

Methods for Network Structure Prediction

Hisashi Kashima

IBM Research / Tokyo Research Laboratory

© Copyright IBM Corporation 2006

Methods for network structure prediction

- Network-structured data
- Link prediction problem (= network structure prediction problem)
- Link prediction methods based on node information
- Link prediction methods based on structural information
 - [Our contribution] A parameterized model for link prediction

Network-structured data

Network structured data represent relations among data as a graph

Relations among data are represented as a graph structure

- A node represents a data
- A link represents a relation between two data

In standard machine learning setting, data are represented as tables (= feature vectors)

Each node can also have an associated vector-structured data

table-structured data

Network-structured data

Several network structured data in the real world

Nodes represents constituent elements and links represent relations among them

network structured data	nodes	links	
www	pages	hyperlinks	
SNS	people communities	friendships memberships	
biological genes networks proteins		regulations interactions	

- Not only those static relations, dynamic relations such as
 - e-mail exchanges
 - cooperation

can be represented by links

Network structure analysis is called "link mining" in data mining

• Fundamental tasks of link mining defined by Getoor et al.

- Node-related tasks
 - Node ranking
 - Node classification
 - Node clustering

Structure-related tasks

- Link prediction
- Structured-pattern mining

We focus on link prediction in this talk

• Fundamental tasks of link mining defined by Getoor et al.

- Node-related tasks
 - Node ranking
 - Node classification
 - Node clustering

Structure-related tasks

- Link prediction
- Structured-pattern mining

Link Prediction Problem

Link prediction problem as semi-supervised learning: Given partially observed network structure, predict the rest

- Given
 - Some node pairs with links: E
 - Some node pairs without links: \bar{E}
- Predict
 - whether links exist or not for the other unknown pairs

Applications:

- Prediction of biological networks
- Recommendation in SNSs
- Identifying "hidden links" in terrorist networks

The link prediction problem can be considered as *a ranking problem of node pairs*

- The link predictor must answer, for a pair of nodes,
 - how likely a link exits (= ranking problem), or

whether or not a link exists (= classification problem)
 between the nodes

Assumption: Existence of link is determined independently

Two types of information are available for link prediction: Node features and structural features

Node features: information owned by nodes themselves

- Combined to define node-pair features
- Examples:
 - In SNSs, each person has his/her own personal information such as address, age, ...
 - In protein networks, each protein (= a node) has its own sequence information

Structural features: information owned by link structures around node pairs

- Usually, inherently defined for node pairs
- Traditionally proposed in the context of social network analysis in sociometrics
- Also proposed in information retrieval
- Link prediction is done based on them

Link prediction based on node information

Link prediction based on node features uses feature vectors of node pairs

• Ordinary classification is based on the node feature vector x⁽ⁱ⁾ for the *i*-th data

- Link prediction is based on the feature vector $\mathbf{z}^{(i,j)}$ for node pair (i, j)
 - > $z^{(i,j)}$ is constructed from the pair of node feature vectors ($x^{(i)}$, $x^{(j)}$)
- The simplest way to define z^(i,j) is to take concatenation of two vectors, or to take element-wise product (or whatever)

$$\mathbf{z}^{(i,j)} = \left(x_1^{(i)} \cdot x_1^{(j)} , x_2^{(i)} \cdot x_2^{(j)} , x_3^{(i)} \cdot x_3^{(j)} , \dots \right)$$

- , but this is not sufficient ...
 - since it can not represent "*i* has a particular feature and *j* has a corresponding (another) feature"

A more general feature vector for a pair of nodes is defined by tensor products of node feature vectors

The feature vector z^(i,j) for node pair (i, j) is defined by tensor product of the pair of node feature vectors (x⁽ⁱ⁾, x^(j))

• A linear predictor for the node pair (*i*, *j*) is given as

prediction(*i*,*j*) := sign <
$$\mathbf{w}$$
, $\mathbf{z}^{(i,j)}$ >

• w is the parameter

Oyama & Manning: Using Feature Conjunctions across Examples for Learning Pairwise Classifiers, ECML 2004 Ben-Hur & Noble: Kernel methods for predicting protein–protein interactions, Bioinformatics, Vol. 21 Suppl. 1, 2005

Kernelization is simple

- Naive computation of the kernel between two node-pair feature vectors z^(i,j) and z^(k,l) seems to need O(#dimensions²)
- But it can be efficiently computed in O(#dimensions) by

$$< \mathbf{Z}^{(i,j)}, \, \mathbf{Z}^{(k,l)} > = < \mathbf{X}^{(i)}, \, \mathbf{X}^{(k)} > \cdot < \mathbf{X}^{(j)}, \, \mathbf{X}^{(l)} >$$

• When there is no ordering in a pair of nodes, symmetrize by $< \mathbf{Z}^{(i,j)}, \mathbf{Z}^{(k,l)} > + < \mathbf{Z}^{(i,k)}, \mathbf{Z}^{(j,l)} >$

$$\operatorname{prediction}(i,j) := \operatorname{sign} \sum_{k,l} \alpha_{k,l} \left(< \mathbf{z}^{(i,j)}, \mathbf{z}^{(k,l)} > + < \mathbf{z}^{(i,k)}, \mathbf{z}^{(j,l)} > \right)$$

 $\blacktriangleright \alpha$ is the parameter

Oyama & Manning: Using Feature Conjunctions across Examples for Learning Pairwise Classifiers, ECML 2004 Ben-Hur & Noble: Kernel methods for predicting protein–protein interactions, Bioinformatics, Vol. 21 Suppl. 1, 2005

The tensor-product-based feature vector outperforms the element-wise feature vector

More efficient alternatives...

 The kernel method enables computation in O(#dimensions), but needs O(#nodes²) parameters

- Yamanishi et al. propose more efficient way using kernel canonical correlation analysis (KCCA) by using only O(#nodes) parameters
- Kato et al. incorporate integration of multiple data sources

Yamanishi et al.: *Protein Network Inference from Multiple Genomic Data: A Supervised Approach*, ISMB 2004 Vert & Yamanishi: *Supervised Graph Inference*, NIPS 2004 Kato, Tsuda and Asai: *Selective Integration of Multiple Biological Data for Supervised Network Inference*, Bioinformatics, Vol. 21, 2005

Link prediction based on structural information

Link metrics define how likely a link exists between two nodes

- Link metrics := Degrees of likelihood of a link existing between two nodes based on the structural information around them
 - Usually, inherently defined for node pairs
 - Traditionally proposed in the context of social network analysis in sociometrics
 - Also proposed in information retrieval
 - Example:
 - "the friends of your friends are probably in your friends"

"Two nodes with many common neighbor nodes probably has a link"

How to use the link metrics ?

- Prediction only from positive examples : To predict links in descending order of any link metric
- Supervised learning: To include as a part of feature vectors for node pairs

Several existing link metrics

- Several link metrics are used in studies of social networks and scale-free networks
 - **Common neighbors:** Likelihood of link existence is proportional to the number of common neighbors

Preferential attachment: Nodes with many neighbors will get more neighbors

preferential attachment := $|\Gamma(i)| \cdot |\Gamma(j)|$

• Most of them are inspired by corresponding evolution models of network structure

Appendix: Relations among link metrics

Spearman correlations (= correlations of orders) for metabolic network data)

	common	Jaccard's	Adamic/Adar	preferential	Katz _{0.05}
common	1	0.92	0.94	0.31	0.61
Jaccard's	0.92	1	0.97	0.53	0.75
Adamic/Adar	0.94	0.97	1	0.49	0.70
preferential	0.31	0.53	0.49	1	0.84
Katz _{0.05}	0.61	0.75	0.70	0.84	1

• Large coefficients indicate that the corresponding metrics are similar

"How high can we go only with structural information ?" We parameterized link metrics to improve prediction performance

- Motivation: Will parameterized versions of link metrics improve predictive performance ?
- We propose a systematic way of deriving parameterized link metrics from parameterized network evolution models
- As an instance, we parameterized the "copy-and-paste" model
 - Originally proposed for modeling evolution of WWW structure by Kleinberg et al.
 - Also makes sense as an evolution model of biological networks

H. Kashima and N. Abe: A Parameterized Probabilistic Model of Network Evolution for Supervised Link Prediction, IEEE International Conference on Data Mining (ICDM), 2006 (To appear).

Experimental results: Parameterization works well

- Task: Structure prediction of two biological networks
- The proposed method outperformed over various link metrics (parameterization of the other metrics ... future work)

The proposed framework enables to derive parameterized link metrics from parameterized network evolution models

- Our framework offers a systematic way of deriving link metrics
 - from the parameterized network evolution models
- In many cases, enough evolution history of network structures is not available, so parameter estimation is not possible
- Our solution
- 1. Derive the stationary expected state of the network structure
- 2. Fit the stationary expected state to the known part of the network

Step 1. Derive the expected stationary state of the network structure

- Definition: Φ^(t) := network structure at time t
 ink label φ^(t)(i, j) ∈ {0, 1} := 1 if a link exists between (i, j) := 0 if not exists
- Underlying Markov model of network evolution

 $\Phi^{(t+1)} = f_{\mathbf{w}}(\Phi^{(t)})$

• f_w is the transition function with parameter w

- Problem: w can not be identified since the evolution history $\Phi^{(1)}, \Phi^{(2)}, \Phi^{(3)}, \cdots$ is not available
 - We only know "the partial structure of the current network"
 -) We need a constraint ...
- Solution: Consider the "stationary expected state" $E[\Phi^{(\infty)}]$ as the "representative state"

$$E[\Phi^{(\infty)}] = \lim_{t \to \infty} E[f_{\mathbf{w}}(\Phi^{(t)})]$$

Step 2: Fit the stationary expected state to the known part of the network

- We hypothesize the stationary expected state $E[\Phi^{(\infty)}]$ represents the current network structure
- Maximize the following objective function with respect to the parameter w

$$\max_{\mathbf{w}} \sum_{\{i,j\}\in E} \log E[\phi^{(\infty)}(i,j)] - \sum_{\{i,j\}\in \overline{E}} \log E[\phi^{(\infty)}(i,j)]$$

- i.e. Find the most appropriate parameter w^{*} that reproduces the observed part of the network
 - $E[\phi^{(\infty)}(i,j)] = 1$ for existing links
 - $E[\phi^{(\infty)}(i,j)] = 0$ for non-existing links
- $E[\phi^{(\infty)}(i,j)]$ for unknown part $(i,j) \notin E \cup \overline{E}$ are the predicted link labels

An example:

Our network evolution Markov model f_w is the "copy-and-paste" model

- At each step, a link label is copied somewhere in the network
 - from node *i* to node *j* with probability $w_{i,j}$

$$\sum_{i,j} w_{i,j} = 1, \ w_{i,j} \ge 0$$

- Procedure
- 1. Select a pair of nodes (*i*,*j*) with probability $w_{i,j}$
- 2. Select node k uniformly at random (other than j)
- 3. Link label $\phi^{(t)}(i,k)$ is copied to (*j*,*k*)

$$\phi^{(t+1)}(j,k) := \phi^{(t)}(i,k)$$

- *w_{i,i}* is interpreted as node *i*'s "influence" on node *j*
 - *j*-san's association is affected by *i*-san's association

In the "copy-and-paste" model,

a link label at the next time step is determined by one of two possibilities

- Link label $\phi^{(t+1)}(i, j)$ at time *t*+1 is determined by one of the following two possibilities
 - 1. The link label was copied from somewhere at time t
 - 2. A copy occurred somewhere else at time *t*, so the link label remained the same

$$\phi^{(t+1)}(i,j) = \frac{1}{|V| - 1} \left(\sum_{k \neq i,j} w_{kj} \phi^{(t)}(k,i) + w_{ki} \phi^{(t)}(k,j) \right) + \left(1 - \frac{1}{|V| - 1} \sum_{k \neq i,j} w_{kj} + w_{ki} \right) \phi^{(t)}(i,j)$$

$$\phi^{(t)}(k,i) \text{ was copied from k to j copied from k to i}$$
2. The copy at time *t* was occurred somewhere else
1. The link label was copied at time *t*
a copy occurs with prob. w_{ij}
evolution over time
 $\phi^{(t)}(k,i) = \frac{1}{|V| - 1} \left(\sum_{k \neq i,j} w_{kj} + w_{ki} \right) \phi^{(t)}(i,j)$

The stationary expected state of the "copy-and-paste" model is fed into the optimization problem

The original "copy-and-paste" network evolution model is

 $\phi^{(t+1)}(i,j) = \frac{1}{|V|-1} \left(\sum_{k \neq i,j} w_{kj} \phi^{(t)}(k,i) + w_{ki} \phi^{(t)}(k,j) \right) + \left(1 - \frac{1}{|V|-1} \sum_{k \neq i,j} w_{kj} + w_{ki} \right) \phi^{(t)}(i,j)$ $\prod \text{ take the expectation and } t ! \quad 1$

The derived stationary expected state is

$$E[\phi^{(\infty)}(i,j)] = \frac{\sum_{k \neq i,j} w_{kj} E[\phi^{(\infty)}(k,i)] + w_{ki} E[\phi^{(\infty)}(k,j)]}{\sum_{k \neq i,j} w_{kj} + w_{ki}}$$

The optimization problem is
Usubstitute into the optimization problem

$$\max_{\mathbf{w}} \sum_{\{i,j\}\in E} \log E[\phi^{(\infty)}(i,j)] - \sum_{\{i,j\}\in \overline{E}} \log E[\phi^{(\infty)}(i,j)]$$

The resulted optimization problem is solved by using EM algorithm

The stationary expected state has unobserved variables (= link labels to be predicted)

$$E[\phi^{(\infty)}(i,j)] = \frac{\sum_{k \neq i,j} w_{kj} E[\phi^{(\infty)}(k,i)] + w_{ki} E[\phi^{(\infty)}(k,j)]}{\sum_{k \neq i,j} w_{kj} + w_{ki}}$$

Our solution: EM algorithm

- [M-Step] Fix the unobserved link labels, estimate the parameter
 - Exponentiated gradient descent solves this efficiently

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \sum_{\{i,j\}\in E} \log E[\phi^{(\infty)}(i,j)] - \sum_{\{i,j\}\in \overline{E}} \log E[\phi^{(\infty)}(i,j)]$$

- [E-Step] Fix the parameter, and evaluate the expected value of the unobserved link labels
 - by solving a system of simultaneous linear equations
- In practice, we can do this in a sequential manner, not in a batch manner

In summary, we proposed a new *parametric* model for link prediction

We introduced

- A link prediction method based on evolution models of network structure
- A parameterized evolution model based on the node-copy model
- An efficient estimation algorithm

Methods for link prediction

- Network-structured data
- Link prediction problem
- Link prediction methods based on node information
- Link prediction methods based on structural information
 - [Our contribution] A parameterized model for link prediction