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Abstract. Pairwise classification has many applications including network pre-
diction, entity resolution, and collaborative filtering. The pairwise kernel has been
proposed for those purposes by several research groups independently, and be-
come successful in various fields. In this paper, we propose an efficient alterna-
tive which we callCartesian kernel. While the existing pairwise kernel (which
we refer to as Kronecker kernel) can be interpreted as the weighted adjacency
matrix of the Kronecker product graph of two graphs, the Cartesian kernel can be
interpreted as that of the Cartesian graph which is more sparse than the Kronecker
product graph. Experimental results show the Cartesian kernel is much faster than
the existing pairwise kernel, and at the same time, competitive with the existing
pairwise kernel in predictive performance. We discuss the generalization bounds
by the two pairwise kernels by using eigenvalue analysis of the kernel matrices.
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1 Introduction

Most phenomena in the world can be represented by sets of entities, and sets of static
and dynamic relationships among the entities. Such relationships include friendships
among people, actions such as someone clicking an on-line advertisement, and phys-
ical interactions among proteins. Supervised pairwise prediction aims to predict such
pairwise relationships based on known relationships. It has many applications includ-
ing network prediction, entity resolution, and collaborative filtering. Models for pair-
wise prediction should take a pair of instances as its input, and output the relationship
between the two instances. In this paper, we focus on pairwise classification problem,
where the task is to predict whether or not a relation exists between given two nodes,
and we apply kernel methods [1] to this problem. To apply kernel methods to pairwise
classification, we need to define a kernel function between two pairs of instances. Inter-
estingly, three research groups have independently proposed an exactly same pairwise
kernel by combining two instance-wise kernel functions [2–4]. The proposed pairwise
kernel matrix is considered as a Kronecker product of two instance-wise kernel matri-
ces. However, the pairwise kernel is significantly time-and-space-consuming since the
pairwise kernel matrix is huge. For this reason, only sampled training data have been
used in most of its applications.



In this paper, we propose a new pairwise kernel calledCartesian kernelas a more
efficient alternative to the existing pairwise kernel (which we refer to asKronecker ker-
nel). The proposed kernel is defined as a Kronecker sum of two instance-wise kernel
matrices, and therefore more computational- and space-efficient than the existing pair-
wise kernel. The experimental results using numbers of real network data show that the
proposed pairwise kernel is much faster than the existing pairwise kernel, and at the
same time, competitive with the existing pairwise kernel in predictive performance. Fi-
nally, we give the generalization bounds of the two pairwise kernels by using eigenvalue
analysis of the kernel matrices [5, 6].

2 Pairwise classification problem and the pairwise kernel

In this section, we introduce the definition of the (binary) pairwise classification prob-
lem and review the existing pairwise kernel independently proposed by three re-
search groups [2–4]. The standard binary classification problem aims to learn a func-
tion f : V → {+1,−1}, whereV indicates the set of all possible instances. On
the other hand, in the (binary) pairwise classification, the goal is to learn a function
f : V (1) × V (2) → {+1,−1}, whereV (1) andV (2) are two sets of all possible in-
stances. Let us assume that we are given a|V (1)| × |V (2)| class matrixF whose ele-
ments have one of+1 (positive class),−1 (negative class), and0 (unknown). Our task
is to fill in the unknown parts of the class matrix which have0 value. In the context of
link prediction, theF can be regarded as the adjacency matrix for a network including
V (1) andV (2) as its nodes. The[F]i1,i2 = +1 indicates that there is a link between

v
(1)
i1

∈ V (1) andv
(2)
i2

∈ V (2), the [F]i1,i2 = −1 indicates that there is no link, and
[F]i1,i2 = 0 indicates that we do not know if there is a link. If the two sets are exclusive,
i.e.V (1) ∩ V (2) = ϕ, the network is regarded as a bipartite graph. On the other hand, if
the two sets are exchangeable, i.e.V (1) = V (2) := V , theF is considered as a|V |×|V |
adjacency matrixF for a setV = (v1, v2, . . . , v|V |). If the network is undirected, theF
becomes symmetric. If the network is directed, theF is asymmetric, and[F]i1,i2 indi-
cates whether or not a link exists fromvi1 ∈ V to vi2 ∈ V . In addition to the adjacency
matrix, we have two kernel matricesK(1) andK(2) for V (1) andV (2), respectively. In
exchangeable cases,K(1) = K(2) := K. Note that those kernel matrices are positive
semi-definite.

Since we are interested in classification of pairs of instances, we need a kernel func-
tion between two pairs of instances if we apply kernel methods [1] to this problem.
In many case, it is rather easy to design kernels for two basic instances, so we con-
struct pairwise kernels by using these instance-wise kernels as building blocks. As-
sume that we want to define a similarity between two pairs of instances(v(1)
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) and

(v(1)
j1

, v
(2)
j2

). It is natural to say two pairwise relationships are similar if elements from
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are similar, and at the same time,v
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are similar. This idea motivates to
define the pairwise similarity as the product of two instance-wise similarities as
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)) = [K(1)]i1,j1 [K
(2)]i2,j2 . (1)

Since products of Mercer kernels are also Mercer kernels [1], the above similarity mea-
sure is also a Mercer kernel if the element-wise kernels are Mercer kernels. In ex-



changeable and symmetric cases, the pairwise kernel between(vi1 , vi2) and(vj1 , vj2)
is symmetrized as

kSYM
⊗ ((vi1 , vi2), (vj1 , vj2)) = [K]i1,j1 [K]i2,j2 + [K]i1,j2 [K]i2,j1 . (2)

The prediction of a kernel machine for a pair(v(1)
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)), where αs are the model param-
eters of the kernel machine. In exchangeable and symmetric cases, it becomes
[F]i1,i2 =

∑
(j1,j2):j1<j2

α(vj1 , vj2)k
SYM
⊗ ((vi1 , vi2), (vj1 , vj2)).Note thatα(vj1 , vj2)

for (vj1 , vj2) such thatj1 ≥ j2 is not used because of symmetry. The kernel matrix
for the pairwise kernel is equivalently written as the Kronecker product [7] of two
instance-wise kernel matrices asK⊗ = K(2)⊗K(1), where its(v(1)
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)). The pairwise kernel matrix can
be interpreted as a weighted adjacency matrix of the Kronecker product graph [8] of the
two graphs whose weighted adjacency matrices are the instance-wise kernel matrices.
Therefore, we refer to this pairwise kernel asKronecker kernelto distinguish from the
one we will propose in the next section.

3 Cartesian kernel: a new pairwise kernel

In this section, we propose a more efficient pairwise kernel. At the end of the previous
section, we mentioned the relationship between the existing pairwise kernel and a Kro-
necker product graph. So, it is natural to imagine that we can design another pairwise
kernel based on another kind of product graph. In this paper, we adopt another kind
of product graph called Cartesian product graph [8]. Assume that we have two graphs
G(1) andG(2) whose sets of nodes areV (1) andV (2), respectively. The product graph
of G(1) andG(2) has nodesV (1) × V (2), each of whose nodes is defined as a pair of
nodes from the original graphs. Let(v(1)
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) be two node pairs in the
product graph. In Kronecker product graphs, a link between these two pairs exists if
and only if there is a link betweenv(1)
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andv
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andv
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in G(2). On the other hand, in Cartesian product graphs, a link between these
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We can notice that the condition for a link existing in Cartesian product graphs is more
strict than that for Kronecker product graphs.

Inspired by the definition of the Cartesian product graph, we define theCartesian
kernelbetween(v(1)
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)) = [K(1)]i1,j1δ(i2 = j2) + δ(i1 = j1)[K(2)]i2,j2 , (3)

whereδ is an indicator function, which returns1 when its argument is true and0 oth-
erwise. Sinceδ is considered as an identity kernel, the above similarity measure is also
a Mercer kernel if the element-wise kernels are Mercer kernels. In exchangeable and
symmetric cases, the kernel between(vi1 , vi2) and(vj1 , vj2) is symmetrized as

kSYM
⊗ ((vi1 , vi2), (vj1 , vj2)) = [K]i1,j1δ(i2 = j2) + δ(i1 = j1)[K]i2,j2 ]

+[K]i1,j2δ(i2 = j1) + δ(i1 = j2)[K]i2,j1 . (4)



The kernel matrix of the Cartesian kernel is equivalently written as the Kronecker
sum[7] of two instance-wise kernel matrices asK⊕ = K(2)⊕K(1), where the Kronecker
sum operation is defined asK(2) ⊕ K(1) = K(2) ⊗ I + I ⊗ K(1). At the first sight, the
size of the Cartesian kernel matrix is the same as that of the Kronecker kernel. But,
the number of the non-zero elements in the kernel matrix is much smaller, since the
Cartesian kernel is based on the Kronecker products of an element-wise kernel matrix
and an identity matrix.

Finally, we mention computational efficiency of the Cartesian kernel. While the
Kronecker kernel can give a score greater than0 between arbitrary two pairs, the Carte-
sian kernel can give a non-zero value only to the pairs which share one of their instances.
This fact indicates that the Cartesian kernel is much faster than the Kronecker kernel.

4 Experiments

In this section, we show several experimental results in which we compare the Kro-
necker kernel and the Cartesian kernel.

We used three data sets for network prediction. Two of them are biological net-
works, and one of them is a social network. All data are symmetric networks. The first
data set [9] contains the metabolic pathway network of the yeast S. Cerevisiae in the
KEGG/PATHWAY database [10]. Proteins are represented as nodes, and a symmetric
edge indicates that the two proteins are enzymes that catalyze successive reactions. The
number of nodes in the network is 618, and the number of links is 2,782. In this data
set, four element-wise kernel matrices based on gene expressions, chemical informa-
tion, localization sites, and phylogenetic profiles are given. We used them as the kernel
matrices or the similarity matrices5. The second data set is a protein-protein interaction
network constructed by von Mering et al. [11]. We followed Tsuda and Noble [12], and
used the medium confidence network. This network contains2, 617 nodes and11, 855
symmetric links. Each protein is given a76-dimensional binary vector, each of whose
dimensions indicates whether or not the protein is related to a particular function. We
used the inner products of the vectors as the element-wise kernel matrix6. The third
data set is a social network representing the co-authorships in the NIPS conferences,
containing2, 865 nodes and4, 733 links. Authors correspond to nodes, and a symmet-
ric link between two nodes indicates that there is at least one co-authored paper by the
corresponding authors. Each author is given a feature vector, each of whose dimensions
corresponds to occurrences of a particular word in the author’s papers. We used the in-
ner product of the vectors as the element-wise kernel matrix7. All of the element-wise
kernel matrices are normalized so that all of their diagonals are1. The models were
trained by using PUMMA [13], an on-line learning algorithm whose solutions asymp-
totically converge to those by the support vector machine with squared hinge loss. The
hyperparameter for regularization was set toC = 1. All of the training data were pro-
cessed thee times in the training phase. The results were evaluated in AUC by5-fold
cross validation with 20% of all of the pairwise relationships as training data.

Now, we show the predictive performances and execution times by the two pairwise
kernels. In Fig. 1, the gray bars indicate the AUCs by the Kronecker kernel, and the

5 Available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/ismb05/.
6 Available at http://noble.gs.washington.edu/proj/maxent/.
7 Available at http://ai.stanford.edu/˜gal/data.html.



black bars represent the AUCs by the Cartesian kernel. The error bars indicate the stan-
dard deviations of the AUC values. In the upper figure of Fig. 1, each of the pairs of
AUC bars indicates the results when we used gene expressions, chemical information,
phylogenetic profiles, or localization sites for element-wise kernel matrices. In the lower
figures, the left pair of the AUC bars is for the protein-protein interaction networks, and
the right one is for the co-authoring network. We can observe that the predictive perfor-
mance of the Cartesian kernel is competitive with that of the Kronecker kernel except
for the co-authoring network. The reason for the degraded performance by the Carte-
sian kernel in the co-authoring network is not clear, and we could not find the reason
in the theoretical analysis in the following section. But it might be relaled to network
sparsity (the co-authoring network is the most sparse), or differences between natures of
biological networks and social networks. Figure 2 shows the average training time for
each data set in log scale. We can see that the Cartesian kernel is at most 16 times faster
than the Kronecker kernel. The differences are remarkable when the network size is
large. Based on the above results, we conclude that the Cartesian kernel is a promising
alternative to the Kronecker kernel especially for large data sets.

5 Generalization bounds for the pairwise kernels

In this section, we discuss generalization bounds for the Kronecker kernel and the Carte-
sian kernel. It is known that the generalization bound for a kernel machine such as a sup-
port vector machine is given by using the distribution of the eigenvalues of the kernel
matrix [5, 6]. To compute the generalization bounds, we need to compute the eigenval-
ues of the Kronecker productK⊗ or the Kronecker sumK⊕ of the two instance-wise
kernel matrices. It is difficult to directly compute the eigenvalues for the Kronecker
product or the Kronecker sum, since their size are very huge.However, we can compute
them from the eigenvalues of the instance-wise kernel matrices by using the following
theorem [7].

Theorem 1 Let {λ(1)
i } and {λ(2)

j } be the sets of eigenvalues of kernel matricesK(1)

andK(2), respectively. The set of eigenvalues of the Kronecker productK(2) ⊗ K(1) is
{λ(1)

i λ
(2)
j } and the set of eigenvalues of the Kronecker sumK(2)⊕K(1) is {λ(1)

i +λ
(2)
j }.

Figure 3 (left) shows the eigenvalues of the Kronecker kernel matrix and the Cartesian
kernel matrix derived from phylogenetic profiles for the KEGG metabolic network.
Also, Figure 3 (right) shows the eigenvalues for the co-authoring network. The two
pairwise kernels, the Kronecker kernel and the Cartesian kernel, yield very different
eigenvalue distributions. Although we do not show the eigenvalues for the other net-
works, the general trend is that the high-ranked eigenvalues of the Kronecker kernel are
larger than those of the Cartesian kernel, while the low-ranked eigenvalues of the Carte-
sian kernel are larger than those of the Kronecker kernel. In other words, the eigenvalues
of the Kronecker product decay faster than those of the Kronecker sum. In the follow-
ing analysis, we assume that the set of all possible data pointsX = {x1, x2, . . . , xM}
(X = V (1) × V (2) in our case of pairwise classification) are known in advance
of the training phase. LetY = {1,−1} be the set of labels. We also assume that
(x, y) ∈ Z = X × Y follows a certain distributionP (x, y). The expected riskof
a hypothesish ∈ H is given byR(h) =

∑
(x,y)∈Z δ(h(x)y ≤ 0)P (x, y). Given a
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Fig. 1.Summary of results for the KEGG metabolic network (upper), the protein-protein interac-
tion network (lower-left) and the co-authoring network (lower-right).

set of labeled samples{(xi, yi) : i ∈ {1, . . . , m}} from Z with sizem < M , the
empirical margin riskfor a certain marginγ is defined by the rate of the samples with
h(xi)yi < γ: Rγ

s (h) = 1
m

∑m
i=1 δ(h(xi)yi < γ). Then, the following theorem [6]

gives an upper bound for the expected risk.

Theorem 2 Let λ1 ≥ λ2 ≥ · · · ≥ λM be the set of eigenvalues of the kernel matrix
derived from the set of all possible data points. Consider the hypothesis classF(c)B =
{⟨w, x⟩ + b : ∥w∥ ≤ c, |b| ≤ B}. Then the following inequality holds simultaneously
for all γ ∈ (8Υ (n), 1]:

Ps∈Zm

(
∃h ∈ H(c)B : R(h) ≥ Rγ

s (h) +

√(
n ln 2 + ln

(
⌈c⌉
θγ

)⌈
8B

γ

⌉)
/(2m)

)
≤ θ,
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Fig. 3.Eigenvalues of the Kronecker kernel matrices and the Cartesian kernel matrices.

where

Υ (n) = min
j∈{1,...,n−1}

6 · 2−
(j−1)

k(2j−1) (λ1, · · · , λk(2j−1))
1

2k(2j−1) c(n, j)

k(l) = min
{

k ∈ {1, . . . , M} : λk+1 ≤
(
λ1 · · ·λkl2

) 1
k

}
c(n, j) = min

(
1, 1.86

√
log2 (M/(n − j) + 1)/(n − j)

)
.

The generalization bounds computed for the metabolic network and the co-authoring
network are shown in Fig. 4. The bounds for the Kronecker kernels are smaller than
the bounds for the Cartesian kernels. Those theoretical results are consistent with the
experimental results in the previous section, where the Kronecker kernels were slightly
superior to the Cartesian kernels, although there were a few exceptions and the differ-
ences were subtle in the most of the cases. As mentioned in the preceding work [5], the
bounds are not very tight. Also, the theoretical result gives no explanation of the large
performance difference in the co-authoring network. In future work, we will investigate
tighter bounds including the several possibilities for improvements mentioned in the
preceding work [5].
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