KyoTo UNIVERSITY

Statistical Machine Learning Theory

(Introduction to) Statistical Learning Theory

Hisashi Kashima
kashima@i.Kyoto-u.ac.jp

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY



Statistical learning theory:
Theoretical guarantee for learning from limited data

=" What is the test performance of a classifier with a particular
training performance?

" How far is a classifier from the best performance model?

" How many training instances are needed to ensure a certain
accuracy of the estimate?

REFERENCE:

Bousquet, Boucheron, and Lugosi.
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[ Error Bounds J
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True risk and empirical risk: We are interested in true
risk but can access only to empirical risk

= Training dataset { (x(l),y(l)), . (x(N),y(N))} is sampled
from probability distribution P in an i.i.d manner

— y(‘) € {+1,—1} : Binary classification indicator function
(0 — 1 loss)

— We want to estimate f: X - {+1,—1}

= (True)risk: R(f) =Pr(f(x) #y) = E(x,y)Np[lf(x)iy]

— We cannot directly evaluate this since we do not know P

L 1
=  Empirical risk: Ry (f) = NZ{-V:l 1f(x(i))¢y(i)

— Usually we estimate a classifier that minimizes this
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Our goal: How good is the classifier learned by
empirical risk minimization?

= Ultimate goal: find the best f in function class F

— Best function: f* = argmin er R(f)4 True risk |

" |nstead, empirical risk minimization: fy = argmin rer Ry(f)
— With regularization: fy = argmingcr Ry(f) + AfII?

= Qur targets: We want to know how good f is

1. R(fy) — Ry(fy) < B(N,F): Estimate of the true risk of a
trained classifier from its empirical risk

2. R(fy) —R(f") < B(N,F): Estimate how far the true risk
of a trained classifier is from the best one
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Error bound:
We want to give an error bound for a finite dataset

= Let us consider to find a bound R(fy) — Ry (fy) < B(N,F)

— We want a bound dependingon N

- R(f) RN(f) — E(xy)~P[1f(x)¢y] L 1 f(x(l))iy(l)

— By the law of large numbers, this will converge to 0

e Empirical risk is a good estimate of the true risk

— But we want to know B(N, F) depending on a finite N

The bound is a
function of N

= PAC (probably approximately correct) learning framework
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Hoeffding’s inequality: A tool to analyze difference of

expectation and empirical mean for small sample

= Hoeffding’s inequality: Let Z1, ..., Z(N) be N i.i.d. random
variables with Z(®) € [a, b]. Then, for any € > 0,

2Ne?
< 2exp _(b—a)z

— Gives the bound of probability of difference between
expected value and empirical estimate exceeding €

1N
Pr[ ‘E[Z]—N | 1Z(l) > ¢
1=

— As N gets larger, the upper bound will get smaller and
converge to zero

— As € gets smaller, the upper bound will get larger
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Applying Hoeffding’s inequality:
Bound of true risk for a fixed classifier
= Now we apply the Hoeffding’s inequality to our case:

2Ne?
< 2exp _(b—a)z

= Foraclassifier f € F, setting Z = 1¢(y)+y gives
Pr[ |R(f) —Ry(f)| > €] < 2exp(—2Ne?)

o (b — Cl)z <1
= With probability at least 1 — 9,

Pr[ |E[Z]—l ' ZWl > ¢
I\ ASTE)

9)

2
log <
R(f) = Ru(1) < |57
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A bad news: Simple application of Hoeffding’s
inequality does not give the error bound

" For g fixed classifier f, its true risk is estimated by Hoeffding’s
inequality

— With afixed f, we can draw a sample with the bounded error
with high probability

= But, this is not the estimate of the true risk of the algorithm

— For a fixed sample, there can be many classifiers in the pool
that violate the error bound

— We do not know which classifier the algorithm will be chosen
before seeing the data

— So, we want a bound which holds for all classifier f € F
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Error bound:
Depends on the log number of possible classifiers
= Theorem: With probability at least 1 — 4, Vf € F

log|F| + log%

2N

R(f)—RN(f)S\j

= This also implies: for fy = argminger Ry (f),

log|F| + log§

R(fn) — Ry(fy) < N N

= The bound depends on the log number of functions in F

— |F| : The size of the hypothesis space

Slow increase
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Error bound:
Proof using the union bound

=  We apply the Hoeffding’s inequality to all classifiers in
F simultaneously

= Union bound:
— For two events 4, A4,, Pr[4A; U 4,] < Pr[A,] + Pr[A4,]
— For K events, Pr[A; U U Ag] < Y&, Pr[Ak]
= Hoeffding + union bound gives:
— Pr[af € F:|R(f) — Ry(f)]| > €] < 2|F| exp(—2Ne?)
— Equate the right hand side to 6 to obtain the upper bound

11 KYoTo UNIVERSITY




Sample complexity: Number of examples required to
ensure a certain accuracy
= Theorem: With probability at least 1 — 4, Vf € F

log|F| + log%

2N

R(f)—RN(f)S\J

= This theorem means, in other words, foranye > 0
log|T|+log%

if we take N > = examples, with probability at

least 1 — &, we have

R(f) —Ry(f) <e€
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Error bound against the optimal classifier:
Similar bound holds

=  We are also interested in how far the true risk of a trained
classifier from the best one in F

- R(fy) —R(f") = B(N,F)
= Similar analysis gives a bound depending on log|F|

= Theorem: With probability at least 1 — 0,

log|F| + logé

R(fN)—R(f*)SZ\J N
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Summary: How good is the classifier learned by
empirical risk minimization?

= Empirical risk minimization: fy = argminger Ry (f)

= Unknown best function: f* = argminscz R(f) < Ritrue risk |

= We can know how good fy is in two ways:

loglﬂ-"|+logE . .
S. Estimate of the true risk

1. R(fn) < Ry(fn) ‘|‘\/

of a trained classifier from its empirical risk

log|73|+logE

2. R(fN)—R(f*)sz\/ L

- How far is the true risk of

a trained classifier from the best one?

KYOTO UNIVERSITY




[ Infinite Case J
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Infinite case:
Previous results assume finite number of classifiers

=  We assumed the number of classifiers is finite

— The bound depends on the number of classifiers in the class

10g|f]—"|+log%

F:R(fn) — Ry(fn) S\/ N

e log|F|is considered as the complexity of class F

— So far we measure the complexity of the model using the
number of possible classifiers (= size of hypothesis space)

=  What if itis infinite? (E.g. linear classifiers f = w'x)
— The upper bound goes to infinity

= Do we have another complexity measure for the infinite case?
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Growth function: Infinite number of functions can be
grouped into finite number of function groups

= Use “growth function” as a complexity measure of infinite
numbers of classifiers

= |dea: group the infinite number of classifiers into a finite
number of equivalent sets

— Two classifiers make same predictions for the 4 data points

— They can be considered equivalent for the purpose of
classifying the 4 data points .

-

STt Classifier 1

~
~

Classifier 2
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Growth function:
Error bound using growth function

=  Growth function S¢£(N): The maximum number of ways into
which N points can be classified by the function class F

— Apparently, S¢(N) < 2V

— For two-dimensional linear classifiers, Sz(4) = 14 < 2*

°© o o o { only the two cases J
o o o © cannot be classified
* Theorem: With probability at least1 — 6, Vf € F
logS+(2N) + log%
R(f)_RN(f)SZ\JZ N
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VC dimension:
Intrinsic dimension of function class

= When §#(N) = 2V, any classification of N points is possible
(we say that F shatters the set)

= Vapnik-Chervonenkis (VC) dimension h of class F :
The largest N such that S¢(N) = 2V

=  For two-dimensional linear classifiers, h = 3

— It can realize 23 ways of dividing 2 points, but cannot for
2% ways

= Generally, for d-dimensional linear classifiers, h = d + 1
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VC dimension and growth function:
Intrinsic dimension of function class

= Relation between VC-dim. and growth function:

— Apparently, for N < h, Sz(N) = 27,
otherwise, Sz(N) < 2V

= Actually, a more tight upper bound exists:

For N = h,S¢(N) < (%)h

"= Theorem: With probability atleast 1 — 0, Vf € F

hlogzeTN+log%
R(f)—RN(f)SZ\JZ N
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Statistical learning theory:
Theoretical guarantee for learning from limited data

= Questions about the generalization performance:

—What is the test performance of a classifier with a particular
training performance?

—How far is a classifier from the best performance model?

—How many training instances are needed to ensure a certain
accuracy of the estimate?

" Probably Approximately Correct (PAC) learning framework:
—Bounds for finite hypothesis space: Hoeffding’s inequality

—Infinite case: Growth function and VC-dimension
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