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▪ Goal: Obtain a function 𝑓: 𝒳 → 𝒴 (𝒴: discrete domain)

–E.g. 𝑥 ∈ 𝒳 is an image and 𝑦 ∈ 𝒴 is the type of object 
appearing in the image

–Two-class classification: 𝒴 = {+1, −1}

▪ Training dataset: 
𝑁 pairs of an input and an output

𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

Classification:
Supervised learning for predicting discrete variable

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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▪ Binary (two-class)classification: 

– Purchase prediction: Predict if a customer 𝐱 will buy a particular product 
(+1) or not (-1)

– Credit risk prediction: Predict if a obligor 𝐱 will pay back a debt (+1) or 
not (-1)

▪ Multi-class classification (≠ Multi-label classification): 

– Text classification: Categorize a document 𝐱 into one of several 
categories, e.g., {politics, economy, sports, …}

– Image classification: Categorize the object in an image 𝐱 into one of 
several object names, e.g., {AK5, American flag, backpack, …}

– Action recognition: Recognize the action type ({running, walking, 
sitting, …}) that a person is taking from sensor data 𝐱

Some applications of classification:
From binary to multi-class classification



5 KYOTO UNIVERSITY

▪ Linear (binary) classification model:
𝑦 = sign 𝐰⊤𝐱 = sign 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝐷𝑥𝐷

– 𝐰⊤𝐱 indicates the intensity of belief 

–𝐰⊤𝐱 = 0 gives a separating hyperplane

–𝐰: normal vector perpendicular to the separating hyperplane

Model for classification:
Linear classifier

𝑥1

𝑥2

𝐰 = 𝑤1, 𝑤2

𝐰⊤𝐱 = 0

𝐰⊤𝐱 > 0

𝐰⊤𝐱 < 0

𝑦 = +1

𝑦 = −1
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▪ Two learning frameworks

1. Loss minimization: 𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖

• Loss function ℓ: directly handles utility of predictions

• Regularization term 𝑅 𝐰

2. Statistical estimation (likelihood maximization):         

𝐿 𝐰 = ς𝑖=1
𝑁 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖))

• Probabilistic model: generation process of class labels 

• Prior distribution 𝑃 𝐰

▪ They are often equivalent :

Learning framework:
Loss minimization and statistical estimation

ቊ
Loss = Probabilistic model

Regularization = Prior
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▪ Minimization problem: 𝐰∗ = argmin𝐰 𝐿 𝐰 + 𝑅(𝐰)

–Loss function 𝐿 𝐰 : Fitness to training data

–Regularization term 𝑅(𝐰) : Penalty on the model complexity 
to avoid overfitting to training data (usually norm of 𝐰)

▪ Loss function should reflect the number of misclassifications on 
training data

–Zero-one loss: 

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 = ൞
0 𝑦 𝑖 = sign 𝐰⊤𝐱 𝑖

1 𝑦 𝑖 ≠ sign 𝐰⊤𝐱 𝑖

Classification problem in loss minimization framework:
Minimize loss function + regularization term

Correct classification

Incorrect classification
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▪ Zero-one loss: ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 = ൝
0 𝑦 𝑖 𝐰⊤𝐱 𝑖 > 0

1 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 0

▪ Non-convex function is hard to optimize directly

Zero-one loss:
Number of misclassification is hard to minimize

𝑦 𝑖 𝐰⊤𝐱 𝑖

Correct classificationMisclassification

ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖
Non-convex
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▪ Convex surrogates: Upper bounds of zero-one loss 

–Hinge loss → SVM, Logistic loss → logistic regression, ...

Convex surrogates of zero-one loss:
Different functions lead to different learning machines

Squared loss

Logistic loss

Hinge loss

𝑦 𝑖 𝐰⊤𝐱 𝑖

Instead of directly minimizing zero-one loss, 
we minimize its upper bound
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Logistic regression
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▪ Logistic loss: 

ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 =
1

ln2
ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖

▪ (Regularized) Logistic regression: 

𝐰∗ = argmin𝐰 

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

Logistic regression:
Minimization of logistic loss is a convex optimization

Logistic loss
𝑦 𝑖 𝐰⊤𝐱 𝑖

Convex
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▪ Minimization of logistic loss is equivalent to maximum 
likelihood estimation of logistic regression model

▪ Logistic regression model (conditional probability): 

𝑓𝐰 𝑦 = 1 𝐱) = 𝜎(𝐰⊤𝐱) =
1

1+exp −𝐰⊤𝐱

• 𝜎: Logistic function (𝜎: ℜ → 0,1 )

▪ Log likelihood: 

𝐿 𝐰 = 

𝑖=1

𝑁

log 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖)) = − 

𝑖=1

𝑁

log 1 + exp −𝑦(𝑖)𝐰⊤𝐱

= 

𝑖=1

𝑁

𝛿 𝑦 𝑖 = 1 log
1

1 + exp −𝐰⊤𝐱
+ 𝛿 𝑦 𝑖 = −1 log 1 −

1

1 + exp −𝐰⊤𝐱

Statistical interpretation:
Logistic loss min. as MLE of logistic regression model

𝐰⊤𝐱

𝜎
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▪ Objective function of (regularized) logistic regression:

𝐿 𝐰 = 

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

▪ Minimization of logistic loss / MLE of logistic regression model 
has no closed form solution

▪ Numerical nonlinear optimization methods are used

– Iterate parameter updates: 𝐰NEW ← 𝐰 + 𝐝

Parameter estimation of logistic regression :
Numerical nonlinear optimization

𝐰 𝐰 + 𝐝
𝐝
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▪ By update 𝐰NEW ← 𝐰 + 𝐝, the objective function will be:

𝐿𝐰 𝐝 = 

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 (𝐰 + 𝐝)⊤𝐱(𝑖) + 𝜆 𝐰 + 𝐝 2
2

▪ Find 𝐝∗ that minimizes 𝐿𝐰 𝐝 :

–𝐝∗ = argmin𝐝 𝐿𝐰 𝐝

Parameter update :
Find the best update minimizing the objective function
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▪ Taylor expansion:

𝐿𝐰 𝐝 = 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

–Gradient vector: 𝛻𝐿 𝐰 =
𝜕𝐿 𝐰

𝜕𝑤1
,

𝜕𝐿 𝐰

𝜕𝑤2
, … ,

𝜕𝐿 𝐰

𝜕𝑤𝐷

⊤

• Steepest direction

–Hessian matrix: 𝐻 𝐰 𝑖,𝑗 =
𝜕2𝐿 𝐰

𝜕𝑤𝑖𝜕𝑤𝑗

Finding the best parameter update :
Approximate the objective with Taylor expansion

3rd-order term
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▪ Approximated Taylor expansion (neglecting the 3rd order term):

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

▪ Derivative w.r.t. 𝐝: 
𝜕𝐿𝐰 𝐝

𝜕𝐝
≈ 𝛻𝐿 𝐰 + 𝑯 𝐰 𝐝

▪ Setting it to be 𝟎, we obtain 𝐝 = −𝑯 𝐰 −1𝛻𝐿 𝐰

▪ Newton update formula: 
𝐰NEW ← 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰

Newton update :
Minimizes the second order approximation

𝐰 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰
−𝑯 𝐰 −1𝛻𝐿 𝐰
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▪ The correctness of the update 𝐰NEW ← 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰
depends on the second-order approximation:

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝

–This is not actually true for most cases 

▪ Use only the direction of 𝑯 𝐰 −1𝛻𝐿 𝐰 and update with
𝐰NEW ← 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

▪ Learning rate 𝜂 > 0 is determined by linear search:

𝜂∗ = argmax𝜂 𝐿 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

Modified Newton update:
Second order approximation + linear search 
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▪ Computing the inverse of Hessian matrix is costly

–Newton update: 𝐰NEW ← 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

▪ (Steepest) gradient descent:

–Replacing 𝑯 𝐰 −1 with 𝑰 gives 
𝐰NEW ← 𝐰 − 𝜂𝛻𝐿 𝐰

• 𝛻𝐿 𝐰 is the steepest direction

• Learning rate 𝜂 is determined by line search

(Steepest) gradient descent:
Simple update without computing inverse Hessian

𝐰 𝐰 − 𝜂𝛻𝐿 𝐰
−𝜂𝛻𝐿 𝐰

Gradient of 
objective function
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▪ Steepest gradient descent is the simplest optimization method:

▪ Update the parameter in the steepest direction of the objective 
function

𝐰NEW ← 𝐰 − 𝜂𝛻𝐿 𝐰

–Gradient: 𝛻𝐿 𝐰 =
𝜕𝐿 𝐰

𝜕𝑤1
,

𝜕𝐿 𝐰

𝜕𝑤2
, … ,

𝜕𝐿 𝐰

𝜕𝑤𝐷

⊤

–Learning rate 𝜂 is determined by line search

Summary:
Gradient descent

𝐰 𝐰 − 𝜂𝛻𝐿 𝐰
−𝜂𝛻𝐿 𝐰
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▪ 𝐿 𝐰 = σ𝑖=1
𝑁 ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

▪
𝜕𝐿 𝐰

𝜕𝐰
= σ𝑖=1

𝑁 1

1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

𝜕 1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

𝜕𝐰

= − 

𝑖=1

𝑁
1

1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖
exp −𝑦 𝑖 𝐰⊤𝐱 𝑖 𝑦 𝑖 𝐱 𝑖

= − 

𝑖=1

𝑁

(1 − 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖))) 𝑦 𝑖 𝐱 𝑖

Example of gradient descent:
Gradient of logistic regression

Can be easily computed with the 
current prediction probabilities
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▪ Objective function for 𝑁 instances:                                   

𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝐰⊤𝐱 𝑖 + 𝜆𝑅 𝐰

▪ Its derivative 
𝜕𝐿 𝐰

𝜕𝐰
= σ𝑖=1

𝑁 𝜕ℓ 𝐰⊤𝐱 𝑖

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
needs 𝑂 𝑁

computation

▪ Approximate this with only one instance:                              
𝜕𝐿 𝐰

𝜕𝐰
≈ 𝑁

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Stochastic approximation)

▪ Also we can do this with 1 < 𝑀 < 𝑁 instances:                  
𝜕𝐿 𝐰

𝜕𝐰
≈

𝑁

𝑀
σ𝑗∈MiniBatch

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Mini batch)

Mini batch optimization:
Efficient training using data subsets
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Model Evaluation
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▪ Once you obtain a trained model, you want to deploy the 
model in your application

▪ How well will the model perform? - We are interested in the 
future performance of the obtained model when it is deployed

–How many mistakes will the model make in future? 

▪ Even the model performs perfectly on the training data, 
the same performance is not guaranteed for future data

▪ “Model evaluation” problem

Model evaluation: 
How can we know the “real” performance of a model?
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▪ You must not evaluate your classifier based on the 
performance on the dataset you already used for training

▪ The performance of a model for the training data is not an 
estimate of its true performance

– If you memorize all the answers of the training dataset, 
you will always be correct for them

–… but there is no guarantee that you will be so for future 
data

The first principle: 
Evaluation must use a dataset not used in training
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▪ Divide the dataset into a training dataset and a test dataset

1. Train a classifier using the training dataset

2. Evaluate its performance on the test dataset

▪ This is simulating a real application scenario using only the 
dataset at hand (without using real future data)

A simplest solution for model evaluation: 
Secure some data for performance evaluation

Whole data

Training dataset Test dataset
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▪ Now you have 98％ prediction accuracy on your test data
… How much can you believe this?

– Isn't it simply a lucky coincidence?

▪ Why not just repeat the random separation of training data and 
test data?

Reliability of test performance: 
How much can we trust the estimated performance?

Whole data

Training dataset Test dataset

98% correct!!
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▪ Divide a given dataset into K non-overlapping sets

–Use 𝐾 − 1 of them for training

–Use the remaining one for testing

▪ Changing the test dataset results in 𝐾 measurements

–Take their average to get a final performance estimate

A statistical framework for performance evaluation:
Cross validation

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

…

Averaged 
Performance
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Model Selection
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▪ We often have some hyper-parameters to be tuned so that the 
final performance gets better

–E.g. Training target of the ridge regression:

minimize𝐰 𝐲 − 𝑿𝐰 2
2 + 𝜆 𝐰 2

2

–Hyper-parameters are not optimized in the training

• Joint optimization just gives a trivial solution 𝜆 = 0

Model selection: 
How can we tune the hyperparameters?

Hyperparameter



30 KYOTO UNIVERSITY

▪ (𝐾-fold) cross validation can also be used for determining 
hyper parameters

–Use 𝐾 − 1 of 𝐾 sets for training models for various hyper-
parameter settings

–Use the remaining one for testing

–Choose the hyper-parameter setting with the best averaged 
performance

• Note that this is NOT the estimate of its final performance

Statistical framework for tuning hyper-parameters: 
Cross validation (again)
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▪ Sometimes you want to do both hyper-parameter tuning and 
estimation of future performance

▪ Doing both with one 𝐾-fold cross validation is guilty 

–You saw the test dataset for tuning hyper-parameters

▪ Double-loop cross validation:

–Outer loop for performance evaluation

– Inner loop for hyper-parameter tuning

–High computational costs…

Double-loop cross validation: Tuning hyper-parameters 
and performance evaluation at the same time
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▪ A simple alternative for the double-loop cross validation

▪ “Development set” approach

–Use 𝐾 − 2 of 𝐾 sets for training

–Use one for tuning hyper-parameters

–Use one for testing

A simple alternative of double-loop cross validation: 
“Development set” approach

Whole data

Training Development  Test
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