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▪ May 2 (today): Classification [Kashima]

▪ May 13: Model evaluation and selection [Takeuchi]

▪ May 20: Hands-on practice [Takeuchi]

▪ May 27: Feature selection [Yamada]

▪ June 3: Dimensionality reduction [Yamada]

▪ …

Upcoming lectures:
The next two lectures include hands-on-practice

Bring your own laptop
(recommended)
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Classification
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▪Goal: Obtain a function 𝑓: 𝒳 → 𝒴 (𝒴: discrete domain)

–E.g. 𝑥 ∈ 𝒳 is an image and 𝑦 ∈ 𝒴 is the type of object 
appearing in the image

–Two-class classification: 𝒴 = {+1, −1}

▪ Training dataset: 
𝑁 pairs of an input and an output

𝐱 1 , 𝑦 1 , … , 𝐱 𝑁 , 𝑦 𝑁

Classification:
Supervised learning for predicting discrete variable

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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▪ Binary (two-class)classification: 

– Purchase prediction: Predict if a customer 𝐱 will buy a particular product 
(+1) or not (-1)

– Credit risk prediction: Predict if a obligor 𝐱 will pay back a debt (+1) or 
not (-1)

▪ Multi-class classification (≠ Multi-label classification): 

– Text classification: Categorize a document 𝐱 into one of several 
categories, e.g., {politics, economy, sports, …}

– Image classification: Categorize the object in an image 𝐱 into one of 
several object names, e.g., {AK5, American flag, backpack, …}

– Action recognition: Recognize the action type ({running, walking, 
sitting, …}) that a person is taking from sensor data 𝐱

Some applications of classification:
From binary to multi-class classification
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▪ Linear (binary) classification model:
𝑦 = sign 𝐰⊤𝐱 = sign 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝐷𝑥𝐷

– 𝐰⊤𝐱 indicates the intensity of belief 

–𝐰⊤𝐱 = 0 gives a separating hyperplane

• 𝐰: normal vector perpendicular to the separating 
hyperplane

A simple model for classification:
Linear classifier

𝑥1

𝑥2

𝐰 = 𝑤1, 𝑤2

𝐰⊤𝐱 = 0

𝐰⊤𝐱 > 0

𝐰⊤𝐱 < 0

𝑦 = +1

𝑦 = −1
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▪ Two learning frameworks

1. Loss minimization: 𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖

• Loss function ℓ: directly handles utility of predictions

• Regularization term 𝑅 𝐰

2. Statistical estimation (likelihood maximization):         

𝐿 𝐰 = ς𝑖=1
𝑁 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖))

• Probabilistic model: generation process of class labels 

• Prior distribution 𝑃 𝐰

▪ They are often equivalent :

Learning framework:
Loss minimization and statistical estimation

ቊ
Loss = Probabilistic model

Regularization = Prior
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▪Minimization problem: 𝐰∗ = argmin𝐰 𝐿 𝐰 + 𝑅(𝐰)

–Loss function 𝐿 𝐰  : Fitness to training data

–Regularization term 𝑅(𝐰) : Penalty on the model complexity 
to avoid overfitting to training data (usually norm of 𝐰)

▪ Loss function should reflect the number of misclassifications on 
training data

–Zero-one loss seems reasonable: 

ℓ(𝑖) 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 = ൞
0 𝑦 𝑖 = sign 𝐰⊤𝐱 𝑖

1 𝑦 𝑖 ≠ sign 𝐰⊤𝐱 𝑖

Classification problem in loss minimization framework:
Minimize loss function + regularization term

Correct classification

Incorrect classification
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▪ Zero-one loss: ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 = ൝
0 𝑦 𝑖 𝐰⊤𝐱 𝑖 > 0

1 𝑦 𝑖 𝐰⊤𝐱 𝑖 ≤ 0

▪Non-convex function is hard to optimize directly

Zero-one loss:
Number of misclassification is hard to minimize

𝑦 𝑖 𝐰⊤𝐱 𝑖

Correct classificationMisclassification

ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖
Non-convex
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▪ Convex surrogates: Upper bounds of zero-one loss 

–Hinge loss → SVM, Logistic loss → logistic regression, ...

Convex surrogates of zero-one loss:
Different functions lead to different learning machines

Squared loss

Logistic loss

Hinge loss

𝑦 𝑖 𝐰⊤𝐱 𝑖

Instead of directly minimizing zero-one loss, 
we minimize its upper bound



11 KYOTO UNIVERSITY

Logistic regression
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▪ Logistic loss: 

ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 =
1

ln2 
ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖

▪ (Regularized) Logistic regression: 

𝐰∗ = argmin𝐰 

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

Logistic regression:
Minimization of logistic loss is a convex optimization

Logistic loss
𝑦 𝑖 𝐰⊤𝐱 𝑖

Convex
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▪Minimization of logistic loss is equivalent to maximum 
likelihood estimation of logistic regression model

▪ Logistic regression model (conditional probability): 

𝑓𝐰 𝑦 = 1 𝐱) = 𝜎(𝐰⊤𝐱) =
1

1+exp −𝐰⊤𝐱

• 𝜎: Logistic function (𝜎: ℜ → 0,1 )

▪ Log likelihood: 

𝐿 𝐰 = 

𝑖=1

𝑁

log 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖)) = − 

𝑖=1

𝑁

log 1 + exp −𝑦(𝑖)𝐰⊤𝐱

= 

𝑖=1

𝑁

𝛿 𝑦 𝑖 = 1 log
1

1 + exp −𝐰⊤𝐱
+ 𝛿 𝑦 𝑖 = −1 log 1 −

1

1 + exp −𝐰⊤𝐱

Statistical interpretation:
Logistic loss min. as MLE of logistic regression model

𝐰⊤𝐱

𝜎
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▪Objective function of (regularized) logistic regression:

𝐿 𝐰 = 

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖) + 𝜆 𝐰 2
2

▪Minimization of logistic loss / MLE of logistic regression model
has no closed form solution

▪Numerical nonlinear optimization methods are used

– Iterate parameter updates: 𝐰NEW ← 𝐰 + 𝐝 (until convergence)

Parameter estimation of logistic regression :
Numerical nonlinear optimization

𝐰 𝐰 + 𝐝
𝐝
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▪ By update 𝐰NEW ← 𝐰 + 𝐝, the objective function will be:

𝐿𝐰 𝐝 = 

𝑖=1

𝑁

ln 1 + exp −𝑦 𝑖 (𝐰 + 𝐝)⊤𝐱(𝑖) + 𝜆 𝐰 + 𝐝 2
2

▪ Find 𝐝∗ that minimizes 𝐿𝐰 𝐝 :

⚫ 𝐝∗ = argmin𝐝 𝐿𝐰 𝐝

▪… but so far, this problem has not been made easier at all …

Parameter update :
Find the best update minimizing the objective function
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▪ Taylor expansion:

𝐿𝐰 𝐝 = 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

–Gradient vector: 𝛻𝐿 𝐰 =
𝜕𝐿 𝐰

𝜕𝑤1
,

𝜕𝐿 𝐰

𝜕𝑤2
, … ,

𝜕𝐿 𝐰

𝜕𝑤𝐷

⊤

• Steepest direction

–Hessian matrix: 𝐻 𝐰 𝑖,𝑗 =
𝜕2𝐿 𝐰

𝜕𝑤𝑖𝜕𝑤𝑗

Finding the best parameter update :
Approximate the objective with Taylor expansion

3rd-order term
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▪ Approximated Taylor expansion (neglecting the 3rd order term):

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝 + O(𝐝3)

▪ Derivative w.r.t. 𝐝: 
𝜕𝐿𝐰 𝐝

𝜕𝐝
≈ 𝛻𝐿 𝐰 + 𝑯 𝐰 𝐝

▪ Setting it to be 𝟎, we obtain 𝐝 = −𝑯 𝐰 −1𝛻𝐿 𝐰

▪Newton update formula: 
𝐰NEW ← 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰

Newton update :
Minimizes the second order approximation

𝐰 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰
−𝑯 𝐰 −1𝛻𝐿 𝐰



18 KYOTO UNIVERSITY

▪ The correctness of the update 𝐰NEW ← 𝐰 − 𝑯 𝐰 −1𝛻𝐿 𝐰
depends on the second-order approximation:

𝐿𝐰 𝐝 ≈ 𝐿 𝐰 + 𝐝⊤𝛻𝐿 𝐰 +
1

2
𝐝⊤𝑯 𝐰 𝐝

–This is not actually true for most cases 

▪Use only the direction of 𝑯 𝐰 −1𝛻𝐿 𝐰 and update with
𝐰NEW ← 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

▪ Learning rate 𝜂 > 0 is determined by linear search:

𝜂∗ = argmax𝜂 𝐿 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

Modified Newton update:
Second order approximation + linear search 
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▪ Computing the inverse of Hessian matrix is costly

–Newton update: 𝐰NEW ← 𝐰 − 𝜂𝑯 𝐰 −1𝛻𝐿 𝐰

▪ (Steepest) gradient descent:

–Replacing 𝑯 𝐰 −1 with 𝑰 gives 
𝐰NEW ← 𝐰 − 𝜂𝛻𝐿 𝐰

• 𝛻𝐿 𝐰 is the steepest direction

• Learning rate 𝜂 is determined by line search

(Steepest) gradient descent:
Simple update without computing inverse Hessian

𝐰 𝐰 − 𝜂𝛻𝐿 𝐰
−𝜂𝛻𝐿 𝐰

Gradient of 
objective function
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▪ Steepest gradient descent is the simplest optimization method:

▪Update the parameter in the steepest direction of the objective 
function

𝐰NEW ← 𝐰 − 𝜂𝛻𝐿 𝐰

–Gradient: 𝛻𝐿 𝐰 =
𝜕𝐿 𝐰

𝜕𝑤1
,

𝜕𝐿 𝐰

𝜕𝑤2
, … ,

𝜕𝐿 𝐰

𝜕𝑤𝐷

⊤

–Learning rate 𝜂 is determined by line search

Summary:
Gradient descent

𝐰 𝐰 − 𝜂𝛻𝐿 𝐰
−𝜂𝛻𝐿 𝐰
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▪ 𝐿 𝐰 = σ𝑖=1
𝑁 ln 1 + exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

▪
𝜕𝐿 𝐰

𝜕𝐰
= σ𝑖=1

𝑁 1

1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

𝜕 1+exp −𝑦 𝑖 𝐰⊤𝐱(𝑖)

𝜕𝐰

= − 

𝑖=1

𝑁
1

1 + exp −𝑦 𝑖 𝐰⊤𝐱 𝑖
exp −𝑦 𝑖 𝐰⊤𝐱 𝑖 𝑦 𝑖 𝐱 𝑖

= − 

𝑖=1

𝑁

(1 − 𝑓𝐰(𝑦(𝑖)|𝐱(𝑖))) 𝑦 𝑖 𝐱 𝑖

Example of gradient descent:
Gradient of logistic regression

Can be easily computed with the 
current prediction probabilities
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▪Objective function for 𝑁 instances:                                   

𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝐰⊤𝐱 𝑖 + 𝜆𝑅 𝐰

▪ Its derivative 
𝜕𝐿 𝐰

𝜕𝐰
= σ𝑖=1

𝑁 𝜕ℓ 𝐰⊤𝐱 𝑖

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
needs 𝑂 𝑁

computation

▪ Approximate this with only one instance:                              
𝜕𝐿 𝐰

𝜕𝐰
≈ 𝑁

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Stochastic approximation)

▪ Also we can do this with 1 < 𝑀 < 𝑁 instances:                  
𝜕𝐿 𝐰

𝜕𝐰
≈

𝑁

𝑀
σ𝑗∈MiniBatch

𝜕ℓ 𝐰⊤𝐱 𝑗

𝜕𝐰
+ 𝜆

𝜕𝑅 𝐰

𝜕𝐰
(Mini batch)

Mini batch optimization:
Efficient training using data subsets
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Multi-class Classification
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▪ Training dataset: 𝐱 1 , 𝑦 1 , … , 𝐱 𝑖 , 𝑦 𝑖 , … , 𝐱 𝑁 , 𝑦 𝑁

– input 𝐱 𝑖 ∈ 𝒳 = ℝ𝐷: 𝐷-dimensional real vector

–output 𝑦 𝑖 ∈ 𝒴: one-dimensional scalar

▪ Estimate a deterministic mapping 𝑓: 𝒳 → 𝒴 (often with a 
confidence value) or a conditional probability 𝑃(𝑦|𝒙)

▪ Classification

–  𝒴 = {+1, −1}: Two-class classification

–  𝒴 = {1, 2, … , 𝐾}: 𝐾-class multi-class classification

• hand-written digit recognition, text classification, …

Multi-class classification: 
Generalization of supervised two-class classification
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▪ Two-class classification model

–Linear classifier: 𝑓 𝐱 = sign(𝐰⊤𝐱) ∈ {+1, −1}

–Logistic regression: 𝑃 𝑦 𝐱 =
1

1 + exp −𝐰⊺𝐱

–The model is specified by a parameter vector
𝐰 = (𝑤1, 𝑤2, … , 𝑤𝐷)⊺

Two-class classification model: 
One model with one parameter vector
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▪ Reduction to a set of two-class classification problems

▪ Approach 1: One-versus-rest

–Construct 𝐾 two-class classifiers; each classifier sign(𝐰(𝑘)⊺𝐱)
discriminates class 𝑘 from the others

–Prediction: the most probable class with the largest 𝐰(𝑘)⊺𝐱

▪ Approach 2: One-versus-one

–Construct  𝐾 𝐾 − 1 /2 two-class classifiers, 
each of which discriminates between a pair of two classes

–Prediction by voting

Simple approaches to multi-class classification: 
Reduction to two-class classification

confidence
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▪ Approach 3: Error correcting output code (ECOC)

–Construct a set of two-class classifiers, each of which 
discriminates between two groups of classes, e.g. AB vs. CD

–Prediction by finding the nearest code in terms of Hamming 
distance

Error Correcting Output Code (ECOC) : 
An approach inspired by error correcting coding

class
two-class classification problems

1 2 3 4 5 6

A 1 1 1 1 1 1

B 1 -1 1 -1 -1 -1

C -1 -1 -1 1 -1 1

D -1 1 1 -1 -1 1

code for class A

codes

prediction
1 1 1 1 1 -1
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▪ Codes (row) should be apart from each other in terms of 
Hamming distance

Design of ECOC : 
Code design is the key for good classification

class
two-class classification problems

1 2 3 4 5 6

A 1 1 1 1 1 1

B 1 -1 1 -1 -1 -1

C -1 -1 -1 1 -1 1

D -1 1 1 -1 -1 1

class A B C D

A 0 4 4 3

B 0 4 3

C 0 3

D 0

Hamming distances between codes
codes
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▪More direct modeling of multi-class classification

–One parameter vector 𝐰(𝑘) for each class 𝑘

–Multi-class linear classifier: 𝑓 𝒙 = argmax
𝑘∈𝒴

𝐰(𝑘)⊺𝐱

–Multi-class logistic regression: 𝑃(𝑘|𝒙) =
exp 𝐰(𝑘)⊺𝐱

σ𝑘′∈𝒴 exp 𝐰(𝑘
′
)⊺𝐱

• converts real values into positive values, and then 
normalizes them to obtain a probability value ∈ [0,1]

Multi-class logistic regression model: 
One model parameter vector for each class
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▪ Find the parameters that minimizes the negative log-likelihood

𝐽 𝐰 𝑦
𝑦 = − 

𝑖=1,…,𝑁

log 𝑝(𝑦(𝑖)|𝐱(𝑖)) + 𝛾 

𝑦 ∈𝒴

∥ 𝐰 𝑦 ∥2
2

• ∥ 𝐰 𝑦 ∥2
2: a regularizer to avoid overfitting

▪ For multi-class logistic regression 𝑃(𝑘|𝒙) =
exp 𝐰(𝑘)⊺𝐱

σ𝑘′∈𝒴 exp 𝐰(𝑘
′
)⊺𝐱

𝐽 = − 

𝑖

𝐰 𝑘 ⊺𝐱 𝑖 + 
𝑖

log 
𝑘′∈𝒴

exp 𝐰 𝑘 ⊺𝐱 𝑖 + reg.

–Minimization using gradient-based optimization methods

Training multi-class logistic regression: 
(Regularized) maximum likelihood estimation
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