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Nonlinear regression:
Introducing nonlinearity in linear models

" |n the previous lecture, we saw several ways to introduce non-
linearity into linear models by introducing nonlinear basis
functions:

1. Transformed features:
— e.g.x —logx
2. Cross terms:
— €.8.X1,Xy = X1X>
3. Kernel methods:

— X = @(x) (nonlinear mapping to a high-dimensional space)
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Dual form of ridge regression:
Parameters as a linear combination of input vectors
= Ridge regression:

—Prediction model: y = w'x
O ntirmioati : _ VN () _ T} 2
Optimization problem: L(w) = X~ (y wTxW)" + A||w]|3

= Now, we assume that the parameter can be represented as

a linear combination of the input vectors: w = Z?’zl aix(i)

~T
—Prediction model: y = YV a;xV " x
—Optimization problem:

L(a) =3V (y(‘)—Z,_ ax(l)Tx(J)) FAYY, SN L ayax®TxO)

—Note that a = (a4, ..., ay) is the model parameter now
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Kernel ridge regression:
Ridge regression using kernel function (inner product)

= Observation: inputs are always accessed through inner product

—Prediction model: y = Y. 1alx(i)Tx

—Optimization problem:
L) =3, (y® — N a;x)” x(‘)) + AT SN aax @ xO)

= Kernel ridge regression:

. . . That’s okay...
—The inner product is called kernel function [ but, so what??

—Prediction model: y = ¥, a; K(x, x) % 4

—Optimization problem: d
Lla) = §V=1(y(i) _ 2 a K(X(J) X(l))) + /12 12 L a; a]K(x(‘) X(]))
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Advantage of kernel function:
Introducing non-linearity in linear models

= Consider a (nonlinear) mapping ¢: R? > RP’
—D-dimensional space to D' (>> D)-dimensional space

—Vector X is mapped to a high-dimensional vector ¢p(x)

. T . . . .
—A linear model y = w' ¢(x) in the D’-dimensional space is a
non-linear model in the original D-dimensional space

* Define kernel K(X(i),x(j)) = qb(x(i))T([)(x(j))
as the inner product in the D’-dimensional space
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Advantage of kernel methods:
Computationally efficient (when D’ is large)

= Kernel function: the inner product of two mapped input vectors
K(x®, x0) = ¢(X<i>)T¢(X(j>)
= Usually, computational cost of K should depend on D'

—D' can be high-dimensional (possibly infinite dimensional)

T .
= But, if we can somehow compute qb(x(‘)) d(x)) in time
depending on D, the dimension of ¢ does not matter

= Size of the model and optimization problem:
D' (number of dimensions) — N(number of data)

—Advantageous when D' is very large or infinite

7 KYOTO UNIVERSITY



Example of efficiently computable kernel functions:
Polynomial kernel can consider high-order cross terms

" Cross-term features: Not only the original features x4, x5, ..., Xp,
we use their cross terms (e.g. x;x, and x;x,Xx3 )

—If we consider M-th order cross terms, we have O(DM) terms

. . . . M
= Polynomial kernel: K(x(‘),x(f)) = (x(l)Tx(f) + c)

—E.g.whenc=0,M =2,D =2, 0 (xa))
xW =1
K(X(i)’x(j)) _ (x(l)xij) é‘)ng))

- 2 2 2 2
=(x£o ® \/_xf)xgl)) (9) 0 \/_xi”xé”)

—Note that it can be computed in O(D)
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Example of efficiently computable kernel functions:
Gaussian kernel has infinite dimensional feature space

||x<i>—x<f>||%)

o

" Gaussian kernel (RBF kernel):K(X(i),x(j)) = exp (—

—Can be interpreted as an inner product in an infinite-
dimensional space

Discrimination surface with Gaussian kernel
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1-d Gaussian kernel (RBF kernel)
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Kernel methods for non-vectorial data:
Kernels for sequences, trees, and graphs

= Kernel methods can handle any kinds of objects
(even non-vectorial objects)

—as far as efficiently computable kernel functions are available

—Kernels for strings, trees, and graphes, ...
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Representer theorem:
Theoretical underpinning of kernel methods

= Kernel methods rely on the assumption that the parameter is
represented as a linear combination of input vectors:

N
W = 2 C(l'X(i)
=1

—... but is this theoretically allowed?
= Representer theorem guarantees this, when

—Loss € for i-th data depends on w only through w'x®

. N 2
—L2-regularizer is used e.g. Squared loss: (y® — wTx®")
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(Simple) proof of representer theorem:
Obj. func. depends only on linear combination of inputs

= Objective function: L(w) = XN, £(wTx®) + A||lw/|3
= Divide the optimal parameter w* into two parts w + w+:
—W: Linear combination of input data {x(i)}i
—w+: Other parts (orthogonal to all input data {x(i)})
o L(w*) depends only on w: Y7, f(W*Tx(i)) + Alw*||5
z f wix® 4+ w x(‘)) + A(lwll5 + 2w Tw +||lw|[3)
— )~

0 =0 Minimizedto=0
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Kernel logistic regression:
Kernel-based nonlinear classification model

=" We can also “kernelize” the logistic regression

= Kernel logistic regression model:

1 1
f(y — 1|X) ~ 1+exp(-wTx) 1+exp(— Zliv=1 aiK(x(i)’X))

= Objective function of kernel (regularized) logistic regression:

L(aw) = Y% ln(l + exp( —y® Z]— “JK(X(O X(]))))
+A YN 1Z] 1 Qi a]K(x(l) xU))
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