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▪ In the previous lecture, we saw several ways to introduce non-
linearity into linear models by introducing nonlinear basis 
functions:

1. Transformed features: 

– e.g. 𝑥 → log 𝑥

2. Cross terms: 

– e.g. 𝑥1, 𝑥2 → 𝑥1𝑥2

3. Kernel methods: 

– 𝐱 → 𝝓(𝐱) (nonlinear mapping to a high-dimensional space)

Nonlinear regression:
Introducing nonlinearity in linear models
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▪ Ridge regression:

–Prediction model: 𝑦 = 𝐰⊤𝐱

–Optimization problem: 𝐿 𝐰 = σ𝑖=1
𝑁 𝑦 𝑖 −𝐰⊤𝐱 𝑖 2

+ 𝜆 𝐰 2
2

▪ Now, we assume that the parameter can be represented as 

a linear combination of the input vectors: 𝐰 = σ𝑖=1
𝑁 𝛼𝑖𝐱

𝑖

–Prediction model: 𝑦 = σ𝑖=1
𝑁 𝛼𝑖𝐱

𝑖 ⊤ 𝐱

–Optimization problem:

𝐿 𝛂 = σ𝑖=1
𝑁 𝑦 𝑖 − σ𝑗=1

𝑁 𝛼𝑗𝐱
𝑖 ⊤ 𝐱 𝑗

2

+ 𝜆σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝐱
𝑖 ⊤
𝐱 𝑗

–Note that 𝛂 = (𝛼1, … , 𝛼𝑁) is the model parameter now

Dual form of ridge regression:
Parameters as a linear combination of input vectors
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▪ Observation: inputs are always accessed through inner product

–Prediction model: 𝑦 = σ𝑖=1
𝑁 𝛼𝑖 𝐱

𝑖 ⊤
𝐱

–Optimization problem:

𝐿 𝛂 = σ𝑖=1
𝑁 𝑦 𝑖 −σ𝑗=1

𝑁 𝛼𝑗𝐱
𝑗 ⊤

𝐱 𝑖
2
+ 𝜆σ𝑖=1

𝑁 σ𝑗=1
𝑁 𝛼𝑖𝛼𝑗𝐱

𝑖 ⊤
𝐱 𝑗

▪ Kernel ridge regression:

–The inner product is called kernel function 

–Prediction model: 𝑦 = σ𝑖=1
𝑁 𝛼𝑖 𝐾 𝐱(𝑖), 𝐱

–Optimization problem:

𝐿 𝛂 = σ𝑖=1
𝑁 𝑦 𝑖 − σ𝑗=1

𝑁 𝛼𝑗𝐾 𝐱 𝑗 , 𝐱 𝑖 2
+ 𝜆σ𝑖=1

𝑁 σ𝑗=1
𝑁 𝛼𝑖𝛼𝑗𝐾 𝐱 𝑖 , 𝐱 𝑗

Kernel ridge regression:
Ridge regression using kernel function (inner product)

That’s okay… 
but, so what??
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▪ Consider a (nonlinear) mapping 𝝓:ℜ𝐷 → ℜ𝐷′

–𝐷-dimensional space to 𝐷′ ≫ 𝐷 -dimensional space

–Vector 𝐱 is mapped to a high-dimensional vector 𝝓(𝐱)

–A linear model 𝑦 = 𝐰′⊤𝝓(𝐱) in the 𝐷′-dimensional space is a 
non-linear model in the original 𝐷-dimensional space

▪ Define kernel 𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝝓 𝐱 𝑖 ⊤
𝝓(𝐱 𝑗 )

as the inner product in the 𝐷′-dimensional space

Advantage of kernel function:
Introducing non-linearity in linear models

https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:Kernel_Machine.svg
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▪ Kernel function: the inner product of two mapped input vectors

𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝝓 𝐱 𝑖 ⊤
𝝓(𝐱 𝑗 )

▪ Usually, computational cost of 𝐾 should depend on 𝐷′

–𝐷′ can be high-dimensional (possibly infinite dimensional)

▪ But, if we can somehow compute 𝝓 𝐱 𝑖 ⊤
𝝓(𝐱 𝑗 ) in time

depending on 𝐷, the dimension of 𝝓 does not matter

▪ Size of the model and optimization problem: 
𝐷′(number of dimensions) → 𝑁(number of data)

–Advantageous when 𝐷′ is very large or infinite

Advantage of kernel methods:
Computationally efficient (when 𝐷′ is large)
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▪ Cross-term features: Not only the original features 𝑥1, 𝑥2, … , 𝑥𝐷, 
we use their cross terms (e.g. 𝑥1𝑥2 and 𝑥1𝑥2𝑥3 ) 

– If we consider 𝑀-th order cross terms, we have O 𝐷𝑀 terms

▪ Polynomial kernel: 𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝐱 𝑖 ⊤𝐱 𝑗 + 𝑐
𝑀

–E.g. when 𝑐 = 0,𝑀 = 2, 𝐷 = 2,

𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝑥1
𝑖
𝑥1

𝑗
+ 𝑥2

𝑖
𝑥2

𝑗
2

= 𝑥1
𝑖 2
, 𝑥2

𝑖 2
, 2𝑥1

𝑖
𝑥2

𝑖
⊤

𝑥1
𝑗 2
, 𝑥2

𝑗 2
, 2𝑥1

𝑗
𝑥2

𝑗

–Note that it can be computed in O 𝐷

Example of efficiently computable kernel functions:
Polynomial kernel can consider high-order cross terms 

𝐱 𝑖 =
𝑥1
(𝑖)

𝑥2
(𝑖)
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▪ Gaussian kernel (RBF kernel):𝐾 𝐱 𝑖 , 𝐱 𝑗 = exp −
∥𝐱 𝑖 −𝐱 𝑗 ∥2

2

𝜎

–Can be interpreted as an inner product in an infinite-
dimensional space

Example of efficiently computable kernel functions:
Gaussian kernel has infinite dimensional feature space 

𝐱 𝑖 − 𝐱 𝑗http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Machi
neLearning&doc=exercises/ex8/ex8.html

1-d Gaussian kernel (RBF kernel)

Discrimination surface with Gaussian kernel
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▪ Kernel methods can handle any kinds of objects
(even non-vectorial objects) 

–as far as efficiently computable kernel functions are available

–Kernels for strings, trees, and graphs, …

Kernel methods for non-vectorial data:
Kernels for sequences, trees, and graphs

http://www.bic.kyoto-u.ac.jp/coe/img/akutsu_fig_e_02.gif
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▪ Kernel methods rely on the assumption that the parameter is 
represented as a linear combination of input vectors: 

𝐰 =෍

𝑖=1

𝑁

𝛼𝑖𝐱
𝑖

–… but is this theoretically allowed?

▪ Representer theorem guarantees this, when

–Loss ℓ for 𝑖-th data depends on 𝐰 only through 𝐰⊤𝐱 𝑖

–L2-regularizer is used

Representer theorem:
Theoretical underpinning of kernel methods

e.g. Squared loss: 𝑦 𝑖 −𝐰⊤𝐱 𝑖 2
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▪ Objective function: 𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝐰⊤𝐱 𝑖 + 𝜆 𝐰 2

2

▪ Divide the optimal parameter 𝐰∗ into two parts 𝐰+𝐰⊥:

–𝐰: Linear combination of input data 𝐱 𝑖
𝑖

–𝐰⊥: Other parts (orthogonal to all input data 𝐱 𝑖 )

▪ 𝐿 𝐰∗ depends only on 𝐰: σ𝑖=1
𝑁 ℓ 𝐰∗⊤𝐱 𝑖 + 𝜆 𝐰∗

2
2

=෍

𝑖=1

𝑁

ℓ 𝐰⊤𝐱 𝑖 +𝐰⊥⊤𝐱 𝑖 + 𝜆 𝐰 2
2 + 2𝐰⊤𝐰⊥ + 𝐰⊥

2
2

(Simple) proof of representer theorem:
Obj. func. depends only on linear combination of inputs

= 0 = 0 Minimized to = 0
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▪ We can also “kernelize” the logistic regression 

▪ Kernel logistic regression model: 

𝑓 𝑦 = 1 𝐱) =
1

1+exp −𝐰⊤𝐱
=

1

1+exp − σ𝑖=1
𝑁 𝛼𝑖𝐾 𝐱(𝑖),𝐱

▪ Objective function of kernel (regularized) logistic regression:

𝐿 𝛂 = σ𝑖=1
𝑁 ln 1 + exp −𝑦 𝑖 σ𝑗=1

𝑁 𝛼𝑗𝐾 𝐱 𝑖 , 𝐱 𝑗

+𝜆σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝐾 𝐱 𝑖 , 𝐱 𝑗

Kernel logistic regression:
Kernel-based nonlinear classification model


