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Abstract

We describe our approach that we used for Task2
“Transferring the Learned Knowledge for Indoor Location
Estimation” in ICDM Data Mining Contest 2007. We for-
mulated the task as a transduction problem under a distri-
bution change, and employed a semi-supervised learning
approach based on the Laplacian eigenmap followed by the
nearest neighbour classifier.

1 A formulation as a transduction problem
under a distribution change

We formulate the indoor location estimation problem as
a transductive multi-class classification problem.

Let the whole data set consists ofN = 5, 503 instances,
whosei-th data is given as(x(i), y(i)), wherex(i) ∈ R101 is
the vector of the received signal strength (RSS) values from
the WiFi Access Points (APs), andy(i) ∈ {1, 2, . . . , 247}
is the location label assigned to the RSS vector. As for the
unobserved RSS values, we filled them by−100, since all
RSS values are in the range of[−100, 0] and unobserved
RSS value implies that it was too weak to detect.

The datasets are divided into two types of domains the
source domainand thetarget domain, whose data distribu-
tions are considered to be similar but not the same. The
source domain we are given a relatively large number (621)
of labeled data denoted byDSL , and1, 701 unlabeled data
DSU. On the other hand, in the target domain, we have only
53 labeled data denoted byDTL , and3, 128 unlabeled data
denoted byDTU.

The task is to predict the location labels forDTU, the
unlabeled data in the target domain. Note that since the
inputs of the test data set are given in advance of the test
phase, we can regard the problem as a transduction problem

where test inputs are explicitly used.

2 A semi-supervised approach using the
Laplacian eigenmap

The task can be basically considered as a multi-class
classification problem. Since the data distribution in the
source domain and that in the target domain are different,
an obvious solution is to train a classifier using onlyDTL

(and possiblyDTU in addition). However, the number of
the labeled data in the target domain is even smaller than
the number of location labels. We have to “transfer” infor-
mation from the source domain.

Therefore, our strategy is to use one of the supervised
learning approaches [2] using all the data exceptDTU, the
unlabeled data in the source domain. Our intention behind
this is as follows. We use all of the labeled data since the
number of the target labeled data is far from enough. As for
the unlabeled data, we use only the target unlabeled data,
since we would like to work in the intrinsic feature space
in the target domain and to avoid suffering from the source
data distribution.

Our approach consists of two steps. First we apply a non-
linear dimension reduction technique called theLaplacian
eigenmap[1] to obtain an appropriate feature space for the
target domain, and then use the nearest neighbour classifier
to predict the location labels for the target unlabeled data.

The Laplacian Eigenmap is a nonlinear unsupervised di-
mension reduction technique. It treats each data instance as
a node in a weighted graph, whose weighted edge for node
i and nodej (corresponding to thei-th instance and thej-th
instance, respectively) is defined as a heat-kernel like func-
tion as follows,
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where‖ · ‖2 is the 2-norm, andσ ≈ 4.23 is a constant
defined as the mean of the standard deviations estimated
with respect to each of the axes, andc is a parameter to be
tuned.

The Laplacian eigenmap considers the Laplacian matrix
L represents an intrinsic structure of the data distribution,
which is defined as

L = D − W, (2)

whereW is a matrix each of whose element is given by
w(i,j), andD is a diagonal matrix each of whose diagonal
elementd(i,i) is defined as

d(i,i) =
∑

`

w(i,`). (3)

To find the new coordinates of the data embedded into the
new feature space induced by Laplacian matrix, we solve
the following generalized eigenvalue problem,

Ly = λDy, (4)

Let y0, y1, · · · , yk be thek + 1 smallest eigenvectors and
λ0, λ1, · · · , λk be thek + 1 smallest eigenvalues ofL, re-
spectively. Sinceλ0 = 0 always holds for Laplacian ma-
trices,k vectorsy1, · · · yk can be regarded as thek dimen-
sional coordinates, where original data are embedded.

In addition, since the obtained coordinates are normal-
ized by the constraint

yT Dy = 1, (5)

we further rescale them to obtain the new coordinates
z1, · · · , zk as

zi =
1
λi

yi, (6)

so that the new coordinates reflect the scale of the original
data distribution. This feature is not implemented in the
standard Laplacian eigenmap, but we found it effective in
our preliminary experiments.

Once we obtained the new coordinates of the data, we
can apply standard supervised classification algorithms by
using DSL and DTL as training data, and obtain the pre-
dictions for the unlabeled target dataDTU. In our submis-
sion, we employed the nearest neighbour classifier, since we
found that the nearest neighbour classifier is quite robust to
distribution changes through our preliminary experiments.

3 The algorithm

Based on the discussion in the previous section, each step
of the algorithm is summarized as follows. In our submis-
sion, the parameterc was set to25, based on the result of a
10-fold cross validation using the target labeled data. Simi-
larly, k was set to20.

1. Prepare a data set with the labeled source dataDSL, the
labeled and unlabeled target data (DTL , DTU), where
each instance is a101-dimensiona RSS vector. All the
missing values are filled with the value−100.

2. Calculate the heat kernel for all instance pairs by (1)
with the parameterc to be tuned by cross validation,
and the diagonal matrixD defined by (3), to obtain the
Laplacian matrixL by (2).

3. Find thek+1 smallest eigenvectorsy0, y1, · · · , yk and
the k + 1 smallest eigenvaluesλ0, λ1, · · · , λk of the
generalized eigenvalue problem (4). Removey0 with
the smallest eigenvalue, and calculate the new coordi-
natesz by (6), wherek is the parameter to be tuned by
cross validation.

4. Apply the nearest neighbour classifier to the unlabeled
target data to predict their labels. The nearest neigh-
bour to each instance is calculated by the2-norm in
the new feature spacez1, · · · , zk.
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