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� We formulated task1 as a semi-supervised learning [1] problem

� We employed the label propagation [2] as the semi-supervised learning method 

– A multi-class version of the label propagation method

– Design of similarity measure using spatial information(=RSS values) and temporal 
information (=time stamps)

Presentation for task 1:
A Semi-supervised Approach to Indoor Location Estimation

[1] X. Zhu. Semi-supervised learning literature survey. Technical Report, TR 1530, University of Wisconsin Madison, 2006.
[2] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.
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Task Review: Indoor location estimation by using machine learning

� Problem setting:

–You want to know where you are in some building

– In the building, there are several access points emitting radio signals

–You have a client device by which you can know signal strength from each access point

� Difficulty: Triangulation is unsatisfactory because of high uncertainty in signals

� Solution: Apply machine learning techniques to estimate locations from received signal strengths

access point 1access point 2
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The task is formulated as a semi-supervised learning problem

Missing values are filled with 
-100 (the lowest RSS value)

� Given: the i-th data is given as a tuple of (x(i), TID(i), t (i), y(i))
– spatial information: x(i) X = <101 is the received signal strength (RSS) values

– temporal information: TID(i) (trace ID) and t(i) (time ID) indicate the time of the data observed

– classs label: y(i) Y = {1, 2, ..., 247} is a location label given only for a small fraction of the data

• Semi-supervised learning problem

� Goal: predict y(i) for  i 2 UNLABELLED DATA whose location labels are “ ? ”(=not given)

– Transduction problem
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We employed the label propagation as a semi-supervised learning method
� Label propagation tries to assign a location label to each observation with satisfying that

1. labeled instances have the given labels, and

2. similar instances have the similar class labels

� Example of two-class {A, B} case

– f : the probability of the location label of the i-th instance being A

– (1 - f ): the probability of the location label of the i-th instance being B
– means “two observations are similar to each other”

f = 1 f = 0

location label 
is A

location label 
is B

f = .33 f = 0

estimated by using rule 2

f = .66

$
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We employed the label propagation as a semi-supervised learning method
� Label propagation tries to realize label assignments satisfying that

1. labeled instances have the given labels, and
2. similar instances have the similar class labels

� (Multi-class) label propagation is cast as an optimization problem 

minimizef ¦( i, j ) w( i, j ) ¦y (  f ( i )(c) – f ( j )(c)  )2

where
• f (i) (c) : the probability of the location label of the i-th instance being c
• w( i, j ) : the similarity measure between the i-th and j-th examples

s.t.  for each labeled instance i,
• f ( i ) (c) = 1, if c is the true class label
• f ( i ) (c) = 0, otherwise

� Prediction is made by argmaxc f ( i ) (c) for each i

� Instead of a closed form solution requiring the inverse of a large matrix,
we can use the following simple iterative update 

f ( i )(c)   (  (¦ j w( i, j ) ¦c f ( j ) (c) )     ( ¦ j w( i, j )  )
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Similarity measure w( i, j ) is defined by RSS values and time stamps

� We have to define the similarity measure w( i, j ) used in the label propagation

� Each instance is accompanied by two types of information

1. spatial information: RSS values 

2. temporal information: a time stamp 

� Two instances are similar if

– their RSS values are similar, or 

– their time stamps are similar

� The similarity measure is defined by the maximum of two similarity measures

w ( i, j )   =  max { wX
( i, j ) ,  wT

( i, j )  }
where

• wX
( i, j ) : similarity based on spatial information (=RSS values)

• wT
( i, j ) : similarity based on temporal information (=time stamps)
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Robust similarity measure based on spatial information: wX
( i, j ) 

level curve of p-norm
2-norm 1-norm 0.5-norm

� Since RSS values are noisy, 
we need a similarity robust to noise caused by reflection, interference, and shielding

� RSS-based similarity wX
( i, j ) is defined as

wX
( i, j )  = exp ( – || x ( i ) – x ( j ) ||p / V )

where

z || ||p is the p-norm (in submission, p = 0.5  (0.5-norm) )

z V is a constant scale parameter (in submission, V = 0.5 )

z We used p-norm with p < 1 , which puts more importance
on presence/absence of signals than the amount of change

z Robust to drastic change of each RSS value

z Sensitive to change of multiple RSS values

.
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Similarity measure based on temporal information: wT
( i, j )

� Time-stamp-based similarity wT
( i, j ) is defined as

wT
( i, j ) =  U ,  if i and  j are consecutive observations in a trace

=  0,  otherwise

– In submission, we used U = 1

� Probably, we could improve the similarity further ...

– U = 0.01 performs better

– Similarity function like that for RSS values
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So, what was most important for performance improvement ?
Design of similarity function is crucial

� Design of similarity function contributed most to improvement of prediction accuracy

– Use of 0.5-norm in RSS similarity

– Use of time-stamp-based similarity

� Nearest neighbour with 2-norm RSS similarity  (baseline)

  +7% accuracy

� Nearest neighbour with 0.5-norm RSS similarity

  + 1% accuracy

� Label propagation with 0.5-norm RSS similarity

  + 5% accuracy

� Label propagation with 0.5-norm RSS similarity and time stamp similarity
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Conclusion and future work

� We applied a multi-class version of the label propagation to this task

� We designed a similarity measure using spatial information(=RSS values) and temporal 
information (=time stamps)

– Metric design >> semi-supervised learning

� It is very difficult to beat the simple methods such as kNN

� Possible future work includes

– Refinement of the time-based similarity

– Out-of-sample prediction
• In real situation, test data are not given in advance of test phase
• Approximation or explicit learning of the mapping function
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Thank you

WE ARE...
Hisashi Kashima, Shoko Suzuki, Shohei Hido, Yuta Tsuboi,
Toshihiro Takahashi, Tsuyoshi Ide, Rikiya Takahashi, and Akira Tajima
IBM Research, Tokyo Research Laboratory
Data Analytics Group


