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Linear Regression



3 KYOTO UNIVERSITY

▪ Regression learning is one of supervised learning problem 
settings with a wide range of applications

▪Goal: Obtain a function 𝑓:𝒳 → ℜ (ℜ : real value)

–Usually, input domain 𝒳 is a 𝐷-dimensional vector space

• E.g. 𝑥 ∈ 𝒳 is a house          and 𝑦 ∈ ℜ is its price
(housing dataset in UCI Machine Learning Repository)

▪ Training dataset: 𝑁 pairs of an input and an output 

𝐱 1 , 𝑦 1 , 𝐱 2 , 𝑦 2 , … , 𝐱 𝑁 , 𝑦 𝑁

–We use the training dataset to estimate 𝑓

Regression:
Supervised learning for predicting a real valued variable
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▪ Some applications:

–Price prediction: Predict the price 𝑦 of a product 𝑥

–Demand prediction: Predict the demanded amount 𝑦 of a 
product 𝑥

–Sales prediction: Predict the sales amount 𝑦 of a product 𝑥

–Chemical activity: Predict the activity level 𝑦 of a compound 𝑥

▪Other applications:

–Time series prediction: Predict the value 𝑦 at the next time 
step given the past measurements 𝑥

–Classification (has a discrete output domain)

Some applications of regression:
From marketing prediction to chemo-informatics
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▪Model: How does output 𝑦 depend on input 𝐱?

▪We consider the simplest choice: Liner regression model
𝑦 = 𝐰⊤𝐱 = 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝐷𝑥𝐷
𝐰 = 𝑤1, 𝑤2, … , 𝑤𝐷 , 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝐷

–Example: Prediction model of the price of a house:

A simplest model for regression:
Linear regression model

Age

Time to station

Crime rate

Price
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▪We assume input 𝐱 is a real vector

– In the house price prediction example, features can be age, 
walk time to the nearest station, crime rate in the area, …

• They are considered as real values

▪How do we handle discrete features as real values?

–Binary features: {Right, Left} are encoded as {0,1}

–Called dummy variables

–One-hot encoding: Kyoto, Osaka, Tokyo are encoded with 
(1,0,0), (0,1,0), and (0,0,1)

Handling discrete features:
Dummy variables
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▪Objective function (to minimize): 
Disagreement measure of the model to the training dataset

–Objective function: 𝐿 𝐰 = σ𝑖=1
𝑁 ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖

–Loss function: ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 for the 𝑖-th instance

▪ Squared loss function is a typical choice: 

ℓ 𝑦 𝑖 , 𝐰⊤𝐱 𝑖 = 𝑦 𝑖 −𝐰⊤𝐱(𝑖)
2

–Absolute loss, Huber loss: more robust alternative choices

▪Optimal parameter 𝐰∗ is the one that minimizes 𝐿 𝐰 :

𝐰∗ = argmin𝐰 𝐿 𝐰

Training a linear regression model:
Formulation as a squared loss minimization problem
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▪ Let us start with a case where inputs and outputs are both one-
dimensional: 𝑦 = 𝑤𝑥

▪Objective function to minimize: 

𝐿 𝑤 =෍

𝑖=1

𝑁

𝑦 𝑖 − 𝑤𝑥 𝑖 2

▪ Solution: 𝑤∗ =
σ𝑖=1
𝑁 𝑦 𝑖 𝑥 𝑖

σ𝑖=1
𝑁 𝑥 𝑖 2

=
Cov(𝑥,𝑦)

Var(𝑥)

–Obtained by solving 
𝜕𝐿 𝑤

𝜕𝑤
= 0

Solution of linear regression problem:
One dimensional case

𝑦

𝑥

𝑦 = 𝑤𝑥
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▪Matrix and vector notations:

–Design matrix 𝑿 = 𝐱 1 , 𝐱 2 , … , 𝐱 𝑁 ⊤

–Target vector 𝐲 = 𝑦 1 , 𝑦 2 , … , 𝑦 𝑁 ⊤

▪ Objective function: 

𝐿 𝐰 =෍

𝑖=1

𝑁

𝑦 𝑖 −𝐰⊤𝐱 𝑖 2
= 𝐲 − 𝑿𝐰 2

2

= 𝐲 − 𝑿𝐰 ⊤ 𝐲 − 𝑿𝐰

▪ Solution: 𝐰∗ = argmin𝐰 𝐿 𝐰 = 𝑿⊤𝑿 −1𝑿⊤𝐲

–Equivalent to the solution of linear equations: 𝑿⊤𝑿 𝐰∗ = 𝑿⊤𝐲

Solution of linear regression problem:
General multi-dimensional input case

We assume the 
inverse exists
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▪ Design matrix: Training data with 4 houses

𝑿 = 𝐱 1 , 𝐱 2 , 𝐱 3 , 𝐱 4 ⊤
=

15
10
1.0

,
3
1
0.1

,
35
5
7.0

,
40
70
1.0

⊤

▪ Target vector:

𝐲 = 𝑦 1 , 𝑦 2 , 𝑦 3 , 𝑦 4 ⊤
= 140, 85, 220, 115 ⊤

Example:
House price prediction

Age

Time to station

Crime rate

Price
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Regularization
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▪ Existence of the solution 𝐰∗ = 𝑿⊤𝑿 −1𝑿𝐲 requires that
𝑿⊤𝑿 is non-singular or regular, i.e. full-rank

–This is often secured when the number of data instances 𝑁 is 
much larger than the number of dimensions 𝐷 (𝑁 ≫ 𝐷)

▪ Regularization: Adding some constant 𝜆 > 0 to the diagonals of 
𝑿⊤𝑿 to make it regular (and also for numerical stability)

–Modified solution: 𝐰∗ = 𝑿⊤𝑿 + 𝜆𝑰 −1𝑿⊤𝐲

▪ Back to its objective function, the new solution corresponds to
𝐿 𝐰 = 𝐲 − 𝑿𝐰 2

2 + 𝜆 𝐰 2
2

–𝜆 𝐰 2
2 is called a (L2-)regularization term

Ridge regression:
Include penalty on the norm of 𝐰 to avoid instability

(L2-)regularization 
term
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▪When the number of data instances 𝑁 is less than the number 
of dimensions 𝐷, the solution is not uniquely determined 

– Infinite number of solutions exist for 𝑿⊤𝑿 𝐰∗ = 𝑿⊤𝐲

▪ All solutions equally fit to the training data

(= minimize the loss function 𝐿 𝐰 = σ𝑖=1
𝑁 𝑦 𝑖 −𝐰⊤𝐱 𝑖 2

)

–Some perform well, some perform badly

▪Generalization: our ultimate goal is to make correct predictions 
for future data, not for the past (training) data

▪Question: Which is the “best” model among them?

Generalization:
Our goal is to find a model performs well for future data
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▪How should we find the best model?

▪Occam’s razor principle: “Take the simplest model”

–We will discuss why the simple model is good 
later in the “statistical learning theory”

▪Overfitting: “Larger” models tend to fit too much to the training 
data, which degrades predictive performance on future data 

▪What is the measure of simplicity? 
For example, 
number of features = the number of non-zero elements in 𝐰
is used as a complexity measure of a model

Occam’s razor principle:
Prefers simpler models

William of Ockham
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▪Occam’s razor principle prefers

to

Occam’s razor principle:
Prefers models with smaller number of variables

𝑥1

𝑥2

𝑥3

𝑓

× 𝑤1

× 𝑤2

× 0

+ Annual earnings

Years of education

Amount of fortune

Height

𝑥1

𝑥2

𝑥3

𝑓

× 𝑤1

× 𝑤2

× 𝑤3

+ Annual earnings

Years of education

Amount of fortune

Height

Zero weight 𝑤3 = 0 is equivalent to 
absence of the corresponding variable 𝑥3

𝑓 = 𝑤1𝑥1 + 𝑤2𝑥2 +𝑤3𝑥3

𝑓 = 𝑤1𝑥1 + 𝑤2𝑥2 +𝑤3𝑥3

Two variables

Three variables
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▪Number of non-zero elements in 𝐰 = “0-norm of 𝐰”

▪Use 0-norm constraint: 

minimize𝐰 𝐲 − 𝑿𝐰 2
2 s. t. 𝐰 0 ≤ 𝜂

or equivalently, 0-norm penalty: 

minimize𝐰 𝐲 − 𝑿𝐰 2
2+ 𝜆 𝐰 0

–There is some one-to-one correspondence between 𝜂 and 𝜆

▪However, they are non-convex optimization problems …

–0-norm is a non-convex function

–Hard to find the optimal solution

0-norm regularization:
Reduces the number of non-zero elements in 𝐰

Number of 
features used in 
the model

𝜆 > 0: Regularization 
constant
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▪ Instead of the zero-norm 𝐰 0, we use 2-norm 𝐰 2
2

▪ Ridge regression: 𝐿 𝐰 = 𝐲 − 𝑿𝐰 2
2 + 𝜆 𝐰 2

2

–Can be seen as a relaxed version      of 
𝐿 𝐰 = 𝐲 − 𝑿𝐰 2

2+𝜆 𝐰 0

–The closed form solution: 𝐰∗ = 𝑿⊤𝑿 + 𝜆𝑰 −1𝑿⊤𝐲

Ridge regression :
2-norm regularization as a convex surrogate for 0-norm

Convex ☺

Non-convex 

𝑤1
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▪ Instead, we can use 1-norm 𝐰 1 = 𝑤1 + 𝑤2 +⋯+ 𝑤𝐷

▪ Lasso: 𝐿 𝐰 = 𝐲 − 𝑿𝐰 2
2 + 𝜆 𝐰 1

–Convex optimization, but no closed form solution

▪ Sparsity inducing norm: 1-norm induces sparse 𝐰∗

Lasso :
1-norm regularization further induces sparsity

𝑤1
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Statistical Interpretation
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▪ So far we have formulated the regression problem in 
loss minimization framework

–Function (prediction model) 𝑓:𝒳 → ℜ is deterministic

• Linear regression model: 𝑦 = 𝐰⊤𝐱

–Least squares: Minimization of the sum of squared losses

•minimize σ𝑖=1
𝑁 𝑦 𝑖 −𝐰⊤𝐱 𝑖 2

▪We have not considered any statistical inference

▪ Actually, we can interpret the previous formulation in a 
statistical inference framework, namely, maximum likelihood 
estimation of a probabilistic model

Interpretation as statistical inference :
Regression as maximum likelihood estimation
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▪We consider a probabilistic model 𝑓

– as a conditional distribution 𝑓𝐰(𝑦|𝐱)

▪We believe a good model reproduces the data well

–“Reproduce the data well” = give high probabilities to the data

▪Maximum likelihood estimation (MLE):

–Find 𝐰 that maximizes the likelihood function:

𝐿 𝐰 = ς𝑖=1
𝑁 𝑓𝐰(𝑦

(𝑖)|𝐱(𝑖))

• Likelihood function: Probability that the training data is 
reproduced by the model

• We assume i.i.d. (which will be explained next)

Maximum likelihood estimation (MLE):
Find the parameter that best reproduces training data 

Conditional
probability 
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▪We assume data are identically and independently distributed:

–Data instances are generated from the same data generation 
mechanism (i.e. probability distribution)

–Data instances are independent of each other:

• 𝐿 𝐰 = ς𝑖=1
𝑁 𝑓𝐰(𝑦

(𝑖)|𝐱(𝑖))

▪ It is often convenient to use log likelihood instead:

𝐿 𝐰 =෍

𝑖=1

𝑁

log 𝑓𝐰(𝑦
(𝑖)|𝐱(𝑖))

▪We also assume training data and future data (test data) come 
from the same distribution

Important assumption on data generation:
Identically and independently distributed
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▪ A probabilistic version of the linear regression model 𝑦 = 𝐰⊤𝐱

▪ 𝑦 ∼ 𝒩 𝐰⊤𝐱, 𝜎2 :  a conditional distribution of 𝑦 given 𝐱

– Gaussian distribution with mean 𝐰⊤𝐱 and variance 𝜎2

𝑓𝐰 𝑦 𝐱) = 𝒩 𝐰⊤𝐱, 𝜎2 =
1

2𝜋𝜎
exp −

𝑦 − 𝐰⊤𝐱 2

2𝜎2

– In other words, 𝑦 = 𝐰⊤𝐱 + 𝜖, where 𝜖 ∼ 𝒩 0, 𝜎2

A probabilistic version of the linear regression model:
Gaussian linear model

Linear 
regression 
model

𝑥

𝑦 = 𝑤𝑥 + 𝜖

𝑦
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▪ Log-likelihood function (to maximize):

𝐿 𝐰 =෍

𝑖=1

𝑁

log 𝑓𝐰(𝑦
(𝑖)|𝐱(𝑖))

=෍

𝑖=1

𝑁

log
1

2𝜋𝜎
exp −

𝑦(𝑖) −𝐰⊤𝐱(𝑖)
2

2𝜎2

= −
1

2𝜎2
෍

𝑖=1

𝑁

𝑦(𝑖) −𝐰⊤𝐱(𝑖)
2
+ const.

▪Maximization of 𝐿 𝐰 is equivalent to minimization of the 

squared loss  σ𝑖=1
𝑁 𝑦(𝑖) −𝐰⊤𝐱(𝑖)

2

Relation between least squares and MLE:
Maximum likelihood is equivalent to least squares

𝜎 is treated as 
a constant
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▪ (Least squares) linear regression is equivalent to the maximum 
likelihood estimation of the Gaussian linear model 

▪Now, how about the ridge regression (L2-regularized linear 
regression)?

– Is there any statistical inference framework corresponding to 
regularization? 

Summary: Least squares regression is maximum 
likelihood estimation
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Bayesian Statistical Interpretation
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▪We consider another statistical interpretation of linear 
regression in terms of Bayesian statistics

–Which justifies ridge (=L2-regularized) regression

▪ Ridge regression as MAP estimation

–Maximum A Posteriori (MAP) estimation

–“Posterior distribution” of parameters

Bayesian interpretation of regression:
Ridge regression as MAP estimation

Least square regression                  Maximum likelihood estimation

Ridge regression                  MAP estimation
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▪ In maximum likelihood estimation (MLE), 
we obtain 𝐰 that maximizes data likelihood:

𝑃(𝐲 ∣ 𝑿,𝐰) = ς𝑖=1
𝑁 𝑓𝐰(𝑦

(𝑖)|𝐱(𝑖))

or log 𝑃(𝐲 ∣ 𝑿,𝐰) = σ𝑖=1
𝑁 log 𝑓𝐰(𝑦

(𝑖)|𝐱(𝑖))

–The probability of the data reproduced by the parameter: 
𝑃(Data 𝐲 ∣ Parameters 𝐰)

▪ In Bayesian modeling, we consider the posterior distribution
𝑃 Parameters 𝐰 Data 𝐲

– Distribution over model parameters given data 

• In other words, model uncertainty given data

Bayesian modeling:
Posterior distribution instead of likelihood
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▪ Posterior distribution:

𝑃 Parameters Data =
𝑃 Data Parameters 𝑃 Parameters

𝑃(Data)

▪ Log posterior: 
log 𝑃 Parameters Data
= log 𝑃 Data Parameters + log 𝑃 Parameters

−log 𝑃(Data)

• 𝑃 Parameters represents our prior knowledge 

• 𝑃(Data) is a constant term and often neglected

Posterior distribution:
Log posterior = log likelihood + log prior

(Bayes’ formula)

Likelihood “Prior”
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▪Maximum a posteriori (MAP) estimation finds the parameter 
that maximizes the (log) posterior:
Parameters∗ = argmaxParameters log 𝑃 Parameters Data

–“Given the data, adopt the most certain parameters”

▪Maximization of the log posterior: 
log 𝑃 Parameters Data
= log 𝑃 Data Parameters + log 𝑃 Parameters + const.

⚫ MLE considers only log 𝑃 Data Parameters

⚫ MAP has an additional term (log prior) : log 𝑃 Parameters

Maximum a posteriori (MAP) estimation:
Find parameter that maximizes the posterior
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▪ Log posterior: log 𝑃 Parameters Data =
log 𝑃 Data Parameters + log 𝑃 Parameters + const.

• Log-likelihood: σ𝑖=1
𝑁 log

1

2𝜋𝜎′
exp −

𝑦(𝑖)−𝐰⊤𝐱(𝑖)
2

2𝜎′
2

• Prior 𝑃(𝐰) =
1

2𝜋𝜎
exp −

𝐰⊤𝐰

2𝜎2
(Gaussian prior)

▪ Ridge regression is equivalent to MAP estimation: 

𝐰∗ = argmin𝐰
1

2𝜎′2
෍

𝑖=1

𝑁

𝑦 𝑖 −𝐰⊤𝐱 𝑖 2
+

1

2𝜎2
𝐰 2

2

Ridge regression as MAP estimation:
MAP with Gaussian linear model + Gaussian prior

Log likelihood Log prior
Gaussian 
linear model
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Some More Applications
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▪ Time series data: A sequence of real valued data 
𝑥1, 𝑥2, … , 𝑥𝑡 , … ∈ ℜ associated with time stamps 𝑡 = 1,2, …

▪ Time series prediction: Given 𝑥1, 𝑥2, … , 𝑥𝑡−1, predict 𝑥𝑡

▪ Auto regressive (AR) model: 
𝑥𝑡 = 𝑤1𝑥𝑡−1 +𝑤2𝑥𝑡−2 +⋯+𝑤𝐷𝑥𝑡−𝐷

–𝑥𝑡 is determined by the recent length-𝐷 history

▪ AR model is a linear regression model 𝑦 = 𝐰⊤𝐱 :

–𝐰 = 𝑤1, 𝑤2, … , 𝑤𝐷
⊤

–𝐱 = 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝐷
⊤

Time series prediction:
Auto regressive (AR) model
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▪ Binary classification: 𝑦 ∈ +1,−1

▪ Apply regression to predict 𝑦 ∈ +1,−1

▪ Rigorously, such application is not valid

–Since an output is only either +1 or -1 (no intermediate value), 
the Gaussian noise assumption does not hold

–However, since solution of regression is often easier than that 
of classification, this application can be compromise

▪ Fisher discriminant: Instead of +1,−1 , use +
1

𝑁+ , −
1

𝑁−

– 𝑁+(𝑁−) is the number of positive (negative) data instances

Classification as regression:
Regression is also applicable to classification
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Nonlinear Regression
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▪ So far we have considered only linear models

▪How to introduce non-linearity in the models?

1. Introduce nonlinear basis functions:

• Transformed features: e.g. 𝑥 → log 𝑥

• Cross terms: e.g. 𝑥1, 𝑥2 → 𝑥1𝑥2
• Kernels: 𝐱 → 𝝓(𝐱) (some nonlinear mapping to a high-

dimensional space)

2. Intrinsically nonlinear models:

• Regression tree / random forest

• Neural network

Nonlinear regression:
Introducing nonlinearity in linear models
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▪Nonlinear basis function: 𝑥 → log 𝑥 , 𝑒𝑥 , 𝑥2,
1

𝑥
, …

–Sometimes used for converting the range 

• E.g. log:ℜ+ → ℜ, exp:ℜ → ℜ+

▪ Interpretations of log transformation:

Nonlinear transformation of features:
Simplest way to introduce nonlinearity in linear models

𝑦 log 𝑦

𝑥
𝑦 = 𝛽𝑥 + 𝛼 log 𝑦 = 𝛽𝑥 + 𝛼

Increase of 𝑥 by 1 will 
increase 𝑦 by 𝛽

Increase of 𝑥 by 1 will  
multiply 𝑦 by 1 + 𝛽

log 𝑥
𝑦 = 𝛽 log 𝑥 + 𝛼 log 𝑦 = 𝛽 log 𝑥 + 𝛼

Doubling 𝑥 will increase 𝑦 by 
𝛽

Doubling 𝑥 will multiply 𝑦 by 
1 + 𝛽
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▪Not only the original features 𝑥1, 𝑥2, … , 𝑥𝐷, use their cross 
terms products 𝑥𝑑𝑥𝑑′ 𝑑,𝑑′

▪Model has a matrix parameter 𝑾:

𝑦 = Trace

𝑤1,1 ⋯ 𝑤1,𝐷
⋮ ⋱ ⋮

𝑤𝐷,1 ⋯ 𝑤𝐷,𝐷

⊤ 𝑥1
2 𝑥1𝑥2

𝑥2𝑥1 𝑥2
2 ⋯

𝑥1𝑥𝐷
𝑥2𝑥𝐷

⋮ ⋱ ⋮
𝑥𝐷𝑥1 𝑥𝐷𝑥2 ⋯ 𝑥𝐷

2

= 𝐱⊤𝑾⊤𝐱

▪ 𝐿 𝑾 = σ𝑖=1
𝑁 𝑦 𝑖 − 𝐱 𝑖 ⊤

𝑾⊤𝐱 𝑖
2
+ 𝜆 𝑾 F

2

Cross terms:
Can include synergetic effects among different features

(e.g. factorization machines)
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▪High dimensional non-linear mapping: 𝐱 → 𝝓 𝐱

–𝝓:ℜ𝐷 → ℜഥ𝐷 is some nonlinear mapping from 𝐷-dimensional 
space to a ഥ𝐷-dimensional space (𝐷 ≪ ഥ𝐷)

▪ (Very high dimensional) linear model 𝑦 = ഥ𝐰⊤𝝓 𝐱

▪ Kernel regression model: 𝑦 = σ𝑖=1
𝑁 𝛼(𝑖) 𝑘 𝐱(𝑖), 𝐱

–Kernel function 𝑘 𝐱(𝑖), 𝐱 = 𝝓 𝐱(𝑖) , 𝝓 𝐱 : inner product

–Kernel trick: Instead of working in the ഥ𝐷-dimensional space, 
we use an equivalent form in an 𝑁 -dimensional space

• Foundation of kernel machines, e.g. SVM, Gaussian process, ...

Kernels:
Linear model in a high-dimensional feature space
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▪ A supervised learning problem to make real-valued predictions

▪ Regression problem is often formulated as a least-square 
minimization problem

–Closed form solution is given

▪ Regularization framework to avoid overfitting

–Reduce the number of features: 0-norm, 2-norm (ridge 
regression), 1-norm (lasso)

▪ Statistical interpretations: maximum likelihood estimation, 
maximum a posteriori (MAP) estimation

▪ Nonlinear regression

Regression:
Supervised learning for predicting a real valued variable
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