Statistical Learning Theory Exam Spring 2016

The 4 problems below will be graded on a basis of 25 points each. Use the first answer sheet for P.1 and P.2 and the second one for P.3. and P.4.

P.1 We are given *n* samples $\{(\mathbf{x}_i, y_i)\}_{i=1...n}$, where for each $i \leq n$, $(\mathbf{x}_i, y_i) \in \mathbf{R}^d \times \{0, 1\}$. Our goal is to define a linear classifier, namely a vector $\boldsymbol{\alpha} \in \mathbf{R}^d$ and a function *g*, such that the true label of an observation y_i and its prediction $g(\boldsymbol{\alpha}^\top \mathbf{x}_i)$ are as close as possible on average, and, more generally, such that this vector $\boldsymbol{\alpha}$ can be used to predict the value *y* corresponding to a previously unseen instance \mathbf{x} .

- 1. What function g is used in the case of logistic regression (give its formula)? What about the support vector machine?
- 2. Describe the optimization problem you will need to solve to find the α that makes the least number of mistakes when using logistic regression?

P.2

1. Prove Markov's inequality, which states that for a non-negative real-valued random variable X,

$$P(X \ge t) \le \frac{E[X]}{t}.$$

2. Introducing notations and using formulas, explain the difference between the true risk and the empirical risk of a binary classifier. Provide an example of a classifier with high true risk but low empirical risk on a given sample, and vice-versa.

P.3

- 1. Define the active learning problem and the semi-supervised learning problem.
- 2. Briefly explain a solution for each problem.

P.4

- 1. Consider an online linear optimization problem with the loss function at the *t*-th round given as $\ell_t(\mathbf{w}_t) = \mathbf{w}_t^\top \mathbf{x}_t$, where \mathbf{w}_t is the parameter vector and \mathbf{x}_t is the instance at round *t*. Derive the update formula for the parameter \mathbf{w}_{t+1} using online gradient descent.
- 2. Describe a theoretical guarantee of online gradient descent for the above problem.