

<u>Data and text mining</u> techniques improve <u>predictive modeling of patent quality</u>

- We model "patent quality" which is a goodness measure of a patent for entire society from the predictive viewpoint
- We show data mining and text-mining techniques improve prediction
- Combining both, we further improve prediction

Background: Patent <u>value</u> is important for companies ... but this is not always true for entire society

- It is important to evaluate the value of each patent to one's own business:
 - Technical value for R&D (whether it is a pioneering invention or an improvement)
 - Legal value for IP departments (whether it will be held patentable/valid)
- Economic value for business units (whether it will bear a cash flow in the future)
- There are several attempts to model and evaluate the patent value
- However, considering a patent's value only for a particular company sometimes results in increasing social costs, and inhibiting innovations ...
 - Granted patents with too broad and vague claims with few embodiments result in future litigations
 - Patent trolling: abusive practice by rights holders trying to demand excessive royalty payments to other companies

3/19 Predictive Modeling of Patent Quality

THE UNIVERSITY OF TOKYO

Background: Patent <u>quality</u> is goodness of a patent for <u>society</u> ... but its quantitative modeling is the key

- We focus on "quality of a patent", a new concept which emphasizes the public nature of the patent system (contrast with the patent value)
- The quality of a patent is the contribution of the patent not to a company, but to the entire society
- By sharing ideas about patent quality and related data, we expect to improve the quality of patent applications and examinations
- One of the ways is to provide quantitative metrics of patent quality that can provide achievable targets shared within industries.
- But how ?

Our goal: Predictive modeling of patent quality

- Nagata et al. focused on descriptive modeling
 - "Which feature is responsible for explaining court decisions (=patent quality)?"
- To be used as a reliable quality measure, the model should have high predictive power
 - Also useful for selecting patents to file or hold
- Our goal is to improve the predictive power of the patent quality model

Key for improvement 1: Use all features

- Nagata et al. selected 24 promising features out of 60 features, but can we improve the predictive accuracy by using all of them ?
- In data mining, it is common to use all features by using the framework called regularization
 - Regularization prevents model parameters $(w_1, w_2, ..., w_d)$ from being too large or too small

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d$$

• by penalizing $||w||_2^2 := w_1^2 + w_2^2 + \ldots + w_d^2$

 We use support vector machine, which is a state-of-the-art prediction model used in data mining

- In patent specifications, we have rich text information
- We use text mining techniques to exhaustively construct features from texts
 - Morphological analyzer to segment Japanese language into words

醸造に要する時間を大幅に短縮することができる we can significantly shorten the time for brewing ① 醸造 | に | 要する | 時間 | を | 大幅 | に | 短縮 | する | こと | が | できる [noun] [particle] [verb] [noun] [particle] [noun] [particle] [noun] [particle] [verb]

- Combining words to extract 13,000 patterns consisting of 2 or 3 words
- L1-regularization for addressing high-dimensional data (#features >> #data)
 - L1-regularization dramatically and automatically reduces the number of features used in the model (then we got about 100 selected features)

• by penalizing
$$|w|_1 := |w_1| + |w_2| + ... + |w_d|$$

13/19 Predictive Modeling of Patent Quality

Result 3.2:

We found textual patterns implying high patent quality

Investigating the model, we found informative text representations:

- Textual patterns clarifying or limiting coverage of claims

- Textual patterns representing effects of patent executions

• This is consistent with the mention by Nagata et al.

	interpretations	patterns (in Japanese)	meanings of the patterns	
clarifying or limiting coverage of claims	parameters	度合い[noun]-を[particle]	degree of …	
		確率[noun]-の[particle]	probability of …	
		の[particle]-設定[noun]	setting of …	
	extension of existing patents	(実施)形態[noun]-による[particle],	executed in the condition of \cdots	
		で[particle]-用い[verb]-て[particle]		
		に[particle]-置き換え[verb]	substitute ··· with ···	
		薄型[noun]-化[noun]	reduce the thickness of …	
	effect representations	を[particle]-良く[adjective]	well	
		正しい[adjective]	correct	
		可撓性[noun]	flexibility	
		利点[noun],	advantage	
		利点[noun]-を[particle]		
		調整[noun]-可能[noun]	adjustable	
17/10				
13/19 Predictive Modeling of Patent (mality THE UNIVERSITY OF TOYNO				

Key for improvement 4: Combine tailored-feature-based model and text-based model

- Can we further improve the prediction by combining the 1st (tailored-feature-based) model and the 2nd (text-based) model
- Two ways of combining two models:
 - Collaborative model: sums the outputs by two models

$$f^{tailored}(x) + f^{text}(x)$$

- Complementary model: takes the maximum of the two models

$$\max\{ f^{tailored}(x), f^{text}(x) \}$$

16/19 Predictive Modeling of Patent Quality

Conclusion: <u>Data and text mining</u> techniques improve <u>predictive modeling of patent quality</u>

- We modeled not "patent value " for a specific company, but "patent quality" for entire society, from the predictive viewpoint
- We showed data mining techniques improve prediction (1, 2)
- Using text mining techniques, we showed texts are informative for patent quality modeling (3)
- Hand-made features and text-based features work complementarily to improve prediction (4)
- Future work includes:
 - More precise modeling using large scale data
 - Modeling with other proxies of patent quality (e.g. patentability)

18/19 Predictive Modeling of Patent Quality

Acknowledgements

We would thank:

- Rinju Yohda (IBM Japan, IP department)
- Yusuke Kanehira (IBM Japan, IP department)
- Rikiya Takahashi (IBM Research Tokyo)
- Tetsuji Kuboyama (Gakushuin University)
- Kentaro Nagata

for their help

19/19 Predictive Modeling of Patent Quality

Backup	
20/19 Predictive Modeling of Patent Quality	THE UNIVERSITY OF TOKYO

Evaluation method of predictive accuracy: <u>Cross validation</u> and two predictive performance metrics (<u>AUC</u> & <u>BEP</u>)

- Cross validation allows us to virtually evaluate predictive performance on future cases
 - Use 80% of the data for modeling
 - Use the remaining 20% for evaluation (with court decisions hidden)
- 2 widely-used predictive performance metrics: AUC and BEP
 - AUC (Area Under the ROC Curve):
 - Evaluates the quality of ordering of predictions
 - Equivalent to AR(Accuracy Rate)-value used as a performance metric for default prediction in financial engineering
 - BEP (Break-Even Point):
 - Evaluate accuracy rate with an optimal decision threshold
 - Used for evaluating quality of automatic text classification

22/19 Predictive Modeling of Patent Quality

AUC: a measure of ranking quality

- The patents in the evaluation set are ordered by using the model
- AUC is probability of a randomly-picked stable patent ranked higher than a randomly-picked instable patent
- AUC is a measure of quality of ranking

Break-even point: a measure of predictive accuracy with threshold

- The patents in the evaluation set are ordered by using the model
- Top *N* instances are predicted as "stable", where *N* is the number of stable patents in the evaluation set
 - because this is the optimal decision threshold if the model is correct
- Break even point is predictive accuracy for the instances given "stable" labels by using the optimal threshold

