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▪What is the test performance of a classifier with a particular 
training performance?

▪How far is a classifier from the best performance model?

▪How many training instances are needed to ensure a certain 
accuracy of the estimate?

Statistical learning theory: 
Theoretical guarantee for learning from limited data

REFERENCE:
Bousquet, Boucheron, and Lugosi. 
"Introduction to statistical learning theory." 
Advanced lectures on machine learning. pp. 169-207, 2004.
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Error Bounds
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▪ Training dataset 𝑥 1 , 𝑦 1 , … , 𝑥(𝑁), 𝑦 𝑁 is sampled 

from probability distribution 𝑃 in an i.i.d manner

– 𝑦 𝑖 ∈ {+1,−1} : Binary classification

– We want to estimate 𝑓:𝒳 → +1,−1

▪ (True) risk: 𝑅 𝑓 = Pr 𝑓 𝑥 ≠ 𝑦 = 𝐸(𝑥,𝑦)∼𝑃 1𝑓 𝑥 ≠𝑦

– We cannot directly evaluate this since we do not know 𝑃

▪ Empirical risk: 𝑅𝑁 𝑓 =
1

𝑁
σ𝑖=1
𝑁 1𝑓 𝑥 𝑖 ≠𝑦 𝑖

– Usually we estimate a classifier that minimizes this

True risk and empirical risk: We are interested in true 
risk but can access only to empirical risk

Indicator function
(0 − 1 loss)
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▪ Ultimate goal: find the best 𝑓 in function class ℱ

– Best function: 𝑓∗ = argmin𝑓∈ℱ 𝑅 𝑓

▪ Instead, empirical risk minimization: 𝑓𝑁 = argmin𝑓∈ℱ 𝑅𝑁 𝑓

– With regularization: 𝑓𝑁 = argmin𝑓∈ℱ 𝑅𝑁 𝑓 + 𝜆 𝑓 2

▪ Our targets: We want to know how good 𝑓𝑁 is

1. 𝑅 𝑓𝑁 − 𝑅𝑁 𝑓𝑁 ≤ 𝐵 𝑁,ℱ : Estimate of the true risk of a 
trained classifier from its empirical risk

2. 𝑅 𝑓𝑁 − 𝑅 𝑓∗ ≤ 𝐵 𝑁,ℱ : Estimate how far the true risk 
of a trained classifier is from the best one

Our goal: How good is the classifier learned by 
empirical risk minimization?

True risk
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▪ Let us consider to find a bound 𝑅 𝑓𝑁 − 𝑅𝑁 𝑓𝑁 ≤ 𝐵 𝑁,ℱ

– We want a bound depending on 𝑁

▪ 𝑅 𝑓 − 𝑅𝑁 𝑓 = 𝐸 𝑥,𝑦 ∼𝑃 1𝑓 𝑥 ≠𝑦 −
1

𝑁
σ𝑖=1
𝑁 1𝑓 𝑥(𝑖) ≠𝑦(𝑖)

– By the law of large numbers, this will converge to 0

• Empirical risk is a good estimate of the true risk

– But we want to know 𝐵 𝑁,ℱ depending on a finite 𝑁

⇒ PAC (probably approximately correct) learning framework

Error bound: 
We want to give an error bound for a finite dataset

The bound is a 
function of 𝑁
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▪ Hoeffding’s inequality: Let 𝑍(1), … , 𝑍(𝑁) be 𝑁 i.i.d. random 

variables with 𝑍(𝑖) ∈ 𝑎, 𝑏 . Then, for any 𝜖 > 0,

Pr 𝐸 𝑍 −
1

𝑁


𝑖=1

𝑁

𝑍 𝑖 > 𝜖 ≤ 2 exp −
2𝑁𝜖2

𝑏 − 𝑎 2

– Gives the bound of probability of difference between 
expected value and empirical estimate exceeding 𝜖

– As 𝑁 gets larger, the upper bound will get smaller and 
converge to zero

– As 𝜖 gets smaller, the upper bound will get larger

Hoeffding’s inequality: A tool to analyze difference of 
expectation and empirical mean for small sample
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▪ Now we apply the Hoeffding’s inequality to our case:

Pr 𝐸 𝑍 −
1

𝑁


𝑖=1

𝑁

𝑍 𝑖 > 𝜖 ≤ 2 exp −
2𝑁𝜖2

𝑏 − 𝑎 2

▪ For a classifier 𝑓 ∈ ℱ,  setting 𝑍 = 1𝑓 𝑥 ≠𝑦 gives

Pr 𝑅 𝑓 − 𝑅𝑁 𝑓 > 𝜖 ≤ 2 exp −2𝑁𝜖2 ≡ 𝛿

⚫ 𝑏 − 𝑎 2 ≤ 1

▪ With probability at least 1 − 𝛿, 

𝑅 𝑓 − 𝑅𝑁 𝑓 ≤
log

2
𝛿

2𝑁

Applying Hoeffding’s inequality: 
Bound of true risk for a fixed classifier
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▪ For a fixed classifier 𝑓, its true risk is estimated by Hoeffding’s 
inequality

– With a fixed 𝑓, we can draw a sample with the bounded error 
with high probability

▪ But, this is not the estimate of the true risk of the algorithm

– For a fixed sample, there can be many classifiers in the pool 
that violate the error bound

– We do not know which classifier the algorithm will be chosen 
before seeing the data

– So, we want a bound which holds for all classifier 𝑓 ∈ ℱ

A bad news: Simple application of Hoeffding’s
inequality does not give the error bound
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▪ Theorem: With probability at least 1 − 𝛿, ∀𝑓 ∈ ℱ

𝑅 𝑓 − 𝑅𝑁 𝑓 ≤
log ℱ + log

2
𝛿

2𝑁

▪ This also implies: for 𝑓𝑁 = argmin𝑓∈ℱ 𝑅𝑁 𝑓 ,

𝑅 𝑓𝑁 − 𝑅𝑁 𝑓𝑁 ≤
log ℱ + log

2
𝛿

2𝑁

▪ The bound depends on the log number of functions in ℱ

– ℱ : The size of the hypothesis space

Error bound: 
Depends on the log number of possible classifiers

Slow increase
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▪ We apply the Hoeffding’s inequality to all classifiers in 
ℱ simultaneously 

▪ Union bound:

– For two events 𝐴1, 𝐴2, Pr 𝐴1 ∪ 𝐴2 ≤ Pr 𝐴1 + Pr 𝐴2

– For 𝐾 events, Pr 𝐴1 ∪⋯∪ 𝐴𝐾 ≤ σ𝑖=1
𝐾 Pr 𝐴𝐾

▪ Hoeffding + union bound gives:

– Pr ∃𝑓 ∈ ℱ: 𝑅 𝑓 − 𝑅𝑁 𝑓 > 𝜖 ≤ 2 ℱ exp −2𝑁𝜖2

– Equate the right hand side to 𝛿 to obtain the upper bound

Error  bound: 
Proof using the union bound
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▪ Theorem: With probability at least 1 − 𝛿, ∀𝑓 ∈ ℱ

𝑅 𝑓 − 𝑅𝑁 𝑓 ≤
log ℱ + log

2
𝛿

2𝑁

▪ This theorem means, in other words, for any 𝜖 > 0

if we take 𝑁 ≥
log ℱ +log

2

𝛿

2𝜖2
examples, with probability at 

least 1 − 𝛿, we have
𝑅 𝑓 − 𝑅𝑁 𝑓 ≤ 𝜖

Sample complexity:  Number of examples required to 
ensure a certain accuracy
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▪ We are also interested in how far the true risk of a trained
classifier from the best one in ℱ

– 𝑅 𝑓𝑁 − 𝑅 𝑓∗ ≤ 𝐵 𝑁,ℱ

▪ Similar analysis gives a bound depending on log ℱ

▪ Theorem: With probability at least 1 − 𝛿, 

𝑅 𝑓𝑁 − 𝑅 𝑓∗ ≤ 2
log ℱ + log

2
𝛿

2𝑁

Error  bound against the optimal classifier: 
Similar bound holds 
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▪ Empirical risk minimization: 𝑓𝑁 = argmin𝑓∈ℱ 𝑅𝑁 𝑓

▪ Unknown best function: 𝑓∗ = argmin𝑓∈ℱ 𝑅 𝑓

▪ We can know how good 𝑓𝑁 is in two ways:

1. 𝑅 𝑓𝑁 ≤ 𝑅𝑁 𝑓𝑁 +
log ℱ +log

2

𝛿

2𝑁
: Estimate of the true risk 

of a trained classifier from its empirical risk

2. 𝑅 𝑓𝑁 − 𝑅 𝑓∗ ≤ 2
log ℱ +log

2

𝛿

2𝑁
: How far is the true risk of 

a trained classifier from the best one?

Summary: How good is the classifier learned by 
empirical risk minimization?

𝑅: true risk
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Infinite Case
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▪ We assumed the number of classifiers is finite

– The bound depends on the number of classifiers in the class 

ℱ: 𝑅 𝑓𝑁 − 𝑅𝑁 𝑓𝑁 ≤
log ℱ +log

2

𝛿

2𝑁

• log ℱ is considered as the complexity of class ℱ

– So far we measure the complexity of the model using the 
number of possible classifiers (= size of hypothesis space)

▪ What if it is infinite? (E.g. linear classifiers 𝑓 = 𝐰⊤𝐱)

– The upper bound goes to infinity 

▪ Do we have another complexity measure for the infinite case?

Infinite case: 
Previous results assume finite number of classifiers
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▪ Use “growth function” as a complexity measure of infinite 
numbers of classifiers

▪ Idea: group the infinite number of classifiers into a finite 
number of equivalent sets

– Two classifiers make same predictions for the 4 data points 

– They can be considered equivalent for the purpose of 
classifying the 4 data points

Growth function: Infinite number of functions can be 
grouped into finite number of function groups

●

●

●
●

Classifier 1

Classifier 2
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▪ Growth function 𝒮ℱ(𝑁): The maximum number of ways into 
which 𝑁 points can be classified by the function class ℱ

– Apparently, 𝒮ℱ 𝑁 ≤ 2𝑁

– For two-dimensional linear classifiers, 𝒮ℱ 4 = 14 ≤ 24

▪ Theorem: With probability at least 1 − 𝛿, ∀𝑓 ∈ ℱ

𝑅 𝑓 − 𝑅𝑁 𝑓 ≤ 2 2
log 𝒮ℱ 2𝑁 + log

2
𝛿

𝑁

Growth function: 
Error bound using growth function

●

●●

● ●

● ●

●

only the two cases
cannot be classified
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▪ When 𝒮ℱ 𝑁 = 2𝑁, any classification of 𝑁 points is possible 
(we say that ℱ shatters the set)

▪ Vapnik-Chervonenkis (VC) dimension ℎ of class ℱ : 
The largest 𝑁 such that 𝒮ℱ 𝑁 = 2𝑁

▪ For two-dimensional linear classifiers, ℎ = 3

– It can realize 23 ways of dividing 2 points, but cannot for 
24 ways

▪ Generally, for 𝑑-dimensional linear classifiers, ℎ = 𝑑 + 1

VC dimension: 
Intrinsic dimension of function class
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▪ Relation between VC-dim. and growth function:

– Apparently, for 𝑁 < ℎ, 𝒮ℱ 𝑁 = 2𝑁; 
otherwise, 𝒮ℱ 𝑁 < 2𝑁 

▪ Actually, a more tight upper bound exists:

For 𝑁 ≥ ℎ, 𝒮ℱ 𝑁 <
𝑒𝑁

ℎ

ℎ

▪ Theorem: With probability at least 1 − 𝛿, ∀𝑓 ∈ ℱ

𝑅 𝑓 − 𝑅𝑁 𝑓 ≤ 2 2
𝒉 log

2𝑒𝑁
𝒉

+ log
2
𝛿

𝑁

VC dimension and growth function: 
Intrinsic dimension of function class



21 KYOTO UNIVERSITY

▪Questions about the generalization performance:

–What is the test performance of a classifier with a particular 
training performance?

–How far is a classifier from the best performance model?

–How many training instances are needed to ensure a certain 
accuracy of the estimate?

▪ Probably Approximately Correct (PAC) learning framework:

–Bounds for finite hypothesis space: Hoeffding’s inequality

– Infinite case: Growth function and VC-dimension

Statistical learning theory: 
Theoretical guarantee for learning from limited data
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