
1 KYOTO UNIVERSITY

KYOTO UNIVERSITY

DEPARTMENT OF INTELLIGENCE SCIENCE

AND TECHNOLOGY

Statistical Learning Theory
- Classification -

Hisashi Kashima

2 KYOTO UNIVERSITY

Classification

3 KYOTO UNIVERSITY

▪ Goal: Obtain a function 𝑓: 𝒳 → 𝒴 (𝒴: discrete domain)

–E.g. 𝑥 ∈ 𝒳 is an image and 𝑦 ∈ 𝒴 is the type of object
appearing in the image

–Two-class classification: 𝒴 = {+1, −1}

▪ Training dataset:
𝑁 pairs of an input and an output

𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

Classification:
Supervised learning for predicting discrete variable

http://www.vision.caltech.edu/Image_Datasets/Caltech256/

4 KYOTO UNIVERSITY

▪ Binary (two-class)classification:

– Purchase prediction: Predict if a customer 𝐱 will buy a particular product
(+1) or not (-1)

– Credit risk prediction: Predict if a obligor 𝐱 will pay back a debt (+1) or
not (-1)

▪ Multi-class classification (≠ Multi-label classification):

– Text classification: Categorize a document 𝐱 into one of several
categories, e.g., {politics, economy, sports, …}

– Image classification: Categorize the object in an image 𝐱 into one of
several object names, e.g., {AK5, American flag, backpack, …}

– Action recognition: Recognize the action type ({running, walking,
sitting, …}) that a person is taking from sensor data 𝐱

Some applications of classification:
From binary to multi-class classification

5 KYOTO UNIVERSITY

▪ Linear (binary) classification model:
𝑦 = sign 𝐰⊤𝐱 = sign 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝐷𝑥𝐷

– 𝐰⊤𝐱 indicates the intensity of belief

–𝐰⊤𝐱 = 0 gives a separating hyperplane

–𝐰: normal vector perpendicular to the separating hyperplane

Model for classification:
Linear classifier

𝑥1

𝑥2

𝐰 = 𝑤1, 𝑤2

𝐰⊤𝐱 = 0

𝐰⊤𝐱 > 0

𝐰⊤𝐱 < 0

𝑦 = +1

𝑦 = −1

6 KYOTO UNIVERSITY

▪ Two learning frameworks

1. Loss minimization: 𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖

• Loss function ℓ: directly handles utility of predictions

• Regularization term 𝑅 𝐰

2. Statistical estimation (likelihood maximization):

𝐿 𝐰 = ς𝑖=1
𝑁 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖))

• Probabilistic model: generation process of class labels

• Prior distribution 𝑃 𝐰

▪ They are often equivalent :

Learning framework:
Loss minimization and statistical estimation

ቊ
Loss = Probabilistic model

Regularization = Prior

7 KYOTO UNIVERSITY

▪ Minimization problem: 𝐰∗ = argmin𝐰 𝐿 𝐰 + 𝑅(𝐰)

–Loss function 𝐿 𝐰 : Fitness to training data

–Regularization term 𝑅(𝐰) : Penalty on the model complexity
to avoid overfitting to training data (usually norm of 𝐰)

▪ Loss function should reflect the number of misclassifications on
training data

–Zero-one loss:

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 = ൞
0 𝑦 𝑖 = sign 𝐰⊤𝐱 𝑖

1 𝑦 𝑖 ≠ sign 𝐰⊤𝐱 𝑖

Classification problem in loss minimization framework:
Minimize loss function + regularization term

Correct classification

Incorrect classification

8 KYOTO UNIVERSITY

▪ Zero-one loss: ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 = ൝
0 𝑦 𝑖 𝐰⊤𝐱 𝑖 > 0

1 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 0

▪ Non-convex function is hard to optimize directly

Zero-one loss:
Number of misclassification is hard to minimize

𝑦 𝑖 𝐰⊤𝐱 𝑖

Correct classificationMisclassification

ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖
Non-convex

9 KYOTO UNIVERSITY

▪ Convex surrogates: Upper bounds of zero-one loss

–Hinge loss → SVM, Logistic loss → logistic regression, ...

Convex surrogates of zero-one loss:
Different functions lead to different learning machines

Squared loss

Logistic loss

Hinge loss

𝑦 𝑖 𝐰⊤𝐱 𝑖

Instead of directly minimizing zero-one loss,
we minimize its upper bound

10 KYOTO UNIVERSITY

Logistic regression

11 KYOTO UNIVERSITY

▪ Logistic loss:

ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 =
1

ln2
ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖

▪ (Regularized) Logistic regression:

𝐰∗ = argmin𝐰

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

Logistic regression:
Minimization of logistic loss is a convex optimization

Logistic loss
𝑦 𝑖 𝐰⊤𝐱 𝑖

Convex

12 KYOTO UNIVERSITY

▪ Minimization of logistic loss is equivalent to maximum
likelihood estimation of logistic regression model

▪ Logistic regression model (conditional probability):

𝑓𝐰 𝑦 = 1 𝐱) = 𝜎(𝐰⊤𝐱) =
1

1+exp −𝐰⊤𝐱

• 𝜎: Logistic function (𝜎: ℜ → 0,1)

▪ Log likelihood:

𝐿 𝐰 =

𝑖=1

𝑁

log 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖)) = −

𝑖=1

𝑁

log 1 + exp −𝑦(𝑖)𝐰⊤𝐱

=

𝑖=1

𝑁

𝛿 𝑦 𝑖 = 1 log
1

1 + exp −𝐰⊤𝐱
+ 𝛿 𝑦 𝑖 = −1 log 1 −

1

1 + exp −𝐰⊤𝐱

Statistical interpretation:
Logistic loss min. as MLE of logistic regression model

𝐰⊤𝐱

𝜎

13 KYOTO UNIVERSITY

▪ Objective function of (regularized) logistic regression:

𝐿 𝐰 =

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

▪ Minimization of logistic loss / MLE of logistic regression model
has no closed form solution

▪ Numerical nonlinear optimization methods are used

– Iterate parameter updates: 𝐰NEW ← 𝐰 + 𝐝

Parameter estimation of logistic regression :
Numerical nonlinear optimization

𝐰 𝐰 + 𝐝
𝐝

14 KYOTO UNIVERSITY

▪ By update 𝐰NEW ← 𝐰 + 𝐝, the objective function will be:

𝐿𝐰 𝐝 =

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 (𝐰 + 𝐝)⊤𝐱(𝑖) + 𝜆 𝐰 + 𝐝 2
2

▪ Find 𝐝∗ that minimizes 𝐿𝐰 𝐝 :

–𝐝∗ = argmin𝐝 𝐿𝐰 𝐝

Parameter update :
Find the best update minimizing the objective function

15 KYOTO UNIVERSITY

▪ Taylor expansion:

𝐿𝐰 𝐝 = 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

–Gradient vector: 𝛻𝐿 𝐰 =
𝜕𝐿 𝐰

𝜕𝑤1
,

𝜕𝐿 𝐰

𝜕𝑤2
, … ,

𝜕𝐿 𝐰

𝜕𝑤𝐷

⊤

• Steepest direction

–Hessian matrix: 𝐻 𝐰 𝑖,𝑗 =
𝜕2𝐿 𝐰

𝜕𝑤𝑖𝜕𝑤𝑗

Finding the best parameter update :
Approximate the objective with Taylor expansion

3rd-order term

16 KYOTO UNIVERSITY

▪ Approximated Taylor expansion (neglecting the 3rd order term):

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

▪ Derivative w.r.t. 𝐝:
𝜕𝐿𝐰 𝐝

𝜕𝐝
≈ 𝛻𝐿 𝐰 + 𝑯 𝐰 𝐝

▪ Setting it to be 𝟎, we obtain 𝐝 = −𝑯 𝐰 −1𝛻𝐿 𝐰

▪ Newton update formula:
𝐰NEW ← 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰

Newton update :
Minimizes the second order approximation

𝐰 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰
−𝑯 𝐰 −1𝛻𝐿 𝐰

17 KYOTO UNIVERSITY

▪ The correctness of the update 𝐰NEW ← 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰
depends on the second-order approximation:

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝

–This is not actually true for most cases

▪ Use only the direction of 𝑯 𝐰 −1𝛻𝐿 𝐰 and update with
𝐰NEW ← 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

▪ Learning rate 𝜂 > 0 is determined by linear search:

𝜂∗ = argmax𝜂 𝐿 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

Modified Newton update:
Second order approximation + linear search

18 KYOTO UNIVERSITY

▪ Computing the inverse of Hessian matrix is costly

–Newton update: 𝐰NEW ← 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

▪ (Steepest) gradient descent:

–Replacing 𝑯 𝐰 −1 with 𝑰 gives
𝐰NEW ← 𝐰 − 𝜂𝛻𝐿 𝐰

• 𝛻𝐿 𝐰 is the steepest direction

• Learning rate 𝜂 is determined by line search

(Steepest) gradient descent:
Simple update without computing inverse Hessian

𝐰 𝐰 − 𝜂𝛻𝐿 𝐰
−𝜂𝛻𝐿 𝐰

Gradient of
objective function

19 KYOTO UNIVERSITY

▪ Steepest gradient descent is the simplest optimization method:

▪ Update the parameter in the steepest direction of the objective
function

𝐰NEW ← 𝐰 − 𝜂𝛻𝐿 𝐰

–Gradient: 𝛻𝐿 𝐰 =
𝜕𝐿 𝐰

𝜕𝑤1
,

𝜕𝐿 𝐰

𝜕𝑤2
, … ,

𝜕𝐿 𝐰

𝜕𝑤𝐷

⊤

–Learning rate 𝜂 is determined by line search

Summary:
Gradient descent

𝐰 𝐰 − 𝜂𝛻𝐿 𝐰
−𝜂𝛻𝐿 𝐰

20 KYOTO UNIVERSITY

▪ 𝐿 𝐰 = σ𝑖=1
𝑁 ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

▪
𝜕𝐿 𝐰

𝜕𝐰
= σ𝑖=1

𝑁 1

1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

𝜕 1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

𝜕𝐰

= −

𝑖=1

𝑁
1

1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖
exp −𝑦 𝑖 𝐰⊤𝐱 𝑖 𝑦 𝑖 𝐱 𝑖

= −

𝑖=1

𝑁

(1 − 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖))) 𝑦 𝑖 𝐱 𝑖

Example of gradient descent:
Gradient of logistic regression

Can be easily computed with the
current prediction probabilities

21 KYOTO UNIVERSITY

▪ Objective function for 𝑁 instances:

𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝐰⊤𝐱 𝑖 + 𝜆𝑅 𝐰

▪ Its derivative
𝜕𝐿 𝐰

𝜕𝐰
= σ𝑖=1

𝑁 𝜕ℓ 𝐰⊤𝐱 𝑖

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
needs 𝑂 𝑁

computation

▪ Approximate this with only one instance:
𝜕𝐿 𝐰

𝜕𝐰
≈ 𝑁

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Stochastic approximation)

▪ Also we can do this with 1 < 𝑀 < 𝑁 instances:
𝜕𝐿 𝐰

𝜕𝐰
≈

𝑁

𝑀
σ𝑗∈MiniBatch

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Mini batch)

Mini batch optimization:
Efficient training using data subsets

22 KYOTO UNIVERSITY

Model Evaluation

23 KYOTO UNIVERSITY

▪ Once you obtain a trained model, you want to deploy the
model in your application

▪ How well will the model perform? - We are interested in the
future performance of the obtained model when it is deployed

–How many mistakes will the model make in future?

▪ Even the model performs perfectly on the training data,
the same performance is not guaranteed for future data

▪ “Model evaluation” problem

Model evaluation:
How can we know the “real” performance of a model?

24 KYOTO UNIVERSITY

▪ You must not evaluate your classifier based on the
performance on the dataset you already used for training

▪ The performance of a model for the training data is not an
estimate of its true performance

– If you memorize all the answers of the training dataset,
you will always be correct for them

–… but there is no guarantee that you will be so for future
data

The first principle:
Evaluation must use a dataset not used in training

25 KYOTO UNIVERSITY

▪ Divide the dataset into a training dataset and a test dataset

1. Train a classifier using the training dataset

2. Evaluate its performance on the test dataset

▪ This is simulating a real application scenario using only the
dataset at hand (without using real future data)

A simplest solution for model evaluation:
Secure some data for performance evaluation

Whole data

Training dataset Test dataset

26 KYOTO UNIVERSITY

▪ Now you have 98％ prediction accuracy on your test data
… How much can you believe this?

– Isn't it simply a lucky coincidence?

▪ Why not just repeat the random separation of training data and
test data?

Reliability of test performance:
How much can we trust the estimated performance?

Whole data

Training dataset Test dataset

98% correct!!

27 KYOTO UNIVERSITY

▪ Divide a given dataset into K non-overlapping sets

–Use 𝐾 − 1 of them for training

–Use the remaining one for testing

▪ Changing the test dataset results in 𝐾 measurements

–Take their average to get a final performance estimate

A statistical framework for performance evaluation:
Cross validation

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

…

Averaged
Performance

28 KYOTO UNIVERSITY

Model Selection

29 KYOTO UNIVERSITY

▪ We often have some hyper-parameters to be tuned so that the
final performance gets better

–E.g. Training target of the ridge regression:

minimize𝐰 𝐲 − 𝑿𝐰 2
2 + 𝜆 𝐰 2

2

–Hyper-parameters are not optimized in the training

• Joint optimization just gives a trivial solution 𝜆 = 0

Model selection:
How can we tune the hyperparameters?

Hyperparameter

30 KYOTO UNIVERSITY

▪ (𝐾-fold) cross validation can also be used for determining
hyper parameters

–Use 𝐾 − 1 of 𝐾 sets for training models for various hyper-
parameter settings

–Use the remaining one for testing

–Choose the hyper-parameter setting with the best averaged
performance

• Note that this is NOT the estimate of its final performance

Statistical framework for tuning hyper-parameters:
Cross validation (again)

31 KYOTO UNIVERSITY

▪ Sometimes you want to do both hyper-parameter tuning and
estimation of future performance

▪ Doing both with one 𝐾-fold cross validation is guilty

–You saw the test dataset for tuning hyper-parameters

▪ Double-loop cross validation:

–Outer loop for performance evaluation

– Inner loop for hyper-parameter tuning

–High computational costs…

Double-loop cross validation: Tuning hyper-parameters
and performance evaluation at the same time

32 KYOTO UNIVERSITY

▪ A simple alternative for the double-loop cross validation

▪ “Development set” approach

–Use 𝐾 − 2 of 𝐾 sets for training

–Use one for tuning hyper-parameters

–Use one for testing

A simple alternative of double-loop cross validation:
“Development set” approach

Whole data

Training Development Test

	スライド 1: Statistical Learning Theory - Classification -
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32

