

Statistical Learning Theory - Kernel Methods -

Hisashi Kashima

Kernel Methods

KYOTO UNIVERSITY

Nonlinear regression: Introducing nonlinearity in linear models

- In the previous lecture, we saw several ways to introduce nonlinearity into linear models by introducing nonlinear basis functions:
- 1. Transformed features:
 - e.g. $x \rightarrow \log x$
- 2. Cross terms:
 - $\text{ e.g. } x_1, x_2 \rightarrow x_1 x_2$
- 3. Kernel methods:
 - $\mathbf{x}
 ightarrow oldsymbol{\phi}(\mathbf{x})$ (nonlinear mapping to a high-dimensional space)

Dual form of ridge regression: Parameters as a linear combination of input vectors

Ridge regression:

-Prediction model: $y = \mathbf{w}^{\mathsf{T}} \mathbf{x}$

-Optimization problem: $L(\mathbf{w}) = \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})^2 + \lambda \|\mathbf{w}\|_2^2$

• Now, we assume that the parameter can be represented as a linear combination of the input vectors: $\mathbf{w} = \sum_{i=1}^{N} \alpha_i \mathbf{x}^{(i)}$

-Prediction model:
$$y = \sum_{i=1}^{N} \alpha_i \mathbf{x}^{(i)^{\top}} \mathbf{x}$$

-Optimization problem:

$$L(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=1}^{N} \alpha_j \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)} \right)^2 + \lambda \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$$

-Note that $\mathbf{\alpha} = (\alpha_1, ..., \alpha_N)$ is the model parameter now

Kernel ridge regression: Ridge regression using kernel function (inner product)

- Observation: inputs are always accessed through inner product
 - -Prediction model: $y = \sum_{i=1}^{N} \alpha_i \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}$
 - -Optimization problem:

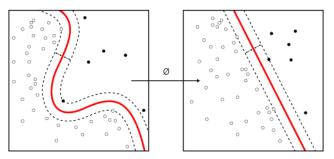
 $L(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=1}^{N} \alpha_j \mathbf{x}^{(j)^{\mathsf{T}}} \mathbf{x}^{(i)} \right)^2 + \lambda \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$

- Kernel ridge regression:
 - -The inner product is called *kernel function*
 - -Prediction model: $y = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}^{(i)}, \mathbf{x})$
 - -Optimization problem:

 $L(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=1}^{N} \alpha_j K(\mathbf{x}^{(j)}, \mathbf{x}^{(i)}) \right)^2 + \lambda \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$

Advantage of kernel function: Introducing non-linearity in linear models

- Consider a (nonlinear) mapping $\boldsymbol{\phi}: \mathfrak{R}^D \to \mathfrak{R}^{D'}$
 - -D-dimensional space to $D'(\gg D)$ -dimensional space
 - –Vector **x** is mapped to a high-dimensional vector $oldsymbol{\phi}(\mathbf{x})$
 - -A linear model $y = {\mathbf{w}'}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x})$ in the *D'*-dimensional space is a non-linear model in the original *D*-dimensional space



• Define kernel $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$ as the inner product in the *D'*-dimensional space

https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:Kernel_Machine.svg

Advantage of kernel methods: Computationally efficient (when D' is large)

- Kernel function: the inner product of two mapped input vectors $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$
- Usually, computational cost of K should depend on D'

-D' can be high-dimensional (possibly infinite dimensional)

- But, if we can somehow compute $\phi(\mathbf{x}^{(i)})'\phi(\mathbf{x}^{(j)})$ in time depending on D, the dimension of ϕ does not matter
- Size of the model and optimization problem: $D'(\text{number of dimensions}) \rightarrow N(\text{number of data})$

-Advantageous when D' is very large or infinite

Example of efficiently computable kernel functions: Polynomial kernel can consider high-order cross terms

- Cross-term features: Not only the original features $x_1, x_2, ..., x_D$, we use their cross terms (e.g. x_1x_2 and $x_1x_2x_3$)
 - -If we consider M-th order cross terms, we have $O(D^M)$ terms

• Polynomial kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)} + c)^{\mathsf{M}}$$

-E.g. when
$$c = 0, M = 2, D = 2,$$

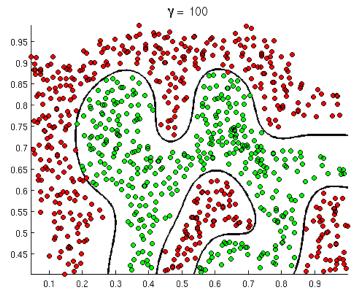
 $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (x_1^{(i)} x_1^{(j)} + x_2^{(i)} x_2^{(j)})^2$
 $\mathbf{x}^{(i)} = (x_1^{(i)^2}, x_2^{(i)^2}, \sqrt{2x_1^{(i)}x_2^{(i)}})^T$
 $(x_1^{(j)^2}, x_2^{(j)^2}, \sqrt{2x_1^{(j)}x_2^{(j)}})^T$

-Note that it can be computed in O(D)

Example of efficiently computable kernel functions: Gaussian kernel has infinite dimensional feature space

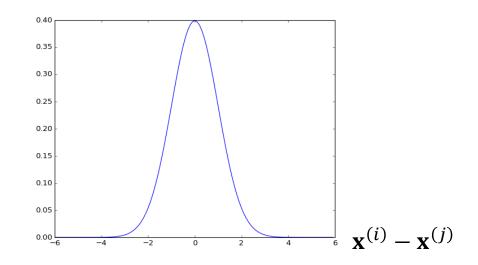
- Gaussian kernel (RBF kernel): $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{\|\mathbf{x}^{(i)} \mathbf{x}^{(j)}\|_2^2}{\sigma}\right)$
 - Can be interpreted as an inner product in an infinitedimensional space

Discrimination surface with Gaussian kernel



http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Machi neLearning&doc=exercises/ex8/ex8.html

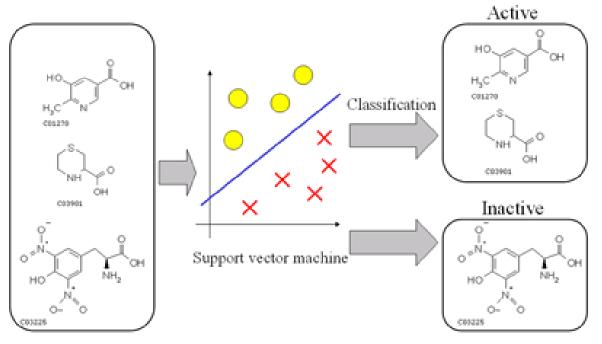
1-d Gaussian kernel (RBF kernel)



KYOTO UNIVERSITY

Kernel methods for non-vectorial data: Kernels for sequences, trees, and graphs

- Kernel methods can handle any kinds of objects (even non-vectorial objects)
 - -as far as efficiently computable kernel functions are available
 - -Kernels for strings, trees, and graphs, ...



http://www.bic.kyoto-u.ac.jp/coe/img/akutsu_fig_e_02.gif

KYOTO UNIVERSITY

Representer theorem: Theoretical underpinning of kernel methods

Kernel methods rely on the assumption that the parameter is represented as a linear combination of input vectors:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i \mathbf{x}^{(i)}$$

- -... but is this theoretically allowed?
- Representer theorem guarantees this, when
 - -Loss ℓ for *i*-th data depends on **w** only through $\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}$
 - -L2-regularizer is used e.g. Squared loss: $(y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})^2$

(Simple) proof of representer theorem: Obj. func. depends only on linear combination of inputs

- Objective function: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda \|\mathbf{w}\|_{2}^{2}$
- Divide the optimal parameter \mathbf{w}^* into two parts $\mathbf{w} + \mathbf{w}^{\perp}$:

-w: Linear combination of input data $\{\mathbf{x}^{(i)}\}_{i}$

 $-\mathbf{w}^{\perp}$: Other parts (orthogonal to all input data $\{\mathbf{x}^{(i)}\}$)

•
$$L(\mathbf{w}^*)$$
 depends only on \mathbf{w} : $\sum_{i=1}^N \ell(\mathbf{w}^{*\top}\mathbf{x}^{(i)}) + \lambda \|\mathbf{w}^*\|_2^2$

$$= \sum_{i=1}^N \ell(\mathbf{w}^{\top}\mathbf{x}^{(i)} + \mathbf{w}^{\perp\top}\mathbf{x}^{(i)}) + \lambda(\|\mathbf{w}\|_2^2 + 2\mathbf{w}^{\top}\mathbf{w}^{\perp} + \|\mathbf{w}^{\perp}\|_2^2)$$

$$= 0$$
Minimized to $= 0$

Kernel logistic regression: Kernel-based nonlinear classification model

- We can also "kernelize" the logistic regression
- Kernel logistic regression model:

$$f(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})} = \frac{1}{1 + \exp\left(-\sum_{i=1}^{N} \alpha_i K\left(\mathbf{x}^{(i)}, \mathbf{x}\right)\right)}$$

• Objective function of kernel (regularized) logistic regression: $L(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)} \sum_{j=1}^{N} \alpha_j K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})))$ $+\lambda \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$