

Statistical Machine Learning Theory

(Introduction to) Statistical Learning Theory

Hisashi Kashima kashima@i.Kyoto-u.ac.jp

Statistical learning theory: Theoretical guarantee for learning from limited data

- What is the test performance of a classifier with a particular training performance?
- How far is a classifier from the best performance model?
- How many training instances are needed to ensure a certain accuracy of the estimate?

REFERENCE: Bousquet, Boucheron, and Lugosi. "Introduction to statistical learning theory." *Advanced lectures on machine learning*. pp. 169-207, 2004.

Error Bounds

KYOTO UNIVERSITY

True risk and empirical risk: We are interested in true risk but can access only to empirical risk

- Training dataset $\{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$ is sampled from probability distribution *P* in an i.i.d manner
 - $y^{(i)} \in \{+1, -1\}$: Binary classification
 - We want to estimate $f: \mathcal{X} \rightarrow \{+1, -1\}$

- We cannot directly evaluate this since we do not know P
- Empirical risk: $R_N(f) = \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{f(x^{(i)}) \neq y^{(i)}}$
 - Usually we estimate a classifier that minimizes this

Indicator function

 $(0-1 \log)$

Our goal: How good is the classifier learned by empirical risk minimization?

- Ultimate goal: find the best f in function class \mathcal{F}
 - Best function: $f^* = \operatorname{argmin}_{f \in \mathcal{F}} R(f)^{\operatorname{True risk}}$
- Instead, empirical risk minimization: $f_N = \operatorname{argmin}_{f \in \mathcal{F}} R_N(f)$
 - With regularization: $f_N = \operatorname{argmin}_{f \in \mathcal{F}} R_N(f) + \lambda ||f||^2$
- Our targets: We want to know how good f_N is
 - 1. $R(f_N) R_N(f_N) \le B(N, \mathcal{F})$: Estimate of the true risk of a trained classifier from its empirical risk
 - 2. $R(f_N) R(f^*) \le B(N, \mathcal{F})$: Estimate how far the true risk of a trained classifier is from the best one

Error bound: We want to give an error bound for a *finite* dataset

- Let us consider to find a bound $R(f_N) R_N(f_N) \le B(N, \mathcal{F})$
 - We want a bound depending on N

•
$$R(f) - R_N(f) = E_{(x,y)\sim P} \left[\mathbf{1}_{f(x)\neq y} \right] - \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{f(x^{(i)})\neq y^{(i)}}$$

- By the law of large numbers, this will converge to 0
 - Empirical risk is a good estimate of the true risk
- But we want to know $B(N, \mathcal{F})$ depending on a finite N

The bound is a function of *N*

 \Rightarrow PAC (probably approximately correct) learning framework

Hoeffding's inequality: A tool to analyze difference of expectation and empirical mean for small sample

■ Hoeffding's inequality: Let $Z^{(1)}$, ..., $Z^{(N)}$ be N i.i.d. random variables with $Z^{(i)} \in [a, b]$. Then, for any $\epsilon > 0$,

$$\Pr\left[\left|E[Z] - \frac{1}{N} \sum_{i=1}^{N} Z^{(i)}\right| > \epsilon\right] \le 2 \exp\left(-\frac{2N\epsilon^2}{(b-a)^2}\right)$$

- Gives the bound of probability of difference between expected value and empirical estimate exceeding ϵ
- As N gets larger, the upper bound will get smaller and converge to zero
- As ϵ gets smaller, the upper bound will get larger

Applying Hoeffding's inequality: Bound of true risk for a fixed classifier

Now we apply the Hoeffding's inequality to our case:

$$\Pr\left[\left|E[Z] - \frac{1}{N}\sum_{i=1}^{N} Z^{(i)}\right| > \epsilon\right] \le 2\exp\left(-\frac{2N\epsilon^2}{(b-a)^2}\right)$$

- For a classifier $f \in \mathcal{F}$, setting $Z = 1_{f(x) \neq y}$ gives $\Pr[|R(f) - R_N(f)| > \epsilon] \le 2 \exp(-2N\epsilon^2) \equiv \delta$ • $(b-a)^2 \le 1$
- With probability at least 1δ ,

$$R(f) - R_N(f) \le \sqrt{\frac{\log \frac{2}{\delta}}{2N}}$$

A bad news: Simple application of Hoeffding's inequality does not give the error bound

- For <u>a fixed</u> classifier f, its true risk is estimated by Hoeffding's inequality
 - With a fixed *f*, we can draw a sample with the bounded error with high probability
- But, this is not the estimate of the true risk of the algorithm
 - For a fixed sample, there can be many classifiers in the pool that violate the error bound
 - We do not know which classifier the algorithm will be chosen before seeing the data
 - So, we want a bound which holds for <u>all</u> classifier $f \in \mathcal{F}$

Error bound: Depends on the log number of possible classifiers

• Theorem: With probability at least $1 - \delta$, $\forall f \in \mathcal{F}$

$$R(f) - R_N(f) \le \sqrt{\frac{\log|\mathcal{F}| + \log\frac{2}{\delta}}{2N}}$$

- This also implies: for $f_N = \operatorname{argmin}_{f \in \mathcal{F}} R_N(f)$, $R(f_N) - R_N(f_N) \le \sqrt{\frac{\log|\mathcal{F}| + \log\frac{2}{\delta}}{2N}}$
- The bound depends on the log number of functions in \mathcal{F} - $|\mathcal{F}|$: The size of the hypothesis space

Slow increase

KYOTO UNIVERSITY

Error bound: Proof using the union bound

- We apply the Hoeffding's inequality to all classifiers in
 F simultaneously
- Union bound:
 - For two events A_1, A_2 , $\Pr[A_1 \cup A_2] \le \Pr[A_1] + \Pr[A_2]$
 - For *K* events, $\Pr[A_1 \cup \cdots \cup A_K] \leq \sum_{i=1}^K \Pr[A_K]$
- Hoeffding + union bound gives:
 - $\Pr[\exists f \in \mathcal{F}: |R(f) R_N(f)| > \epsilon] \le 2|\mathcal{F}| \exp(-2N\epsilon^2)$
 - Equate the right hand side to δ to obtain the upper bound

Sample complexity: Number of examples required to ensure a certain accuracy

• Theorem: With probability at least $1 - \delta$, $\forall f \in \mathcal{F}$

$$R(f) - R_N(f) \le \sqrt{\frac{\log|\mathcal{F}| + \log\frac{2}{\delta}}{2N}}$$

• This theorem means, in other words, for any $\epsilon > 0$ if we take $N \ge \frac{\log |\mathcal{F}| + \log^2_{\delta}}{2\epsilon^2}$ examples, with probability at least $1 - \delta$, we have $R(f) - R_N(f) \le \epsilon$

Error bound against the optimal classifier: Similar bound holds

 We are also interested in how far the true risk of a trained classifier from the best one in F

$$- R(f_N) - R(f^*) \le B(N, \mathcal{F})$$

- Similar analysis gives a bound depending on $\log |\mathcal{F}|$
- Theorem: With probability at least 1δ ,

$$R(f_N) - R(f^*) \le 2\sqrt{\frac{\log|\mathcal{F}| + \log\frac{2}{\delta}}{2N}}$$

Summary: How good is the classifier learned by empirical risk minimization?

- Empirical risk minimization: $f_N = \operatorname{argmin}_{f \in \mathcal{F}} R_N(f)$
- Unknown best function: $f^* = \operatorname{argmin}_{f \in \mathcal{F}} R(f) < \mathbb{R}$: true risk
- We can know how good f_N is in two ways:

1. $R(f_N) \le R_N(f_N) + \sqrt{\frac{\log |\mathcal{F}| + \log \frac{2}{\delta}}{2N}}$: Estimate of the true risk of a trained classifier from its empirical risk

2.
$$R(f_N) - R(f^*) \le 2\sqrt{\frac{\log|\mathcal{F}| + \log^2_{\overline{\delta}}}{2N}}$$
: How far is the true risk of a trained classifier from the best one?

Infinite Case

KYOTO UNIVERSITY

Infinite case:

16

Previous results assume finite number of classifiers

- We assumed the number of classifiers is finite
 - The bound depends on the number of classifiers in the class

$$\mathcal{F}: R(f_N) - R_N(f_N) \le \sqrt{\frac{\log|\mathcal{F}| + \log^2_{\overline{\delta}}}{2N}}$$

- $\log |\mathcal{F}|$ is considered as the complexity of class \mathcal{F}
- So far we measure the complexity of the model using the number of possible classifiers (= size of hypothesis space)
- What if it is infinite? (E.g. linear classifiers $f = \mathbf{w}^{\top} \mathbf{x}$)
 - The upper bound goes to infinity (8)
- Do we have another complexity measure for the infinite case?

Growth function: Infinite number of functions can be grouped into finite number of function groups

- Use "growth function" as a complexity measure of infinite numbers of classifiers
- Idea: group the infinite number of classifiers into a finite number of equivalent sets
 - Two classifiers make same predictions for the 4 data points
 - They can be considered equivalent for the purpose of classifying the 4 data points

Growth function: Error bound using growth function

- Growth function $S_{\mathcal{F}}(N)$: The maximum number of ways into which N points can be classified by the function class \mathcal{F}
 - Apparently, $S_{\mathcal{F}}(N) \leq 2^N$
 - For two-dimensional linear classifiers, $S_F(4) = 14 \le 2^4$

• Theorem: With probability at least $1 - \delta$, $\forall f \in \mathcal{F}$

$$R(f) - R_N(f) \le 2\sqrt{2\frac{\log \mathcal{S}_{\mathcal{F}}(2N) + \log \frac{2}{\delta}}{N}}$$

VC dimension: Intrinsic dimension of function class

- When $S_{\mathcal{F}}(N) = 2^N$, any classification of N points is possible (we say that \mathcal{F} shatters the set)
- Vapnik-Chervonenkis (VC) dimension h of class F : The largest N such that $S_{\mathcal{F}}(N) = 2^N$
- For two-dimensional linear classifiers, h = 3
 - It can realize 2^3 ways of dividing 2 points, but cannot for 2^4 ways
- Generally, for d-dimensional linear classifiers, h = d + 1

VC dimension and growth function: Intrinsic dimension of function class

- Relation between VC-dim. and growth function:
 - Apparently, for N < h, $S_{\mathcal{F}}(N) = 2^N$; otherwise, $S_{\mathcal{F}}(N) < 2^N \otimes$
- Actually, a more tight upper bound exists: For $N \ge h$, $S_{\mathcal{F}}(N) < \left(\frac{eN}{h}\right)^h$
- Theorem: With probability at least 1δ , $\forall f \in \mathcal{F}$

$$R(f) - R_N(f) \le 2\sqrt{2\frac{h\log\frac{2eN}{h} + \log\frac{2}{\delta}}{N}}$$

Statistical learning theory: Theoretical guarantee for learning from limited data

- Questions about the generalization performance:
 - -What is the test performance of a classifier with a particular training performance?
 - -How far is a classifier from the best performance model?
 - –How many training instances are needed to ensure a certain accuracy of the estimate?
- Probably Approximately Correct (PAC) learning framework:
 - -Bounds for finite hypothesis space: Hoeffding's inequality
 - -Infinite case: Growth function and VC-dimension