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Data and text mining techniques improve
predictive modeling of patent quality

 We model “patent quality” which is a goodness measure of a patent for 
entire society from the predictive viewpoint

 We show data mining and text-mining techniques improve prediction

 Combining both, we further improve prediction
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Background: Patent value is important for companies
… but this is not always true for entire society

 It is important to evaluate the value of each patent to one’s own business:

– Technical value for R&D (whether it is a pioneering invention or an improvement)

– Legal value for IP departments (whether it will be held patentable/valid )

– Economic value for business units (whether it will bear a cash flow in the future )

 There are several attempts to model and evaluate the patent value

 However, considering a patent’s value only for a particular company 
sometimes results in increasing social costs, and inhibiting innovations …

– Granted patents with too broad and vague claims with few embodiments 
result in future litigations

– Patent trolling: abusive practice by rights holders trying to demand 
excessive royalty payments to other companies
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Background: Patent quality is goodness of a patent for society
… but its quantitative modeling is the key

 We focus on “quality of a patent“, a new concept which emphasizes the 
public nature of the patent system (contrast with the patent value)

 The quality of a patent is the contribution of the patent not to a 
company, but to the entire society

 By sharing ideas about patent quality and related data, we expect to 
improve the quality of patent applications and examinations

 One of the ways is to provide quantitative metrics of patent quality that 
can provide achievable targets shared within industries.

 But how ?
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Prior work: Nagata et al. modeled patent quality as legal validity

 Nagata et al. considered legal validity as a proxy of patent quality

– Patents with appropriate descriptions, claims, and examinations are 
robust to litigations, which will reduce social cost  

 They built a regression model to explain 710 legal decisions (valid/invalid) 
by the IP High Court in Japan for cases of patent invalidation requests

Nagata, K, M Shima, N Ono, T Kuboyama and T Watanabe
Empirical Analysis of Japan Patent Quality

In Proc. 17th IAMOT, 2008
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 A patent specification x is represented as a set of features (x1, …, xd)

 Each parameter corresponds to contribution of each feature to the 
“patent quality score”, which is estimated from data

Model of patent quality score: 
A more valid patent x will get a higher score f (x)

f (x) = w1 x1+w2 x2+…+ wd xd

patent quality 
score

a patent

features of a patent
features of a 
patent

features of a patent x

model parameters
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Tailored features used by Nagata et al.:
They defined 60 hand-made features

invoking 
claim of priority

number of
cited foreign 

patents

number of 
effect words
(e.g. “can”)

f (x) = w1 x1+w2 x2+…+ wd xd
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Our goal: Predictive modeling of patent quality

 Nagata et al. focused on descriptive modeling

– “Which feature is responsible for explaining court decisions 
(=patent quality) ? ”

 To be used as a reliable quality measure, 
the model should have high predictive power

• Also useful for selecting patents to file or hold

 Our goal is to improve the predictive power of the patent quality model
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Results:  We improved the patent quality prediction model 
by using data mining and text mining techniques

 Data mining techniques for prediction: 

– Support vector machines (SVMs) for accurate predictive modeling

– Class-proportionate weighting for addressing biased data

 Text mining techniques for exhaustive text feature construction from 
patent specifications

– Morphological analysis for natural language processing

– L1-regularization for addressing high-dimensional data

 Furthermore, combination of both boosts the predictive power
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Key for improvement 1:   Use all features 

 Nagata et al. selected 24 promising features out of 60 features, but 
can we improve the predictive accuracy by using all of them ?

 In data mining, it is common to use all features by using the 
framework called regularization

– Regularization prevents model parameters (w1, w2, …, wd) from 
being too large or too small

• by penalizing  ||w||2
2 := w1

2 + w2
2 +…+ wd

2

 We use support vector machine, which is a state-of-the-art prediction 
model used in data mining

f (x) = w1 x1+w2 x2+…+ wd xd
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Key for improvement 2:  Address the bias in the data 

 Valid patents make up only 20% of the whole data

– Invalid cases are 80%/20% = 4 times as many as valid cases

 Can we use this bias information to improve estimation ?

 Intuitively, it sounds nice to put more importance on valid cases 
(=minorities)

– Class proportionate weighting: Estimates the model by giving 4 times 
as large weights to valid cases as those to invalid cases

• known to improve predictive performance
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Result 1&2:  Data mining techniques improve prediction !

 Using support vector machine, the predictive performance improves

– when we use all 60 features

– when we use class-proportionate weighting

feature-based model
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Key for improvement 3: Use text information

 In patent specifications, we have rich text information

 We use text mining techniques to exhaustively construct features from texts

– Morphological analyzer to segment Japanese language into words

– Combining words to extract 13,000 patterns consisting of 2 or 3 words

 L1-regularization for addressing high-dimensional data (#features >> #data)

– L1-regularization dramatically and automatically reduces the number of 
features used in the model (then we got about 100 selected features)

• by penalizing |w|1 := |w1| + |w2| +…+ |wd| 

醸造に要する時間を大幅に短縮することができる

[noun]

醸造 | に | 要する | 時間 | を | 大幅 | に | 短縮 | する | こと | が | できる
[verb] [verb][noun] [noun] [noun] [noun] [verb]

we can significantly shorten the time for brewing

[particle] [particle] [particle] [particle]

醸造に要する時間を大幅に短縮することができる

[noun]

醸造 | に | 要する | 時間 | を | 大幅 | に | 短縮 | する | こと | が | できる
[verb] [verb][noun] [noun] [noun] [noun] [verb]

we can significantly shorten the time for brewing

[particle] [particle] [particle] [particle]
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feature-based model vs. text-based model

0 .346

0.230

0.356

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

break-even point

feature-based

word-based

pattern-based

feature-based model vs. text-based model

0 .597

0.544

0.654

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

AUC

feature-based

word-based

pattern-based

Result 3.1: Text information improves prediction !
 We built two models:

– The model with 2,400 words 

– The model with 13,000 patterns consisting of 2- or 3-consecutive-word patterns

 The model with word patterns improves the predictive performance
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Result 3.2: 
We found textual patterns implying high patent quality

 Investigating the model, we found informative text representations:

– Textual patterns clarifying or limiting coverage of claims

– Textual patterns representing effects of patent executions

• This is consistent with the mention by Nagata et al.

interpretations
patterns

(in Japanese)
meanings of the patterns

度合い[noun]-を[particle] degree of …
確率[noun]-の[particle] probability of …
の[particle]-設定[noun] setting of …
(実施)形態[noun]-による[particle],
で[particle]-用い[verb]-て[particle]

executed in the condition of …

に[particle]-置き換え[verb] substitute … with …
薄型[noun]-化[noun] reduce the thickness of …
を[particle]-良く[adjective] well
正しい[adjective] correct
可撓性[noun] flexibility
利点[noun],
利点[noun]-を[particle]

advantage

調整[noun]-可能[noun] adjustable

parameters

extension of existing
patents

effect representation

clarifying
or limiting 
coverage

of
claims

effect
representations
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Key for improvement 4: 
Combine tailored-feature-based model and text-based model 

 Can we further improve the prediction by combining 
the 1st (tailored-feature-based) model and the 2nd (text-based) model

 Two ways of combining two models: 

– Collaborative model: sums the outputs by two models

– Complementary model: takes the maximum of the two models

f tailored(x) +  f text(x) 

max{ f tailored(x) ,  f text(x) }



9

17/19 THE UNIVERSITY OF TOKYOPredictive Modeling of Patent Quality

individual model vs. combined model
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 Complementary model (taking the max.) works well

 This means that two models work complementarily

– “Right model in the right place”

Result 4: 
Two models work complementarily to improve prediction
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Conclusion:  Data and text mining techniques improve
predictive modeling of patent quality

 We modeled not “patent value “ for a specific company, but “patent 
quality” for entire society, from the predictive viewpoint

 We showed data mining techniques improve prediction (1, 2)

 Using text mining techniques, 
we showed texts are informative for patent quality modeling (3)

 Hand-made features and text-based features work complementarily to 
improve prediction (4)

 Future work includes:

– More precise modeling using large scale data

– Modeling with other proxies of patent quality (e.g. patentability)
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Simplified flowchart of the patenting system in Japan

inventor

---
---

JPO
patent

specification
---
---

granted
patent

Yes

request for
invalidation

JPO/IP High Court

---
---

still valid

Yes

third party

No
No

invalidnot granted

①

②

③

 Nagata et al. focused on modeling (3)
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Evaluation method of predictive accuracy: 
Cross validation and two predictive performance metrics (AUC & BEP)

 Cross validation allows us to virtually evaluate predictive performance on 
future cases

– Use 80% of the data for modeling 

– Use the remaining 20% for evaluation (with court decisions hidden)

 2 widely-used predictive performance metrics: AUC and BEP

– AUC (Area Under the ROC Curve):

• Evaluates the quality of ordering of predictions

• Equivalent to AR(Accuracy Rate)-value used as a performance metric 
for default prediction in financial engineering

– BEP (Break-Even Point):

• Evaluate accuracy rate with an optimal decision threshold

• Used for evaluating quality of automatic text classification
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AUC: a measure of ranking quality

 The patents in the evaluation set  are ordered by using the model

 AUC is probability of a randomly-picked stable patent ranked higher than a randomly-picked 
instable patent

 AUC is a measure of quality of ranking
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Break-even point: a measure of predictive accuracy with threshold

 The patents in the evaluation set are ordered by using the model

 Top N instances are predicted as “stable”, where N is the number of stable patents in the 
evaluation set

– because this is the optimal decision threshold if the model is correct

 Break even point is predictive accuracy for the instances given “stable” labels by using the 
optimal threshold
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