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Abstract

We introduce a new approach to the problem of link pre-
diction for network structured domains, such as the Web,
social networks, and biological networks. Our approach
is based on the topological features of network structures,
not on the node features. We present a novel parameter-
ized probabilistic model of network evolution and derive
an efficient incremental learning algorithm for such mod-
els, which is then used to predict links among the nodes. We
show some promising experimental results using biological
network data sets.

1 Introduction

For modeling and analyzing various phenomena con-
cerning a collection of entities, it is rarely sufficient to ex-
amine the properties of the entities themselves. The essence
of their collective behavior is often embedded within the
relationship among them, such as co-occurrence, causality,
and other types of interactions. Such relations can, for the
most part, be represented as anetworkconsisting of a set of
entities and links between them.

Examples of network data around us that call for analy-
sis are abundant. The world wide web consists of pages and
hyperlinks among them. Social Networks consist of indi-
viduals and relations among them, such as friendship. They
are attracting considerable attention from various business
perspectives, such as marketing and business process mod-
eling. In the field of bioinformatics, network structures
among biological entities such as genes and proteins, repre-
senting physical interactions and gene regulation, are stud-
ied extensively. (See Figure 1 for an example biological
network.) Links among entities are not limited to static re-
lations, but may vary dynamically. For example, e-mail ex-

changes and cooperative interactions are temporal relations.
In the field of sociometry, there has been a long history of
social network analysis, in which relations among social en-
tities are analyzed [26].

With the large amount of network data becoming readily
available in electronic form today, along with the advances
in computing power and algorithmic techniques that enable
handling of such massive data, there has been a surge of in-
terest in the study of analytical methods for network struc-
tured data, andlink mining [6] has become a popular sub-
area of data mining.

Link mining includes several tasks such as link-based
object classification/ranking/clustering, link prediction, and
subgraph discovery [6]. In the present paper, we consider
the link prediction problem, which is the task of predicting
unobserved portion of the network i.e. hidden links, from
the observed part of the network (or to predict the future
structure of the network given the current structure of the
network.)

Link prediction has several applications including pre-
dicting relations among participants such as friendship and
pecking order, and predicting their future behavior such as
communications and collaborations. In the field of bioin-
formatics, predicting protein-protein interactions and regu-
latory relationships can provide guidance on the design of
experiments for discovering new biological facts.

The link prediction problem is usually formalized as a
binary classification problem or a ranking problem on the
node pairs. There are two types of information that may be
useful for this objective – information on the nodes them-
selves and that on the network topology. There have been
several studies of link prediction with node features, but
comparatively little work has been done with topological
features [21, 7, 23, 20]. In this paper, we focus on the latter.

Topological features can be derived from generative
models of network structures [18]. Perhaps the most well-



known model is the preferential attachment model proposed
by Barab́asi et al. [2]. Liben-Nowelly and Kleinberg pro-
posed and compared a number of metrics derived from var-
ious network models [15]. In this paper, we build on these
earlier works and propose a novel parameterized model for
network evolution, which is then used to derive a method of
link prediction. Our work differs from these earlier works
in that the existence of tunable parameters within the net-
work model naturally gives rise to alearningalgorithm for
link prediction, leading to improved accuracy of prediction.

In our model, probabilistic flips of the existence of edges
are modeled by a certain “copy-and-paste” mechanism be-
tween the edges. Our link prediction algorithm is derived by
assuming that the network structure is in astationarystate
of the network. This allows us to formalize the inference
of the stationary state as a transduction problem, and pro-
pose an Expectation-Maximization (EM)-based transduc-
tion method [19]. The algorithm embodies a maximum like-
lihood estimation procedure using exponentiated gradient
ascent [8].

We evaluate the effectiveness of the proposed approach
by empirically comparing its predictive performance with
link prediction methods based on the various topological
metrics mentioned above. The results of our experiments
indicate that the predictive performance of the proposed
method, in terms of precision recall curves, significantly
out-performs these existing methods, for the biological net-
work datasets used in our experiments.

The rest of the paper is organized as follows. In Section
2, we introduce our definition of link prediction problem.
We propose a probabilistic model of network structure evo-
lution in Section 3, and a link prediction method based on
this model, in Section 4. In Section 5, we review related
work. In Section 6, we show results of our experiments. We
conclude this paper with some discussion of future work in
Section 7.

2 Link prediction problem

We start with defining the link prediction problem we
consider in this paper.

Let the data domain be represented as a graphG =
(V, φ), whereV = {1, 2, . . . , |V |} is the set of indices of
nodes, andφ : V × V → [0, 1] is anedge labelfunction.
Each nodev ∈ V represents an entity, for example, a per-
son in the case of social networks, and a protein in the case
of protein-to-protein interaction networks. Anedge label
φ(i, j) indicates the probability that an edge exists between
any pair of nodes. In particular,φ(i, j) = 1 if an edge exists
betweeni andj, andφ(i, j) = 0 if an edge does not exist
betweeni andj. Note thatφ is symmetric.

Let EL ⊂ V × V be thelabeled pairs, which is a set
of pairs of nodes whose edge labels are known. They will

Figure 1. A metabolic network of S. Cere-
visiae. Proteins are represented as nodes,
and an edge represents catalyzation of suc-
cessive reactions by two proteins.

serve as the training data set for our problem. TheLink pre-
diction problemis the task of predicting the values of edge
labels forEU := (V × V )−EL, givenV andEL as train-
ing data. Example instances of the link prediction problem
include that of predicting potential links such as friendship
relations in social networks, or interactions among proteins
in protein networks.

Note that, in our setting, we do not assume the existence
of any features on the nodes that can be used for inference.
For example, there may be information about each person in
a social network, such as the name, age, hobbies, etc. Some
existing work in the literature has used such features for link
prediction. Certainly, the ultimate goal would be to utilize
all available information that may be helpful for prediction.
In this paper, however, we focus on the use of topological
features having to do with the structure of the network, and
consider the link prediction problem based solely on them.

3 An edge label copying model of network
structure evolution

In this section, we propose a parameterized probabilis-
tic model of network evolution, in which the structure of
a network probabilistically changes over time. Based on
this model, we predict whether an edge exists between two
nodes or not, at any given point in time. By the “structure of



network” we mean the edge label functionφ that indicates
the existence of edges among nodes.

We denote byφ(t) the edge label function at timet. We
assume that onlyφ(t) changes over time, andV , the mem-
bers in the network, are fixed at all times, as we are primar-
ily interested in the link structure among them.

In our model, we model probabilistic flips of the value
of φ. Flips of the edge labels do not occur uniformly at
random, but occur depending on some characteristics of the
network. We characterize this by the process of “copy-and-
paste” of edge labels between the nodes. The probability of
copying differs from one node pair to another. We assume
a Markov model in whichφ(t+1) depends only onφ(t).

In the proposed model, an edge label is copied from node
` to nodem randomly with probabilityw`m. Once it has
been decided that an edge label is to be copied from node`
to m, nodè copies one of its|V |−1 edge labels (excluding
φ(t)(`,m)) to nodem uniformly at random. We have the
following probability constraints.∑

`m

w`m = 1, w`m ≥ 0. (1)

Also, we assume thatw`` = 0, which indicates copying
from a node to the node itself does not occur. LetW denote
the matrix whose(`,m)-th element isw`,m.

The basic idea behind our model is as follows; if you
have a friend who has a strong influence on you, your as-
sociation will be highly affected by the friend’s association.
Also, if a gene is duplicated in the course of genetic evo-
lution, the copied gene will have similar characteristics to
the original one. Assume that nodek has a strong influence
on nodei, and there is an edge between nodek and nodej.
Following the above hypothesis, there will likely be an edge
between nodei and nodej. Similarly, if there are no edges
betweenk andj, there will likely be no edge betweeni and
j.

There are two possible ways forφ(t)(i, j) to assume a
particular edge label. One possibility is that nodek has
copied an edge label to nodei or to nodej. The other is that
φ(t)(i, j) = φ(t+1)(i, j) and nothing has happened (indicat-
ing that a copy happened somewhere else in the network).

Following the above discussion,φ(i, j)(t+1), the proba-
bility of an edge existing between nodei and nodej at time
t + 1, can be written as

φ(t+1)(i, j) =
1

|V | − 1

( ∑
k 6=i,j

wkjφ
(t)(k, i) + wkiφ

(t)(k, j)
)

+
(
1 − 1

|V | − 1

∑
k 6=i,j

wkj + wki

)
φ(t)(i, j), (2)

where the first term indicates the probability that the edge
label for(i, j) is changed by copy-and-pasting, and the sec-
ond term indicates the probability that the edge label for

(i, j) is left unchanged since copy-and-pasting happened
somewhere else. In the first term, nodek must have an edge
to nodej at timet (i.e. φ(t)(k, j) = 1) for nodek to make
nodei span an edge to nodej. Similarly, nodek must have
an edge to nodei (i.e. φ(t)(k, i) = 1) for nodek to make
nodej span an edge to nodei. We assume that the edge
label for(i, j) cannot be copied from nodei to nodej, and
vice versa.

By iterative applications of this flipping equation of the
edge labels, the network structure evolves over time.

4 Link prediction

In this section, we propose a new approach to link pre-
diction based on the network structure evolution model we
introduced in the previous section, and also propose a pa-
rameter estimation method from partially observed edge la-
bels.

4.1 Stationary state of the network structure evo-
lution model

Since we do not know the true parameters in (2), and
do not in general observe the history of evolution of the
network structure, it is unlikely that we can predict the exis-
tence of edges just based on this model. Therefore, we make
an additional assumption that the current network that we
are seeing is in some sense “typical” of the network struc-
ture averaged over time [10]. More precisely, we assume
that it is a stationary state of the network evolution.

If the network structure is in a stationary state, by setting
φ(∞)(k, i) := φ(t+1)(k, i) = φ(t)(k, i) in (2), we obtain

φ(∞)(i, j) =

∑
k 6=i,j

wkjφ
(∞)(k, i) + wkiφ

(∞)(k, j)∑
k 6=i,j

wkj + wki
. (3)

There are trivial solutions for this equation such as
φ(∞)(i, j) = 0 for all (i, j), or φ(∞)(i, j) = 1 for all
(i, j). As we will see in the next subsection, we constraint
φ(∞)(i, j) to their actual values for(i, j) in training data
EL to obtain a nontrivial solution.

4.2 Parameter estimation and link prediction

We define the objective function for estimating the model
parameters and determining the values ofφ(∞)(i, j) for
(i, j) in EU . Since the log-likelihood, or cross entropy, for



the edge labelφ(i, j) is written as

Lij = φ(∞)(i, j) log

( ∑
k 6=i,j

wkjφ
(∞)(k, i) + wkiφ

(∞)(k, j)∑
k 6=i,j

wkj + wki

)

+(1 − φ(∞)(i, j)) log

(
1 −

∑
k 6=i,j

wkjφ
(∞)(k, i) + wkiφ

(∞)(k, j)∑
k 6=i,j

wkj + wki

)
.

The total log-likelihood for the known edge labelsEL is
defined as

L(W ) =
∑

(i,j)∈EL

Lij .

Our estimation problem is formulated as the following
constrained optimization problem:

MaximizeW,φ(∞)(i,j) for (i,j)∈EL L(W )
such that

φ(∞)(i, j) =

∑
k 6=i,j

wkjφ
(∞)(k, i) + wkiφ

(∞)(k, j)∑
k 6=i,j

wkj + wki

for (i, j) ∈ EU ,

and
∑
`,m

w`m = 1, w`m ≥ 0.

Here, the objective function is the total log-likelihood for
the known edge labelsEL, and the constraint is the condi-
tion for stationarity for the test dataEU . Since our prob-
lem is a transduction problem where the test data are given
beforehand, not only the model parameters for copy-and-
paste, but also the unknown edge labels{φ(∞)(i, j)|(i, j) ∈
EU} are parameters to be determined. We employ an
Expectation Maximization (EM)-type transductive learning
approach [19] where optimization proceeds with respect to
W and{φ(∞)(i, j)|(i, j) ∈ EU}, iteratively.

First, we describe the E-step of the transduction proce-
dure. The hidden variables areφ(∞)(i, j) for (i, j) ∈ EU

in our case. As we have seen in the previous subsection,
they must satisfy Equation (3). Therefore, we solve the si-
multaneous linear equations to get the expected value of the
hidden variables.

Next, we consider the M-step, which is to maximizeL
with all {φ(∞)(i, j)|(i, j) ∈ EU} fixed.

This optimization problem is nonlinear, and does not
have closed form solution. Therefore, we employ a
gradient-based optimization to obtain a solution numeri-
cally. The gradient of the objective function with respect
to w`m becomes

∂L(W )
∂w`m

=
∑
i,j

∂Lij

∂w`m
,

where

∂Lij

∂w`m
=

φ(∞)(i, j) ·

(
δ(m = j)φ(∞)(`, i) + δ(m = i)φ(∞)(`, j)∑

k 6=i,j

wkjφ(∞)(k, i) + wkiφ(∞)(k, j)

− 1∑
k 6=i,j

wkj + wki

)

+ (1 − φ(∞)(i, j))

·

(
δ(m = j)(1 − φ(∞)(`, i)) + δ(m = i)(1 − φ(∞)(`, j))∑

k 6=i,j

wkj(1 − φ(∞)(k, i)) + wki(1 − φ(∞)(k, j))

− 1∑
k 6=i,j

wkj + wki

)
.

We employ the exponentiated gradient algorithm [8]
since it ensures positivity of all elements ofW and the
probability constraint (1), and converges fast in the case of
sparseW , which is the case for most of the real world net-
works.

Suppose that we have parametersW at a particular time
of iterations, we want to updateW to W ′ to increase
L(W ′). Also, the newW ′ is chosen to be sufficiently close
to W by making the distance penalty−d(W ′,W ). We
choose the distance as the relative entropy,

d(W ′,W ) =
∑
`,m

w′
`m log

w′
`m

w`m
,

which leads to the exponentiated gradient algorithm.
At each iteration step, we determine the newW ′ that

maximizes the following objective function with respect to
(1).

ηL(W ′) − d(W ′, W ), η > 0,

whereη > 0 is a constant that balances the two terms. Us-
ing Lagrangean multiplierγ, the objective function we wish
to maximize is

F (W ′) := ηL(W ′) − d(W ′,W ) − γ
( ∑

`,m

w`m − 1
)

ApproximatingL(W ′) by usingL(W ) as

L(W ′) = L(W ) +
∑
`,m

∂L(W )
∂w`m

(w′
`m − w`m),

and setting the gradient ofF (W ′) with respect tow′
`m to be

zero, the Lagrangean that we maximize is

∂F (W ′)
∂w′

`m

= η
∂L(W )
∂w`m

−
(

log
w′

`m

w`m
+ 1

)
+ γ = 0.



Solving this equation with
∑

`,m w`m = 1 in mind, we ob-
tain the following exponentiated gradient update,

w′
`m = Z−1w`m exp

(
η
∂L(W )
∂w`m

)
, (4)

where

Z :=
∑
`,m

w`m exp
(
η
∂L(W )
∂w`m

)
.

The above discussion is summarized as the two step pro-
cedure described in Figure 2.[Step:3] corresponds to the
E-step, and[Step:4] corresponds to the M-step.

4.3 Scaling up the estimation algorithm by se-
quential updates

The transduction algorithm presented in the previous
subsection runs in a batch manner, so can be somewhat inef-
ficient for large data sizes. Therefore, we approximate this
by a sequential version of the learning algorithm.

We perform the iteration of[Step:3] and[Step:4] in Fig-
ure 2 not with whole data, but with only one datum at a
time. Assume that(i, j) is the node pair that we currently
focus on.

As for [Step:3], instead of solving (3) as simultaneous
linear equations, we process only one step of the power
method for one unobserved edge label by

φ(∞)′(i, j) :=

∑
k 6=i,j

wkjφ
(∞)(k, i) + wkiφ

(∞)(k, j)∑
k 6=i,j

wkj + wki
. (5)

Similarly, as for [Step:4], instead of (4), we employ
stochastic approximation which processes one datum at a
time,

w′
`m = Z−1w`m exp

(
γ

∂Lij

∂w`m

)
(6)

for {(`,m)|` ∈ {1, 2, . . . , |V |},m ∈ {i, j}}, whereγ is
the coefficient for stochastic approximation. Note thatZ
includes the summation ofw`m over all(`,m), but we only
compute the differences ofZ, so each update is done in
O(|V |) time.

Also we execute the two steps in parallel. We randomly
pick an(i, j) pair, and execute a micro E-step (5) if(i, j) ∈
EU , and execute a micro M-step (6) if(i, j) ∈ EL.

The description of the sequential version of the transduc-
tion algorithm is exhibited in Figure 3.

5 Experiments

In this section, we report on the experiments we con-
ducted to compare the proposed method with some existing
methods based on the topological features, using two bio-
logical network datasets.

5.1 Review of comparison methods

Before describing the experimental setting, we review
the existing methods from earlier works [15, 28] we com-
pare against the proposed method. These methods are based
on node similarity metrics derived from certain network
evolution models. Since each of these metrics described
below quantifies the potential of an edge existing between
a pair of nodes, they give rise to arankingover node pairs
and thus can be directly used to perform link prediction.
(Link predictions can be given as ranking over the set of all
possible edges.)

Note that all metrics defined below consider only the
positive edge labels. In the definitions to follow, we letΓ(i)
denote the set of neighbor nodes connected to nodei with
edge label1.

• Common neighbors [17]

common:= |Γ(i)| ∩ |Γ(j)|

Common neighbors metric is based on the idea that if
two nodesi andj have many common neighbor nodes,
they are likely to be linked.

• Jaccard’s coefficient [3, 15]

Jaccard’s:=
|Γ(i)| ∩ |Γ(j)|
|Γ(i)| ∪ |Γ(j)|

Jaccard’s coefficient is a normalized version of the
common neighbors metric, and is used as a similarity
metric in the field of information retrieval. In Jaccard’s
coefficient, if two pairs of nodes have the same num-
ber of shared neighbor nodes, since in some sense their
links are considered more “precious”.

• Adamic/Adar [1]

Adamic/Adar:=
∑

k∈|Γ(i)|∩|Γ(j)|

1
log |Γ(k)|

Adamic/Adar metric is a variant of the common neigh-
bors metric. The idea is similar to Jaccard’s coefficient
in the sense that a link owned by nodes with a smaller
number of neighbors is considered more important,
but Adamic/Adar assigns different weights among the
neighbors. Common neighbors with a small number of
neighbors are weighted more highly.

• Katzβ [12]

Katzβ :=
∞∑

l=1

βl|paths(l)i,j |

Katzβ is a generalization of the common neighbors
metric to account for more distant relations. Here



Algorithm: Batch
[Step:1] Setw`m := 1

|V |−1 for all (`,m) such that̀ 6= m.
[Step:2] Continue[Step:3] and[Step:4] until convergence.
[Step:3] Solve (3) to getφ(∞)(i, j) for (i, j) ∈ EU .
[Step:4] FindW that maximizesL(W ), by using (4).

Figure 2. A batch transduction algorithm

Algorithm: Sequential
[Step:1] Setw`m := 1

|V |−1 for all (`,m) such that̀ 6= m.

[Step:2] Solve (3) to getφ(∞)(i, j) for (i, j) ∈ EU .
[Step:3] Continue[Step:4] until convergence.
[Step:4] Sample(i, j) at uniformly random

[Step:4-a] Updateφ(∞)(i, j) by using (5) if(i, j) ∈ EU ,
[Step:4-b] Updatew`m for {(`,m)|` ∈ {1, 2, . . . , |V |}, m ∈ {i, j}} by using (6) if(i, j) ∈ EL.

Figure 3. A sequential transduction algorithm

paths(l)i,j is the number of paths of lengthl from node
i to nodej. It is essentially identical to the diffusion
kernel used in kernel methods to define the similarity
between two nodes on a graph. In our experiment, we
setβ = 0.05.

• Preferential attachment [17, 4]

preferential:= |Γ(i)| · |Γ(j)|

Preferential attachment is based on a different idea
from those of the above variants of common neighbors
metric. It originates with a generative model of scale
free networks, where nodes with many neighbors are
likely to obtain new neighbors.

5.2 Experimental setting

We used two biological network datasets in our experi-
ments. One is a medium sized metabolic network dataset,
and the other is a larger protein-protein interaction network
dataset.

• Metabolic network
The first dataset [27] contains metabolic pathways of
the yeast S. Cerevisiae in KEGG/PATHWAY database
[11]. Figure 1 shows an overview of this network. In
this network, proteins are represented as nodes, and an
edge indicates that the two proteins are enzymes that
catalyze successive reactions between them.

The number of nodes in the network is 618, and the
number of links is 2782. Therefore the number of data
(i.e. node pairs) to be classified is 190653, and the ratio
of positive and negative data is0.015 : 1.

• Protein-protein interaction network
The second dataset is a protein-protein interaction net-
work dataset constructed by von Mering et al. [25]. We
followed Tsuda and Noble [24], and used the medium
confidence network, containing 2617 nodes and 11855
links. Therefore the number of data (i.e. node pairs) to
be classified is 3423036, and the ratio of positive and
negative data is0.003 : 1.

In both datasets, the number of edges are very small
as compared to the number of node pairs, so the ratio of
positive and negative data is highly skewed. Therefore,
in [Step:4] in the learning algorithm of Figure 3, we use
weighted sampling using the data distribution, that is, the
positive data are sampled with probability proportional to
the ratio of the number of negative data to the total number
of data (and similarly for the negative data).

We used66% of the data as training data and the rest
as test data, and evaluated the performance by3-fold cross
validation. The performance of competing methods is com-
pared using precision-recall curves since the dataset are
highly skewed, with less than 2% of the edge labels being
positive.

5.3 Experimental Results

First, we will investigate the relative performance of
the various methods we consider. Figure 4 exhibits the
precision-recall curves for the metabolic network data, and
Figure 4 shows those for the protein-protein interaction net-
work data. Table 1 summarizes these results, in terms of the
break-even points of precision and recall by the respective
methods.



Overall, the proposed method achieves better per-
formance than all other methods, particularly with the
metabolic network data. With the protein-protein network
data, the improvement is not as dramatic, especially in terms
of the break-even points.

In link prediction, however, it is generally considered im-
portant to achieve high precision in the low recall area (i.e.
the left-half of the precision-recall curve). This is because,
in actual applications, link prediction is often used to rec-
ommend a small number of promising pairs from among
a large set of candidates, e.g. recommending new friends
in social network services or potential protein-protein in-
teractions that have not been found experimentally. From
this perspective, we conclude, the proposed method enjoys
a significantly higher performance.

Next, we see whether the transductive formulation re-
sults in significant improvement in predictive performance.
We can obtain a non-transduction version of our link predic-
tion method by simply settingφ(i, j) for (i, j) ∈ EL to be
identically0. Figure 6 shows the precision recall curves of
the proposed method, with and without transduction, for the
metabolic network data. We observe that adoption of trans-
ductive formulation does boost the predictive performances
for these datasets.

Finally, we examine the relationship among the com-
peting methods by evaluating the similarity of predictions
output by them. In particular, we compare them by us-
ing Spearman rank correlation [9] on the positive test data.
Spearman rank correlation is a measure of how two rank-
ings of a given set are similar to each other. The similarity
is the highest when it is1, and the lowest when it is0. Ta-
ble 2 shows the Spearman rank correlations for all pairs of
the methods we consider, for the metabolic network data.
Also, Figure 7 visualizes them in two dimensions by multi-
dimensional scaling [5]. Note that they are essentially com-
parisons for only the positive test data, since the datasets are
highly skewed. Therefore the prediction performance can
differ significantly even when the two rankings are highly
correlated. (It is the ranking on the positive test data that
matters in attaining high predictive performance, of which
there are few.) Now, let us examine the results. We can ob-
serve that the predictions made by common neighbor, Jac-
card’s coefficient, and Adamic/Adar are very similar to one
another, which is actually implied by their definitions. Since
Katzβ can be regarded as an extension of these metrics, it is
no surprise that it also has high correlations with them, but
at the same time, it is also similar to preferential attachment.

It is interesting to observe that the mean correlation for
the proposed method is the lowest among all methods, im-
plying that the proposed method is rather different from all
the other methods, in the way it predicts. It is consistent
with the fact that our model is based on an evolution model
with different characteristics from the models that the other

metabolic protein-protein
common 21.1% 37.9%
Jaccard’s 30.2% 47.9%
Adamic/Adar 34.9% 50.3%
preferential 9.2% 25.4%
Katz0.05 32.8% 27.6%
proposed 61.2% 52.6%

Table 1. Summary of results for both dataset
measured by break-even point of precision
and recall.

Figure 6. Comparison of Precision-Recall
curves of transductive inference and non-
transductive inference for metabolic network.
The break-even points are 61.2% with trans-
duction, and 58.0% without transduction, re-
spectively.

metrics/methods are based upon. This means that adding
the proposed method to the pool of existing methods, for
example, when using their predictions as part of input fea-
tures to a subsequent classifier, would be beneficial.

6 Related work

As we pointed out in Introduction, link prediction is
naturally cast as a classification/ranking problem for node
pairs, and two types of information, node features and topo-
logical features, are used for this task.

Topological features are often derived from generative
models of network structure [17, 3, 15, 1, 12, 17, 4], and
our model can be interpreted as a parameterized version of
the “node copying model” due to Kleinberg et al. [14, 13],
To the best of our knowledge, there been no probabilis-



Figure 4. Precision-Recall curve for metabolic network with 66% training data.

c J A p K proposed
common 1 0.92 0.94 0.31 0.61 0.20
Jaccard’s 0.92 1 0.97 0.53 0.75 0.35
Adamic/Adar 0.94 0.97 1 0.49 0.70 0.31
preferential 0.31 0.53 0.49 1 0.84 0.69
Katz0.05 0.61 0.75 0.70 0.84 1 0.70
proposed 0.20 0.35 0.31 0.69 0.70 1
mean 0.80 0.91 0.88 0.77 0.92 0.65

Table 2. Spearman rank correlations among
rankings by various methods for positive test
data in the metabolic network dataset. Note
that the Spearman rank correlation is sym-
metric. Columns indicated by c, J, A, p, and
K denote common neighbors, Jaccard’s coef-
ficient, Adamic/Adar, preferential attachment,
and Katz 0.05, respectively.

tic models with tunable parameters derived from a network
evolution model, nor have there been any topological met-
rics defined based on a node copying model. We also point
out that our generative model differs from theirs, in that in
our model the edge labels (either positive or negative) are
copied, not the edges (positive labels only). Also, we note
that our model does not consider node addition and dele-
tion, since our interest is in link prediction. Another differ-

ence is that Kleinberg et al’s model allows copying multiple
edges at a time, our model copies one edge label at a time,
where copy probabilities are parameterized and tunable in
the model.

Another approach to link prediction that exists in the lit-
erature is that of applying supervised learning methods us-
ing node features as well as topological features. (See, for
example, Hasan et al. [7] and O’Madadhain et al. [20].) We
point out that their work differs from ours in that their learn-
ing algorithms do not learn parameters within the network
model. In order to examine the merit of applying a su-
pervised learning method on topological features, we con-
ducted a preliminary experiment in which a linear predictor
was applied on the topological features considered in our
experiments to perform link prediction. We did not observe
any accuracy improvement over the direct methods that base
their predictions solely on the topological metrics.

There has also been some works that apply the frame-
work of statistical relational learning to link prediction. For
example, Popescul and Ungar [21] and Taskar et al. [23]
have applied such approach, using both node features and
topological features, including those we used in our ex-
periments. It is worth noting that these are applications
of a more general paradigm (of relational learning) to the
link prediction problem, and are to be contrasted with ap-
proaches such as ours that develop tailored models and
methods for link prediction per se.

Link prediction has strong resemblance to the problem



Figure 5. Precision-Recall curve for protein-to-protein interaction network with 66% training data.

of collaborative filtering, if we regard it as a matrix com-
pletion problem. For example, Huang et al. [28] applied the
metrics we used in our experiments to collaborative filter-
ing. On the other hand, application of collaborative filtering
techniques to link prediction would also make sense. In-
deed, an approach by Nakamura and Abe [16], which com-
pletes an user-item matrix by learning similarities among
rows and columns, has some superficial resemblance to our
approach and motivated our present work to some extent.
Applications of other types of collaborative filtering tech-
niques would be worth exploring.1

7 Conclusion and discussion

In this paper, we introduced a new approach to the prob-
lem of link prediction for network structured domains based
on the topological features of network structure, not on the
node features. We presented a probabilistic evolution model
of network structure which models probabilistic flips of ex-
istence of edges depending on a “copy-and-paste” mecha-
nism of edges. Based on this model, we proposed a trans-
ductive learning algorithm for link prediction based on an
assumption of the stationarity of the network. Finally, we
show some promising experimental results using real net-
work data. We used biological network data in our exper-

1Although we did not show the results in this paper, the matrix fac-
torization approach [22] performed poorly on link prediction tasks in our
preliminary experiments.

iments, and attained good performance. This is thought to
be, in part, attributable to the fact that our network evolution
model matches the characteristics of biological networks.
Assessing the applicability of the proposed approach in
other domains will be important in the future.

Our model can be easily generalized to the scenario in
which there are more than two edge labels. LetΣ be a set
of label types, andφ(t)

a (i, j) be the edge label for each edge
typea ∈ Σ. Then we can modify the model (2) as

φ(t+1)
a (i, j) =

1
|V | − 1

( ∑
k 6=i,j

wkjφ
(t)
a (k, i) + wkiφ

(t)
a (k, j)

)
+

(
1 − 1

|V | − 1

∑
k 6=i,j

wkj + wki

)
φ(t)

a (i, j).

For example, this generalized model includes the case of
directed graphs. There are numerous domains in the real
world to which directed networks can be applied. In the
future, we wish to apply our approach to such networks and
compare its performance with the directed versions of the
metrics considered in this paper.
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