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Abstract 

In this paper, aligned with Nagata et al. (2008)’s work which models Japanese patent quality as its legal validity, we 

investigated predictive modeling of patent quality with the same data set consisting of cases of patent invalidation trials judged 
by the IP High Court (formerly, Tokyo High Court).  We improve the predictive performance by using three technologies, 

machine learning, text mining, and information integration. We use machine learning techniques such as regularization and 

biased sampling, which result in improvements in several predictive performance metrics such as the AUC and the breakeven 
point. Next, extending the feature set used by Nagata et al., we apply text mining techniques to find informative textual features. 

We also identify several interesting textual representations that appear in high-quality patents. Finally, we integrate Nagata et al.'s 

tailored features and the textual features to achieve better predictive performance. Our results show that these techniques work 
together for better quantitative modeling of patent quality. 

 

Keywords: patent management, patent quality, predictive modeling, text mining 
 

 

 

Introduction 

 

It is quite an important problem, not only for intellectual property departments, but also for 

managers of intellectual property in competitive business environments to correctly evaluate 

the value of each patent to their own business. Companies make these evaluations by 

focusing mainly on a patent’s (1) technical value (for example, whether or not the patent is a 

pioneering invention or an improvement), (2) legal value (whether or not the patent will be 

held patentable/valid), and most importantly (3) economic value (whether or not the patent 

will bear a cash flow in the future). 

However, considering a patent’s value only from the perspective of a particular company 

sometimes results in a misleading valuation. For example, patent applications that have too 
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broad and vague claims with few embodiments are sometimes patented, resulting in future 

litigation over the scope and validity of the patent. Another problem is when rights holders 

who are not interested in using their own patents try to threaten permanent injunction while 

demanding excessive royalty payments, an abusive practice called patent trolling. Although 

such a patent has a “value“ in some sense, the value does not conform to the original 

objectives of the patent system, increases social costs, and actually inhibits innovations in the 

society that created the patent system. 

Recently, “quality of a patent“ is attracting attention as a new concept which emphasizes the 

public nature of the patent system. The quality of a patent reflects the contribution of the 

patent not to a company, but to the entire society consisting of other applicants, users, the 

patent office, and so on. In addition to implementing government policies such as improving 

the examination standards in the patent office, it is important to cultivate high quality patents 

to build communities that share ideas about patent quality and related data. One of possible 

ways to accelerate the growth of such communities is to provide quantitative metrics of 

patent quality that can provide achievable targets and that can be shared within industries. 

Nagata et al. (2008) assumed that the quality of a patent is its legal validity, and built a 

quantitative model relating the features of each patent and the corresponding legal decisions 

based on cases of patent invalidation decided by the IP High Court (formerly, Tokyo High 

Court), which is the appellate court to review the decisions made by JPO Panel regarding the 

validity and those by district courts regarding the patent infringement and the validity. Their 

model is a logistic regression model that predicts the decisions on patent quality based on 

patent features such as the coverage of the claims taken from the patent specifications and the 

numbers of rejections and position documents taken from the patenting process. However, its 

predictive performance is not high enough to assess patent quality. 

In this paper, we extend the predictive modeling of patent quality in the direction of Nagata 

et al., and try to improve the model with three technologies, machine learning, text mining, 

and information integration. We use machine learning techniques such as regularization and 

biased sampling to improve predictions, which results in improvements in several predictive 

performance metrics such as the AUC and the breakeven point. Next, extending the feature 

set used by Nagata et al., we use text mining techniques to find additional textual features. 

We were able to identify several interesting textual features that appear in high-quality 

patents. Finally, we integrated Nagata et al.'s features and the textual features to achieve 

better predictive performance. Our results show that these two kinds of features work 

complementarily for better quantitative modeling of patent quality.  

 

Background 
 

In this section, we describe the background of our study in this paper. First, we review the 

Japanese patent granting system that we investigate in this work by using our modeling 

approach. Next, we introduce three definitions of the patent quality, which are patentability, 

safety, and stability. Then we give the summary of the data we use in this work, and the 

formal formulation of our task. 

 

Japanese patent granting system 

We first briefly review the Japanese patent granting system. Figure 1 gives a simplified 

flowchart of the process that an invention might be involved with. The process start with a 

patent application filed with the Japan Patent Office (JPO) by the applicant. The patent 
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application is published 18 months after the filing date (or after the priority date claimed), 

and within three years from the filing date, an applicant must request for substantive 

examinations.  At the stage of substantive examinations, the JPO patent examiner assesses 

whether an invention disclosed in the patent application satisfies criteria for patentability. 

After several round-trip communications of rejection notices by the JPO and responses by the 

applicant, the invention is finally granted as a patent, otherwise not (See the decision marked 

“1” in Figure 1).  

Even if once the patent is granted, some other parties may challenge the validity of the 

patent by filing trials for invalidation with the JPO (See the decision marked “2” in Figure 1), 

and decisions are made by the JPO panel. Anyone can file a trial for invalidation any time 

after issuance, even anonymously. In response to the decision by the JPO panel, the parties 

can appeal to the IP High Court (See the decision marked “3” in Figure 1). Although not 

shown in the Figure 1, also in a patent infringement lawsuit, the defendant may challenge the 

validity of the patent. 
 

inventor
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JPO
patent

specification
---
---

granted
patent

Yes

request for
invalidation

JPO/IP High Court

---
---

still valid
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third party

No
No

invalidnot granted

①

②

③

 
 

 

Figure 1. A simplified flowchart of the Japanese patent granting system. 

 

Patent quality 

When we view the patent granting system shown in Figure 1 with the purpose of modeling 

the quality of a patent, three visible targets for modeling patent quality are identified as 

follows. 

(i) Patentability. Patentability of a patent indicates the possibility of the patent granted, since 

valid claims should be granted. 

(ii) Safety. Safety of a patent indicates the possibility of the patent requested for invalidation 

by third parties. Patents given invalidation requests might have too broad claims (or have 

high economic value.) 

(iii) Stability. Stability of a patent indicates the possibility of the patent surviving the court. 

Legally valid claims should have high possibility of survival. 

Each of the three definitions reflects its own aspect of patent quality and is of interest. For 

example, Guellec and van Pottelsberghe (2000, 2002) took the patentability as the variable to 

be explained, and investigated the relationship between the patentability and various 
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explanatory variables such as the internationality of the team invented the patent. 

In this work, aligned with Nagata et al. (2008), we take the third definition of the patent 

quality. 

  

Data Summary 

Now we review the IP High Court decision data set used by Nagata et al. (2008) which we 

also use in this study. The data set has 710 cases, where 20% (142 cases) of the 

judgments were held valid (Note that judgments of partial invalidation were 

classified as invalid).  

As the explanatory variable for describing the patent quality, Nagata et al. defined 
60 tailored features including number of words in claims, number of “effect” words (for 

example, “can”, “superior”, and “advantageous”), number of domestic priorities, and number 

of references. See Figure 2 for the definition for some of them. Among the 60 features, and 

24 of them were selected by using a statistical test based on simple linear regression models. 

 

 
 

Figure 2. Some of the features defined by Nagata et al. (2008). 
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Problem Formulation 

Before describing our approach, we give a rather mathematical formulation of our task. Let 

denote by X:={x1, x2, …, xN} the N patents sent to the IP High Court for judgment, and by 

Y:={y1, y2, …, yN} the corresponding judgments given by the High Court, where each yi takes 

a value either of +1 (which indicates “valid”) or -1 (which indicates “invalid”). Our goal is to 

build a model f which relates the patent instances of X to their corresponding judgments Y, 

i.e., yi = f(xi). Nagata et al. (2008) used the 60 features described in the previous subsection to 

represent each xi as a 60-dimensional vector, and the logistic regression model as f. 

 

Method 
 

In this section, we describe our predictive modeling approach for patent quality. First, we 

review several machine learning techniques proposed for improving predictive performance, 

including the support vector machine, class-proportionate weighting, and L1-regularization. 

Then we introduce text processing techniques since we handle patent specifications written in 

natural language, and information integration techniques for aggregating a 

tailored-feature-based model and a text-based model. Finally, we introduce two metrics for 

evaluating the predictive performance of a model, which are break-even point and AUC. 

 

Predictive modeling of patent quality 

The major interest by the existing work on modeling patent quality is in understanding the 

causal relationships between explanatory variable and the patent quality. In other words, their 

modeling approaches were descriptive. However, if we would like to use the model for 

decision making, for example, for prioritizing patents to be filed or maintained, or for 

evaluation of patents from the quality viewpoint, we expect the model has reasonable 

predictive power.  

In this study, we focus on modeling approaches putting stress on the models’ predictive 

performance. Our strategies for improving the predictive performance are three-fold: 

adopting recent techniques developed in the field of machine learning, text-based modeling 

using text mining techniques and information integration of textual features and tailored 

features. 

 

Machine learning techniques for improving predictive performance 

Various techniques for improving the predictive performance of models have been 

developed in the field of machine learning (Bishop, 2006). In this study, we adopt some of 

the techniques including the support vector machine, class-proportionate weighting scheme 

for the imbalanced data set, and the L1-regularization method for preventing over-fitting to 

the high-dimensional data set. 

 

Support vector machine 

The support vector machine (SVM) is one of the state-of-the-art predictive models which 

was first introduced by Vapnik (2000). It is well-known for its high predictive performance, 

and has been applied in numerous application areas, for example, molecular biology, text and 

image processing, and financial engineering. The SVM assumes the following linear model: 

 

y := sign f(x) := sign(w
T
x) := sign(w1x1+w2x2+…+wdxd) , 
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where x = (x1, x2, …, xd) is a d-dimensional feature vector and w = (w1, w2, …, wd) is the 

parameter vector of the same dimension which specifies the model. A positive value of wj 

indicates the j-th feature xj positively contributes to the patent quality, while a negative value 

contributes to it negatively. The sign function returns +1 when its argument is positive, and 

returns -1 otherwise. Given the data set X and Y, the SVM learning algorithm find the optimal 

parameter w
*
 which minimizes the following objective function: 

 

imax { 1-yi f(xi), 0 } + c ||w||2
2
, 

 

where the first term is the loss function which penalizes misclassifications, and the second 

term is the regularization term which avoids over-fitting to the given data set. c is a small 

constant which balances the two terms, which was set to 0.1 throughout our experiments. The 

regularization term ||w||2
2 

:= w1
2
 + w2

2
 +…+ wd

2 
penalizes the parameter vector being too large, 

and it is known to work well when we predict with data outside the given data set. 

 As for the parameter estimation of the SVM, we use an efficient sequential estimation 

method proposed by Duchi et al. (2008). 

 

Class-proportionate weighting 

Our data set is highly imbalanced, since only 20% of the 710 cases are valid. In such cases, it is 

known that the predictive performance is improved by appropriately weighting the valid and 

invalid data. The data in the minority class are given high weights, while those in the majority 

class are given low weights. Namely, we modify the objective function of the SVM as  

 

ii max { 1-yi f(xi), 0 } + c ||w||2
2
, 

 

where we have the weight i of the i-th data. The i is usually set to the inverse of the class 

proportion, that is, we set i = 1/0.2 = 5 for the valid patent, and i = 1/0.8 = 1.25 for the invalid 

patent in our case. 

 

L1-regularization 

When the dimensionality of the feature vector is extremely large compared to the number of 

data, the problem called over-fitting arises, which is a phenomenon that the predictive 

performance for the new data other than the data used for fitting the model severely degrades. 

As we saw in the formulation of the SVM, the regularization term plays a role for avoiding 

the over-fitting problem. However, for the extremely high-dimensional cases such as in the 

text-based modeling that we will see in the next subsection, the regularization term ||w||2
2  

(called L2-regularization) still suffers from the over-fitting. In such cases, use of a more 

aggressive regularization term called L1-regularization term instead of the L2-regularization 

term is known to be effective. The L1-regularization term defined as |w|1
 
:= |w1| + |w2| +…+ 

|wd| tends to suppress many of the parameters to zero, which results in a small amount of 

parameters selected. 

 

Text-based modeling using text mining techniques 

In the work by Nagata et al. (2008), it is reported that the numbers of “effect” words such as 

“can”, “superior”, and “advantageous” are useful for predicting the judgments by the IP High 

Court. It is natural to imagine that other textual representations in the patent specification also 
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might help. In this study, in contrast with the Nagata et al’s work where they prepared textual 

representations that seem to be effective in advance, we use textual representations 

exhaustively by using text mining techniques. 

 

Morphological analysis 

 Since Japanese language is usually not segmented, we first have to extract “words” from the 

specifications. For this purpose, we use a morphological analyzer to segment each sentence 

into words with part-of-speech tags. In this study, we used a Japanese morphological analyzer 

called “MeCab” (http://mecab.sourceforge.net/). Figure 3 shows how a morphological 

analyzer works. The Japanese sentence (which means “we can significantly shorten the time 

for brewing” in English) is segmented into words where each of partitions indicates a word 

boundary. The tag associated with each segmented word such as “noun” and “particle” 

indicates the part-of -speech for the word. Using the segmented words, we construct the 

feature vector x for a patent specification, where each xi takes 1 if the i-th word in the 

resultant dictionary (for example, the Japanese word corresponding to “significantly”) 

appears in the text, and takes 0 otherwise.  

We used only words appearing more than 20 times in the data set, and obtained about 2,400 

words in total, which means each patent specification is a 2,400-dimensional feature vector.  

 

醸造に要する時間を大幅に短縮することができる

[noun]

醸造 | に | 要する | 時間 | を | 大幅 | に | 短縮 | する | こと | が | できる
[verb] [verb][noun] [noun] [noun] [noun] [verb]

we can significantly shorten the time for brewing

[particle] [particle] [particle] [particle]

醸造に要する時間を大幅に短縮することができる

[noun]

醸造 | に | 要する | 時間 | を | 大幅 | に | 短縮 | する | こと | が | できる
[verb] [verb][noun] [noun] [noun] [noun] [verb]

we can significantly shorten the time for brewing

[particle] [particle] [particle] [particle]
 

 
Figure 3. How a morphological analyzer works. 

 

Extracting textual representations 

Although the words themselves indeed have semantic information, textual patterns 

consisting of several consecutive words are more informative. Therefore, we also use 2 or 3 

consecutive words as features. In our data set, we obtained 13,000 patterns.  

Since the number of dimensionality is higher than the number of the data, we use the 

L1-regularization, which works for extracting small number of effective words and textual 

representations and also makes it easier to interpret the resultant model. 

 

Model integration of the tailored-feature-based model and the text-based model 

In the previous subsection, in addition to the tailored-features such as the number of words 

in the claims of a patent, we proposed to use textual features extracted from the raw-texts of 

the patent specifications, which might work complementarily with the tailored features. It is 

quite natural to combine these two kinds of features in our model. 

In this study, we investigate two types of integration. The first one is to take the sum (or 

average) of the outputs of two models as 

 

y := sign( f 
tailored

(x) + f 
text

(x) ), 

 

where f
tailored

 is the model estimated by using the tailored features, and f 
text 

is the one by using 
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the textual features. This type of integration assumes that the two kinds of information work 

cooperatively.  Another type of integration we consider is to take the maximum of the two 

outputs, that is, 

 

y := sign( max{ f 
tailored

(x),  f 
text

(x) } ), 

 

which assumes that the two kinds of information work complementarily. Note that the output 

ranges of the two modes are different. We normalize the scale of the output of each mode l by 

subtracting the average and dividing by the standard deviation. 

 

Evaluation metrics 

From the predictive point of view, what is important is not how well a model fits to a given 

data set, but how well it performs for future data. However, most of the existing works only 

discuss fitness of the model to the given data set. (In such sense, they are considered 

descriptive.) In this study, we investigate the model’s predictive performance for the future 

data. Since the actual future data are not available, we simulate such situation by using cross 

validation scheme, which is a standard statistical procedure to estimate predictive 

performance. Also, we introduce two metrics of predictive performance, the break-even point 

and the AUC. 

 

Cross validation 

To simulate such situation where a model is trained on a given data set and tested on a future 

data set, we keep some part of the given data set that is not used for model estimation and 

used for performance evaluation. In k-fold cross validation scheme, the data set is divided in 

to k almost-equally-sized bins, one of which is used for performance evolution. By changing 

the bin for evaluation, we can evaluate the model performance k times. The k resultant   

measurements are averaged to obtain the final score. In our experiments, we used 5-fold cross 

validation. 

 

Evaluation metrics of predictive performance: break-even point and AUC 

To evaluate the predictive performance of a model on a test set, we use two evaluation 

measures: the break-even point for evaluating predictive accuracy with thresholding, and the 

AUC for evaluating quality of ranking without thresholding. 

Let us assume that we would like to prioritize a pool of patents according to their quality to 

select a part of them to be maintained. One way to do so is to take some threshold value of 

the patent quality score, and decide to maintain those above the threshold. Another way might 

be choosing top 10 patents. If we know the ratio of the valid patents in the evaluation set, the 

asymptotically optimal threshold should be set to the score with which the number of patents 

predicted to be valid (i.e. the number of patents above the threshold) is equal to that of the 

actually valid patents. With the optimal threshold, the model achieves 100% prediction 

accuracy if it works perfectly. The prediction accuracy using the optimal threshold is called 

the break-even point. (See also Figure 4.) 
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Figure 4. The break-even point. 

 

AUC (which is an acronym of the area under the curve) is another metric of predictive 

performance. The AUC evaluates the goodness of ranking of the instances in the evaluation 

set given by a model, and defined as the probability of a randomly-picked valid patent ranked 

higher than a randomly-picked invalid patent. The AUC cares only about the relative order of 

the scores, and is not affected by the decision threshold. For this reason, the AUC is widely 

used as a standard performance measure of predictive models. 
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Figure 5. The AUC. 
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Results 

 

In this section, we report the experimental results obtained by applying the methodologies to 

the data set. The results are three-fold, that are, (i) various machine learning techniques 

actually improves the predictive performance, (ii) the textual-feature-based model performs 

well, and (iii) combination of the feature-based model and the text-based model work 

complementarily for improving the performance. 

 

Machine learning techniques improve the predictive performance 

We compared predictive performance of the support vector machine with the 24 selected 

features used by the logistic regression model of Nagata et al., one with all of the 60 features, 

and one with the class-proportionate weights. 

The objective of this experiment is to show that, from predictive viewpoint, it is better to use 

all of the features, and that the class-proportionate weighting technique improves the 

predictive performance since our data set (where only 20% of the cases are labeled “valid”) is 

highly skewed. 

Figure 6 summarizes the results. Figure 6(a) shows the break-even points by the three 

models, and Figure 6(b) show the AUC values. We can observe that the model with the 60 

features outperforms the model with the 24 features, and also, the class-proportionate 

weighting scheme further improves the performance. 

 

feature-based model
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0.40
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w/ all features

w/ class weighting

 
(a) 
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feature-based model
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(b) 

 
Figure 6. Comparison of the model with the 24 features, the model with the 60 features,  

and the model with the class-proportionate weighting. 

 
 

Text-based modeling 

 Using the textual features extracted by using the morphological analysis, we compared two 

types of text features. The first model is the one that uses only the segmented 2,400 words, 

and the second model is the one with the 13,000 patterns consisting of two or three 

contiguous words (bi-/tri-gram patterns). Since the numbers of features are large, we used the 

L1-regularization scheme. 

Figure 7 summarizes the results. Figure 7(a) shows the break-even points by the two models 

as well as the model based on the 60 tailored features and the class proportionate weighting, 

and Figure 7(b) show the AUC values. The word-based model has some predictive power and 

supports the observation that effect words are informative as mentioned by Nagata et al., but 

its predictive performance is not so high when compared with that of the feature-based model. 

This is probably because single words are not sufficient to capture the semantics and 

representation in patent specifications. The pattern-based model rather overcomes this 

weakness, and surprisingly, it achieves higher performance than the feature-based model. 

This fact shows the possibility of extensive use of text mining technologies in patent quality 

modeling is a quite promising future direction. 
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feature-based model vs. text-based model
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feature-based model vs. text-based model
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(a) 

 
Figure 7. Comparison of the models with the textual features and the model with the tailored features. 

 

 Next, we investigate the patterns selected by the model. By using L1-regularization, about 

100 features were selected. Among them, we found three interesting clusters of patterns. The 

first two clusters are expressions that clarify or limit coverage of claims were found. The first 

cluster seems to be about parameter specification, which often makes the range of claims 

clear and sometimes conservative, which finally results in legal stability when the patent are 

sent to the IP High Court. The second one is about extensions of existing patents. Since they 

are based on existing patents, once they are granted for their novelty and progressivity, they 

become stable. In the last cluster, we can find effect representations. Again, this fact supports 

Nagata et al.’s observation since they were automatically found without preparing effect 

words in advance. 
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interpretations
patterns

(in Japanese)
meanings of the patterns

度合い[noun]-を[particle] degree of …
確率[noun]-の[particle] probability of …
の[particle]-設定[noun] setting of …
(実施)形態[noun]-による[particle],
で[particle]-用い[verb]-て[particle]

executed in the condition of …

に[particle]-置き換え[verb] substitute … with …
薄型[noun]-化[noun] reduce the thickness of …
を[particle]-良く[adjective] well
正しい[adjective] correct
可撓性[noun] flexibility
利点[noun],
利点[noun]-を[particle]

advantage

調整[noun]-可能[noun] adjustable

parameters

extension of existing
patents

effect representation

 
 

Figure 8. Examples of the textual patterns used in the model. 

 

 

Combination of the tailored-feature-based model and the text-based model 

 Finally, we investigate combination of the feature-based model and the text-based model. 

We compared two aggregation methods, taking their (normalized) sum and by taking their 

(normalized) maximum.  

Figure 9 summarizes the results. Figure 9(a) shows the break-even points by the two 

aggregation methods with those of individual models, and Figure 9(b) show the AUC values. 

We can observe the aggregation by using the maximum of the two models works well, which 

implies that the tailored features and the text features complementarily contribute to 

prediction. This is good news because two parallel efforts to define good tailored features 

based on domain knowledge and to promote data-driven exhaustive text pressing 

complementarily drive improvement of patent quality modeling. 
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feature-based model vs. text-based model
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individual model vs. combined model
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(b) 

 
Figure 8. Comparison of the sum aggregation and the maximum aggregation methods. 

 

 

 

Conclusions 

 

In this paper, aligned with Nagata et al.’s work which assumes that the quality of a patent is 

its legal validity, we investigated predictive modeling of patent quality with the same data set 

of cases of patent invalidation decided by the IP High Court (formerly, Tokyo High Court).  

We improved the predictive performance with three technologies, machine learning, text 

mining, and information integration. We used several machine learning techniques such as 
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support vector machines, regularization and biased sampling to improve predictions, which 

resulted in improvements in several predictive performance metrics such as the AUC and the 

breakeven point. Next, extending the feature set used by Nagata et al., we applied text mining 

techniques to find additional textual features. We were able to identify several interesting 

textual features that appear in high-quality patents. Finally, we integrated Nagata et al.'s 

tailored features and the textual features to achieve better predictive performance. Our results 

show that these two kinds of features work together for better quantitative modeling of patent 

quality. 
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