (x, x5, ..., xp)" and
outputs a value from {+1, —1}

f(x) =sign(wyx; + wox, + -+ wpxp)

—Model parameter w = (wy, Wy, ...,wp)" € R”_:
~ * Wy : contribution of x,; to the output
(x4 > 0 contributes to +1, x; < 0 contributes to -1)

Age (x X Wq

sign()
Income @—1 X W, ! + S —’@ Buy / Not buy

‘\ Blood pressure X W3
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What is the difference from the past NN?:
Deep structures and new techniques with modern flavors

= Differences from the ancient NNs:
—Far more computational resources are available now

—Deep network structure: from wide-and-shallow to narrow-
and-deep

—New techniques: Dropout, RelLU, batch normalization,
adversarial learning, ...

= Unfortunately we will not cover DNNs in this lecture ....
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