KYOTO UNIVERSITY

Upcoming lectures:

The next two lectures include hands-on-practice

- May 2 (today): Classification [Kashima]
- May 13: Model evaluation and selection [Takeuchi]
- May 20: Hands-on practice [Takeuchi]
- May 27: Feature selection [Yamada]
- June 3: Dimensionality reduction [Yamada]

Bring your own laptop (recommended)

Statistical Learning Theory - Classification -

Hisashi Kashima

Classification

KYOTO UNIVERSITY

Classification: Supervised learning for predicting discrete variable

- Goal: Obtain a function $f: \mathcal{X} \to \mathcal{Y}$ (\mathcal{Y} : discrete domain)
 - -E.g. $x \in \mathcal{X}$ is an image and $y \in \mathcal{Y}$ is the type of object appearing in the image
 - -Two-class classification: $\mathcal{Y} = \{+1, -1\}$
- Training dataset:

N pairs of an input and an output $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$

http://www.vision.caltech.edu/Image_Datasets/Caltech256/

Kyoto University

Some applications of classification: From binary to multi-class classification

- Binary (two-class)classification:
 - Purchase prediction: Predict if a customer \mathbf{x} will buy a particular product (+1) or not (-1)
 - Credit risk prediction: Predict if a obligor \mathbf{x} will pay back a debt (+1) or not (-1)
- Multi-class classification (≠ Multi-label classification):
 - Text classification: Categorize a document x into one of several categories, e.g., {politics, economy, sports, ...}
 - Image classification: Categorize the object in an image x into one of several object names, e.g., {AK5, American flag, backpack, ...}
 - Action recognition: Recognize the action type ({running, walking, sitting, ...}) that a person is taking from sensor data x

A simple model for classification: Linear classifier

- Linear (binary) classification model: $y = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}(w_1x_1 + w_2x_2 + \dots + w_Dx_D)$
 - $-|\mathbf{w}^{\top}\mathbf{x}|$ indicates the intensity of belief
 - $-\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$ gives a separating hyperplane
 - w: normal vector perpendicular to the separating hyperplane $\begin{array}{c} x_2 \\ \bullet \end{array} \quad v = +1 \end{array}$

Kyoto University

Learning framework: Loss minimization and statistical estimation

Two learning frameworks

1. Loss minimization: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(y^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})$

- Loss function ℓ : directly handles utility of predictions
- Regularization term $R(\mathbf{w})$
- 2. Statistical estimation (likelihood maximization): $L(\mathbf{w}) = \prod_{i=1}^{N} f_{\mathbf{w}}(y^{(i)} | \mathbf{x}^{(i)})$
 - Probabilistic model: generation process of class labels
 - Prior distribution $P(\mathbf{w})$
- They are often equivalent : {
 Loss = Probabilistic model Regularization = Prior

Classification problem in loss minimization framework: Minimize loss function + regularization term

- Minimization problem: $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} L(\mathbf{w}) + R(\mathbf{w})$
 - -Loss function $L(\mathbf{w})$: Fitness to training data
 - -Regularization term $R(\mathbf{w})$: Penalty on the model complexity to avoid overfitting to training data (usually norm of \mathbf{w})
- Loss function should reflect the number of misclassifications on training data

-Zero-one loss seems reasonable:

$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) = \begin{cases} 0 \quad (y^{(i)} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) \\ 1 \quad (y^{(i)} \neq \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) \end{cases}$$
Incorrect classification
Kyoto University

Zero-one loss:

Number of misclassification is hard to minimize

Zero-one loss:
$$\ell(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) = \begin{cases} 0 & (y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} > 0) \\ 1 & (y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} \le 0) \end{cases}$$

Non-convex function is hard to optimize directly

Convex surrogates of zero-one loss: Different functions lead to different learning machines

- Convex surrogates: Upper bounds of zero-one loss
 - -Hinge loss \rightarrow SVM, Logistic loss \rightarrow logistic regression, ...

KYOTO UNIVERSITY

Logistic regression

11

KYOTO UNIVERSITY

Logistic regression: Minimization of logistic loss is a convex optimization

Logistic loss:

$$\ell(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) = \frac{1}{\ln 2} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

Statistical interpretation: Logistic loss min. as MLE of logistic regression model

- Minimization of logistic loss is equivalent to maximum likelihood estimation of logistic regression model
- Logistic regression model (conditional probability):

$$f_{\mathbf{w}}(y = 1 | \mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}} \mathbf{x})}$$

• σ : Logistic function (σ : $\Re \rightarrow (0,1)$)

• Log likelihood: $L(\mathbf{w}) = \sum_{i=1}^{N} \log f_{\mathbf{w}}(y^{(i)} | \mathbf{x}^{(i)}) = -\sum_{i=1}^{N} \log(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}))$ $\left(= \sum_{i=1}^{N} \delta(y^{(i)} = 1) \log \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})} + \delta(y^{(i)} = -1) \log\left(1 - \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}\right) \right)$

KYOTO UNIVERSITY

 $\sigma()$

Parameter estimation of logistic regression : Numerical nonlinear optimization

N

• Objective function of (regularized) logistic regression:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w}\|_{2}^{2}$$

- Minimization of logistic loss / MLE of logistic regression model has no closed form solution
- Numerical nonlinear optimization methods are used

-Iterate parameter updates: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$ (until convergence)

$$w \qquad d \qquad w + d$$

Parameter update : Find the best update minimizing the objective function

• By update
$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$$
, the objective function will be:
 $L_{\mathbf{w}}(\mathbf{d}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}(\mathbf{w} + \mathbf{d})^{\top}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w} + \mathbf{d}\|_{2}^{2}$

- Find \mathbf{d}^* that minimizes $L_{\mathbf{w}}(\mathbf{d})$:
 - $\mathbf{d}^* = \operatorname{argmin}_{\mathbf{d}} L_{\mathbf{w}}(\mathbf{d})$
- ... but so far, this problem has not been made easier at all ...

Finding the best parameter update : Approximate the objective with Taylor expansion

Taylor expansion:

$$L_{\mathbf{w}}(\mathbf{d}) = L(\mathbf{w}) + \mathbf{d}^{\top} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\top} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^{3})$$

-Gradient vector:
$$\nabla L(\mathbf{w}) = \left(\frac{\partial L(\mathbf{w})}{\partial w_1}, \frac{\partial L(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial L(\mathbf{w})}{\partial w_D}\right)^{\mathsf{T}}$$

• Steepest direction
-Hessian matrix:
$$[H(\mathbf{w})]_{i,j} = \frac{\partial^2 L(\mathbf{w})}{\partial w_i \partial w_j}$$

KYOTO UNIVERSITY

3rd-order term

 $L(\mathbf{w})$

 $\nabla L(\mathbf{w})$

W

Newton update : Minimizes the second order approximation

Approximated Taylor expansion (neglecting the 3rd order term):

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^3)$$

• Derivative w.r.t.
$$\mathbf{d}: \frac{\partial L_{\mathbf{w}}(\mathbf{d})}{\partial \mathbf{d}} \approx \nabla L(\mathbf{w}) + H(\mathbf{w})\mathbf{d}$$

17

- Setting it to be **0**, we obtain $\mathbf{d} = -\mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$
- Newton update formula: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ $\mathbf{w}_{-\mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})}$ $\mathbf{w} - \mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$

Modified Newton update: Second order approximation + linear search

• The correctness of the update $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$ depends on the second-order approximation:

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\top} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\top} H(\mathbf{w}) \mathbf{d}$$

-This is not actually true for most cases

• Use only the direction of $H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ and update with $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$

• Learning rate $\eta > 0$ is determined by linear search: $\eta^* = \operatorname{argmax}_{\eta} L(\mathbf{w} - \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w}))$

(Steepest) gradient descent: Simple update without computing inverse Hessian

Computing the inverse of Hessian matrix is costly

-Newton update: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$

- (Steepest) gradient descent: -Replacing $H(\mathbf{w})^{-1}$ with I gives $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \nabla L(\mathbf{w})$
 - $\nabla L(\mathbf{w})$ is the steepest direction
 - Learning rate η is determined by line search

$$\mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{w}$$

Summary: Gradient descent

- Steepest gradient descent is the simplest optimization method:
- Update the parameter in the steepest direction of the objective function

$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \nabla L(\mathbf{w})$$

Example of gradient descent: Gradient of logistic regression

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \frac{\partial(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))}{\partial \mathbf{w}}$$

$$= -\sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) y^{(i)}\mathbf{x}^{(i)}$$

$$= -\sum_{i=1}^{N} (1 - f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})) y^{(i)}\mathbf{x}^{(i)}$$

$$Can be easily computed with the current prediction probabilities}$$

KYOTO UNIVERSITY

Mini batch optimization: Efficient training using data subsets

• Objective function for N instances: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda R(\mathbf{w})$

22

• Its derivative
$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$$
 needs $O(N)$ computation

• Approximate this with only one instance: $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx N \frac{\partial \ell(\mathbf{w}^{\top} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$ (Stochastic approximation)

• Also we can do this with 1 < M < N instances:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{N}{M} \sum_{j \in \text{MiniBatch}} \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}} \quad \text{(Mini batch)}$$

Multi-class Classification

KYOTO UNIVERSITY

Multi-class classification: Generalization of supervised two-class classification

- Training dataset: $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(i)}, y^{(i)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$
 - -input $\mathbf{x}^{(i)} \in \mathcal{X} = \mathbb{R}^D$: *D*-dimensional real vector
 - -output $y^{(i)} \in \mathcal{Y}$: one-dimensional scalar
- Estimate a *deterministic mapping* $f: \mathcal{X} \to \mathcal{Y}$ (often with a confidence value) or a *conditional probability* $P(y|\mathbf{x})$

Classification

24

- $-\mathcal{Y} = \{+1, -1\}$: Two-class classification
- $-\mathcal{Y} = \{1, 2, \dots, K\}$: *K*-class multi-class classification
 - hand-written digit recognition, text classification, ...

Two-class classification model: One model with one parameter vector

Two-class classification model

-Linear classifier:
$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x}) \in \{+1, -1\}$$

-Logistic regression:
$$P(y|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}$$

-The model is specified by a parameter vector $\mathbf{w} = (w_1, w_2, ..., w_D)^T$

Simple approaches to multi-class classification: Reduction to two-class classification

- Reduction to a set of two-class classification problems
- Approach 1: One-versus-rest
 - -Construct K two-class classifiers; each classifier sign $(\mathbf{w}^{(k)^{\intercal}}\mathbf{x})$ discriminates class k from the others
 - –Prediction: the most probable class with the largest $\mathbf{w}^{(k)\intercal}\mathbf{x}$
- Approach 2: One-versus-one

confidence

-Construct K(K - 1)/2 two-class classifiers, each of which discriminates between a pair of two classes

-Prediction by voting

Error Correcting Output Code (ECOC) : An approach inspired by error correcting coding

- Approach 3: Error correcting output code (ECOC)
 - -Construct a set of two-class classifiers, each of which discriminates between two groups of classes, e.g. AB vs. CD
 - Prediction by finding the nearest code in terms of Hamming distance codes

	class	two-class classification problems						
		1	2	3	4	5	6	
	А	1	1	1	1	1	1	code for class A
	В	1	-1	1	-1	-1	-1	
	С	-1	-1	-1	1	-1	1	
	D	-1	1	1	-1	-1	1	
	prediction	1	1	1	1	1	-1	

27

Kyoto University

Design of ECOC : Code design is the key for good classification

 Codes (row) should be apart from each other in terms of Hamming distance

codes

Hamming distances between codes

class	А	В	С	D
Α	0	4	4	3
В		0	4	3
С			0	3
D				0

Multi-class logistic regression model: One model parameter vector for each class

- More direct modeling of multi-class classification
 - –One parameter vector $\mathbf{w}^{(k)}$ for each class k

-Multi-class linear classifier: $f(\mathbf{x}) = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w}^{(k)^{\intercal}} \mathbf{x}$

-Multi-class logistic regression: $P(k|\mathbf{x}) = \frac{\exp(\mathbf{w}^{(k)^{T}}\mathbf{x})}{\sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k')^{T}}\mathbf{x})}$

 converts real values into positive values, and then normalizes them to obtain a probability value ∈ [0,1]

Training multi-class logistic regression: (Regularized) maximum likelihood estimation

Find the parameters that minimizes the negative log-likelihood

$$J(\{\mathbf{w}^{(y)}\}_{y}) = -\sum_{i=1,...,N} \log p(y^{(i)} | \mathbf{x}^{(i)}) + \gamma \sum_{y \in \mathcal{Y}} \| \mathbf{w}^{(y)} \|_{2}^{2}$$

• $\| \mathbf{w}^{(y)} \|_2^2$: a regularizer to avoid overfitting

• For multi-class logistic regression $P(k|\mathbf{x}) = \frac{\exp(\mathbf{w}^{(k)^{T}}\mathbf{x})}{\sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k')^{T}}\mathbf{x})}$

$$J = -\sum_{i} \mathbf{w}^{(k)^{\mathsf{T}}} \mathbf{x}^{(i)} + \sum_{i} \log \sum_{k' \in \mathcal{Y}} \exp(\mathbf{w}^{(k)^{\mathsf{T}}} \mathbf{x}^{(i)}) + \operatorname{reg.}$$

-Minimization using gradient-based optimization methods