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▪ Jun. 19 (today): Classification performance measure & non-
linear models [Kashima]

▪ Jun. 26: Hands-on practice on regression and classification 
[Takeuchi]

▪ Jul. 3: Hands-on (cont’d) & Neural networks [Takeuchi]

▪ Jun. 10: Graph neural networks [Yamada]

▪ Jun. 24: Hands-on practice on neural networks and graph NN 
[Takeuchi]

* It is preferable (but not mandatory) that you bring your own 
PC with an Internet connection for the hands-on practices.

Upcoming lecture schedule: 
Advanced topics and hands-on practices
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▪ Performance measures for classification:

–Precision / Recall (depending on decision thresholds)

–AUC (independent of decision thresholds)

▪ Nonlinear models:

–Simple nonlinear transformation / cross-terms

–Kernel methods: 

• kernel ridge regression

• Kernel function: polynomial kernel, Gaussian kernel, …

Contents: 
Classification performance measures & nonlinear models



4 KYOTO UNIVERSITY

Performance Measures for Classification
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▪ In supervised classification, we use various surrogate functions 
of 0/1-loss

–Such as logistic loss, hinge loss, …

▪ In evaluation of a classifier, several performance measure are 
used

–Performance measures depending on decision thresholds: 

• Accuracy, precision and recall, …

–Performance measures independent of decision thresholds:

• AUC

Various performance measures of classifiers: 
Accuracy, precision, recall, and AUC
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▪ A classifier makes positive (+1) or negative (−1) predictions

–Linear classifier: 𝑦 = sign 𝑓 𝐱 , 𝑓 𝐱 = 𝐰⊤𝐱

–The larger 𝑓 𝐱 is, the more strongly the classifier believes 
that 𝐱 belongs to class 𝑦 = +1

▪ Once we have a set of predictions on a dataset, 
we have a confusion matrix:

Confusion matrix: 
Set of predictions on a dataset gives a confusion matrix

predicted label

positive negative

true label
positive #true positives ☺ #false negatives

negative #false positives #true negatives ☺
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▪ Accuracy: percentage of 
#true positives + #true negatives

#all predictions

– In other words, averaged 0-1 loss

▪ Precision & Recall:

–Precision =
#true positives

#true positives + #false positives

–Recall =
#true positives

#true positives + #false negatives

–F−measure =
Precision∙Recall

Precision+Recall

• Harmonic mean of precision and recall

Basic performance measures : 
Accuracy, precision, recall

Wherever he goes, there's always a murder.

Wherever there's a murder, he’s always there.
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▪ Changing the threshold gives different precision and recall 

Precision-recall curve: View changes in precision & recall 
with different thresholds

Recall

Precision

High threshold

Precision tends to 
be high when the 
model predicts 
𝑌 = 1 only when it 
is confident

At the least threshold, the
model always predicts 𝑌 = 1 ,
so the precision approaches
the ratio of 𝑌 = 1 in the
whole data

The better the model, the more the 
curve is biased toward the upper right

Low threshold
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ROC-curve: View changes in true-positives & false-
positives with different thresholds

True positive rate
(= recall)

False positive rate

For random projections, the 
curve coincides with the 
diagonal

Lowering the threshold increases the number of 
true positives, but also increases false positives

The better the model, 
the more the curve is 
biased toward the 
upper left

※ Receiver Operating Characteristic (Curve)

does not depend on the ratio of 
𝑌=1 in the whole data

High threshold Low threshold

▪ Yet another (and popular) performance curve
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▪ The area under the PR-curve (PR-AUC)

▪ The area under the ROC-curve (ROC-AUC)

–  ROC-AUC is not affected by class (im)balance

Area under the curve: 
Performance measures independent of thresholds

When we simply say “AUC”, 
we usually mean this

Area of this 
region

Area of this 
region

True positive rate

False positive rate

Precision

Recall
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▪ Complexity of drawing {PR, ROC}-{curve, AUC} is equivalent to 
that of sorting the prediction scores 𝑓 𝐱 in descending order

Computational complexity of the performance measures:
Sorting the model predictions

𝑓 𝐱 1 , 𝑦 1 = +1

𝑓 𝐱 2 , 𝑦 2 = +1

𝑓 𝐱 3 , 𝑦 3 = −1

𝑓 𝐱 4 , 𝑦 4 = −1

𝑓 𝐱 5 , 𝑦 5 = −1

Large 𝑓 𝐱

threshold 𝜏 

Precision=2/3

Recall=2/2

True positive rate=2/2

（=recall）

False positive rate=1/3

O 𝑛 log 𝑛
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▪ ROC-AUC: Proportion of 𝑖, 𝑗 pairs satisfying

𝑦 𝑖 = +1, 𝑦 𝑗 = −1, and 𝑓 𝐱 𝑖 > 𝑓 𝐱 𝑗

▪ It checks that the test data are ranked in the correct order by 𝑓

–AUC=1: Perfect ranking

–AUC=0.5: Completely random ranking

–AUC=0: Perfectly reversed ranking

▪ Example: AUC=5/6

–Among 2 × 3 = 6 pos-neg pairs

–5 pairs are in correct order

Another implication of ROC-AUC: 
ROC-AUC measures ordering correctness
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Nonlinear Models
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▪ So far we have considered only linear models:

–Linear regression 𝑦 = 𝐰⊤𝐱, logistic regression 𝑦 = 𝜎 𝐰⊤𝐱

▪ How to introduce non-linearity in the models?

1. Use of inherently nonlinear models:

• Decision/regression tree, random forest, boosting trees

2. Transformation-based approaches:

• Nonlinear feature transformation

• Kernel methods

• Neural networks

Nonlinear regression:
Introducing nonlinearity in linear models
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▪ Input vector 𝐱 ∈ ℝ𝐷 is transformed to a new vector 𝐳 ∈ ℝ𝐷′

using some nonlinear transformation function 𝝓:ℝ𝐷 → ℝ𝐷′

▪ Linear model is applied to 𝐳: 

–Linear regression 𝑦 = 𝐯⊤𝐳, logistic regression 𝑦 = 𝜎 𝐯⊤z

Transformation-based nonlinear models:
Apply nonlinear transform before applying linear model

𝐱 𝐳

𝝓

Linear
model 

Non-linear
transform

𝑦
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▪ Apply non-linear transformation:

– 𝐱 = 𝑥 ⇒ 𝐳 = log 𝑥 , 𝑒𝑥 , 𝑥2,
1

𝑥
, …

⊤

– 𝑦 = 𝑤𝑥 ⇒ 𝑦 = 𝑤1 log 𝑥 + 𝑤2𝑒
𝑥 , +𝑤3 𝑥

2+𝑤4
1

𝑥
+⋯

▪ It is up to the user to decide which transformations to use.

Nonlinear transformation of features:
Simplest way to introduce nonlinearity in linear models
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▪ Use cross terms products 𝑥𝑑𝑥𝑑′ 𝑑,𝑑′ of 𝑥1, 𝑥2, … , 𝑥𝐷

▪ Model has a matrix parameter 𝑾:

𝑦 = Trace

𝑤1,1 ⋯ 𝑤1,𝐷

⋮ ⋱ ⋮
𝑤𝐷,1 ⋯ 𝑤𝐷,𝐷

⊤ 𝑥1
2 𝑥1𝑥2

𝑥2𝑥1 𝑥2
2 ⋯

𝑥1𝑥𝐷
𝑥2𝑥𝐷

⋮ ⋱ ⋮
𝑥𝐷𝑥1 𝑥𝐷𝑥2 ⋯ 𝑥𝐷

2

= 𝐱⊤𝑾⊤𝐱

▪ Loss function: 𝐿 𝑾 = σ𝑖=1
𝑁 𝑦 𝑖 − 𝐱 𝑖 ⊤

𝑾⊤𝐱 𝑖
2

▪ Assuming low rankness of 𝑾 = 𝑼𝑼⊤ leads to factorization 
machine (𝑂 𝐷𝐾 parameters instead of 𝑂 𝐷2 )

Cross terms & factorization machine:
Can include synergetic effects among different features
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Kernel Methods
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▪ Kernel method is a general framework to convert a linear 
machine to non-linear machine

▪ High dimensional non-linear mapping: 𝐱 → 𝐳 = 𝝓 𝐱

▪ Consider a linear model 𝑦 = 𝐯⊤𝐳 in the high dim. space

▪ Resolves computational difficulties caused by high dimensionality 
through kernel functions

Kernels:
Linear model in a high-dimensional feature space

𝐱 𝐳

𝝓

Linear
model 

Non-linear
transform

𝑦𝐷 𝐷′
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▪ Let us construct a “kernel version” of linear regression

▪ Linear regression: 𝑦 = 𝐰⊤𝐱

–Training data: 𝐱 1 , 𝑦 1 , 𝐱 2 , 𝑦 2 , … , 𝐱 𝑁 , 𝑦 𝑁

–Objective function: 𝐿 𝐰 = 𝐲 − 𝑿𝐰 2
2 + 𝜆 𝐰 2

2

–Solution: 𝐰∗ = 𝑿⊤𝑿 + 𝜆𝑰 −1𝑿⊤𝐲

▪ The computational costs are governed by 𝐷

“Dual form” of linear regression model: Representation  
using only inner products of input vectors

Dealing with 𝐷 × 𝐷 matrix

𝐷 dimensional model
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▪ Now we assume 𝐰 = σ𝑖=1
𝑁 𝛼𝑖 𝐱

𝑗 (weighted sum of inputs)

–(For the time being, we accept this without reason)

–𝛂 = 𝛼1, 𝛼2, … , 𝛼𝑁
⊤: a new 𝑁-dimensional parameter

▪ We have “kernel ridge regression”:

–Model: 𝑦 = σ𝑖=1
𝑁 𝛼𝑖 𝐱 𝑗 , 𝐱

–Objective function: 𝐿 𝛂 = 𝐲 − 𝑲𝛂 2
2 + 𝜆𝛂⊤𝑲𝛂

–Solution: 𝛂∗ = 𝑲+ 𝜆𝑰 −1𝐲

–𝑲 = 𝑲𝑖,𝑗 = 𝐱 𝑖 , 𝐱 𝑗 (Kernel matrix)

“Dual form” of linear regression model: Representation  
using only inner products of input vectors

Dealing with 𝑁 × 𝑁 matrix

𝑁 dimensional model
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▪ Now we have a “dual form” of the ridge regression

▪ What is nice about the kernel ridge regression?

–Model/problem size depend on the size of the training data 𝑁
instead of the number of dimensions 𝐷

–Computational advantage when 𝐷 > 𝑁

▪ Note: Kernel machines access data only through kernel 
functions (= inner products between data)

Advantage of kernel methods: Computational costs 
depending on the number of training data
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▪ Now we consider non-linear regression

▪ Introduce a (nonlinear) mapping 𝝓:ℝ𝐷 → ℝ𝐷′

–𝐷-dimensional space to 𝐷′ ≫ 𝐷 -dimensional space

–Vector 𝐱 is mapped to a high-dimensional vector 𝝓(𝐱)

▪ Define kernel function 𝐾 𝐱 𝑖 , 𝐱 𝑗 ⇒ 𝝓(𝐱 𝑖 ), 𝝓(𝐱 𝑗 ) in the 

𝐷′-dimensional space

Kernel functions:
Introducing non-linearity in linear models

https://en.wikipedia.org/wiki/Support_vector_machine#/
media/File:Kernel_Machine.svg
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▪ Advantage of using kernel function:

𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝝓(𝐱 𝑖 ), 𝝓(𝐱 𝑗 )

▪ Usually we expect the computation cost of 𝝓(𝐱 𝑖 ), 𝝓(𝐱 𝑗 ) depends 
on 𝐷′

–𝐷′ can be high-dimensional (possibly infinite dimensional)

▪ If we can somehow compute 𝐾 𝐱 𝑖 , 𝐱 𝑗 in time

depending on 𝐷, the dimension of 𝝓 does not matter

▪ Problem size:  
𝐷′(number of dimensions) → 𝑁(number of data)

–Advantageous when 𝐷′ is very large or infinite

Advantage of kernel methods:
Computationally efficient (when 𝐷′ is large)
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▪ Combinatorial features: Not only the original features 
𝑥1, 𝑥2, … , 𝑥𝐷, we use their cross terms (e.g. 𝑥1𝑥2) 

– If we consider 𝑀-th order cross terms, we have O 𝐷𝑀 terms

▪ Polynomial kernel: 𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝐱 𝑖 ⊤𝐱 𝑗 + 𝑐
𝑀

–E.g. when 𝑐 = 0,𝑀 = 2, 𝐷 = 2,

𝐾 𝐱 𝑖 , 𝐱 𝑗 = 𝑥1
𝑖
𝑥1

𝑗
+ 𝑥2

𝑖
𝑥2

𝑗
2

= 𝑥1
𝑖 2
, 𝑥2

𝑖 2
, 2𝑥1

𝑖
𝑥2

𝑖
𝑥1

𝑗 2
, 𝑥2

𝑗 2
, 2𝑥1

𝑗
𝑥2

𝑗

–Can be computed in O 𝐷 !!

Example of kernel functions:
Polynomial kernel can consider high-order cross terms 

𝐱 𝑖 =
𝑥1
(𝑖)

𝑥2
(𝑖)
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▪ Gaussian kernel: 𝐾 𝐱 𝑖 , 𝐱 𝑗 = exp −
∥𝐱 𝑖 −𝐱 𝑗 ∥2

2

𝜎

–Can be interpreted as an inner product in an infinite-
dimensional space

Example of kernel functions:
Gaussian kernel with infinite feature space 

∥ 𝐱𝑖 − 𝐱𝑗 ∥2
2http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Machi

neLearning&doc=exercises/ex8/ex8.html

Gaussian kernel (RBF kernel)

Discrimination surface with Gaussian kernel
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▪ Kernel methods can handle any kinds of objects (even non-
vectorial objects) as long as efficiently computable kernel 
functions are available

–Kernels for strings, trees, and graphs, …

Kernel methods for non-vectorial data:
Kernels for sequences, trees, and graphs

http://www.bic.kyoto-u.ac.jp/coe/img/akutsu_fig_e_02.gif
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▪ Can I use a similarity function that I created by myself as a kernel 
function?

–Yes (under certain conditions)

▪ Kernel methods are derived from the assumption that the 
optimal parameter is represented as a linear combination of 
input vectors: 

𝐰 =

𝑖=1

𝑁

𝛼𝑖𝐱
𝑖

▪ Representer theorem guarantees this (if we use L2-regularizer)

Representer theorem:
Theoretical underpinning of kernel methods

When does it hold?
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▪ Assumption: Loss ℓ for 𝑖-th data depends only on 𝐰⊤𝐱 𝑖

–Objective function: 𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝐰⊤𝐱 𝑖 + 𝜆 𝐰 2

2

▪ Divide the optimal parameter 𝐰∗ into two parts 𝐰+𝐰⊥:

–𝐰: Linear combination of input data 𝐱 𝑖
𝑖

–𝐰⊥: Other parts (orthogonal to all input data 𝐱 𝑖 )

▪ 𝐿 𝐰∗ depends only on 𝐰: σ𝑖=1
𝑁 ℓ 𝐰∗⊤𝐱 𝑖 + 𝜆 𝐰∗

2
2

=

𝑖=1

𝑁

ℓ 𝐰⊤𝐱 𝑖 +𝐰⊥⊤𝐱 𝑖 + 𝜆 𝐰 2
2 + 2𝐰⊤𝐰⊥ + 𝐰⊥

2
2

(Simple) proof of representer theorem:
Obj. func. depends only on linear combination of inputs

= 0 = 0 Minimized to = 0
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