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[PAPER

Risk-sensitive Learning via Minimization of Empirical

Conditional Value-at-risk

SUMMARY  We extend the framework of cost-sensitive clas-
sification to mitigate risks of huge costs occurring with low proba-
bilities, and propose an algorithm that achieves this goal. Instead
of minimizing the expected cost commonly used in cost-sensitive
learning, our algorithm minimizes conditional value-at-risk, also
known as expected shortfall, which is considered a good risk met-
ric in the area of financial engineering. The proposed algorithm
is a general meta-learning algorithm that can exploit existing
example-dependent cost-sensitive learning algorithms, and is ca-
pable of dealing with not only alternative actions in ordinary clas-
sification tasks, but also allocative actions in resource-allocation
type tasks. Experiments on tasks with example-dependent costs
show promising results.

key words: risk-sensitive learning, cost-sensitive learning, meta
learning, conditional value-at-risk, expected shortfall

1. Introduction

Classification learning is one of the fundamental tasks
in data mining. It is widely seen in many important
tasks in the real world such as diagnostics in health
care, credit administration in finance, campaign man-
agement in direct marketing, and so on. Its task is
to predict the actions (or classes) of the target ob-
jects whose appropriate action (or classes) are unknown
given pairs of an object and its appropriate action (or
class) as training examples. In other words, it aims to
minimize the probability of misclassification.

However, there are many cases where it is not
enough only to minimize the number of mistakes. For
example, the cost of misdiagnosis of classifying healthy
people as sick and that of classifying sick people as
healthy are apparently not equal, since the latter leads
to serious results. Moreover, the degree of seriousness
differs among patients.

Similarly, when we make management decisions on
what project we should invest in, the execution cost,
profit from success, and loss from failure depend on the
characteristics of the project.

Cost-sensitive learning [1]-[8] is a suitable frame-
work for such cases where costs are different among
classes or objects, and the amounts of them are un-
known at the stage of prediction. Wider range of prob-
lems can be treated in the framework since it aims to
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minimize not the probability of misclassification but the
expected cost of misclassification. The ordinary classi-
fication problem is understood as a special case that
assumes that all costs of misclassification are 0 or 1.

However, there can be situations where cost-
sensitive learning is still not enough. Since minimizing
the expected cost does not aggressively suppress the
occurrence of huge costs, it can not avoid such a risk
of disasters. Therefore, if there is not a little chance of
huge costs, and also if users are interested in mitigating
such risk, minimization of the expected cost does not
reflect the objective. Actually, risk aversion is one of
the central topics in financial engineering. For exam-
ple in portfolio theory, the analyst is expected to find
a portfolio that maximizes profit while suppressing the
risks of huge costs occurring with low probabilities [9].

In this paper, we define the term risk as chances of
huge costs occuring even with small probability, and pro-
pose an approach of risk-sensitive classification learning
that considers cost distributions not to decrease the ex-
pected cost but to mitigate the risks of huge costs. Con-
cretely, instead of the expected cost, we employ a risk
metric called conditional value-at-risk (CVaR) [10], also
known as expected shortfall, which is attracting consid-
erable attentions in financial engineering. We propose
a risk-sensitive learning algorithm that minimizes the
CVaR as the objective function. Our algorithm is a
meta-learning algorithm, which is quite a general pro-
cedure that can convert existing cost-sensitive learners
to risk-sensitive learners.

This paper is organized as follows. In Section 2,
we review the definition and the existing approaches of
cost-sensitive learning, and then point out a drawback
of these approaches. In Section 3, we introduce our risk-
sensitive learning approach using CVaR as the objec-
tive function, and propose a meta learning algorithm,
MetaRisk. We also introduce reduction from risk-
sensitive learners to cost-sensitive learners, not only
with alternative actions, but also with allocative ac-
tions that are not considered in ordinary cost-sensitive
learning problems. In Section 4, we show some experi-
mental results on two datasets, a synthetic dataset and
a more realistic dataset for credit administration. In
Section 5, we review related works, and discuss their
relations to our approach. Finally, we conclude this
paper with discussion and future work.



2. Cost-Sensitive Learning

In this section, we review the definition and the ex-
isting approaches of cost-sensitive learning, especially
with example-dependent costs. And then, we point out
a drawback of these approaches from the standpoint of
risk aversion.

2.1 Decision Model

Let X be a set of all target objects, for example X =
RM and Y be a finite set of actions taken against the
target objects. For example in the context of direct
marketing, x € X is a customer profile, and Y is a set
of possible marketing actions such as direct mail, email,
telemarketing, and so on.

Function h is called hypothesis, and defined as
h(x,y;0) : X XY — R, where 6 is its model parameters.
An action § € Y taken against x € X is determined by

g = argmax h(x,y; 0). (1)
yey
Usually, only one action is assumed to be taken at a
time, hence we call these types of actions alternative
actions.
We might assume the following stochastic con-
straint in h(x,y;6),

> h(x,y;0) =1, s.t. h(x,y;0) >0, (2)

yey

for Yx € X,Vy € Y. Instead of (1), we can make
stochastic selection of one alternative actions with
probability distribution (2).

If it is allowed to take multiple actions at a time,
and to allocate resources to each of |Y| actions in pro-
portion to h(x,y; ) with (2), those kind of actions are
called allocative. Allocative actions are popular in the
context of portfolio selection [9] where funds are alloca-
tively invested to financial products.

In this paper, we deal with those two cases, in one
of which an action is alternatively chosen with (1), and
in the other of which stochastic selection or resource
allocation is allowed with (2).

2.2 Cost

Cost is a random variable ¢(x,y) € R defined over X x
Y, which indicates how bad an action y € Y taken
against x € X is.T.

For instance in medical diagnosis, ¢(x,y) is the
badness of the medical treatment y taken for a patient
with the results of medical tests x. c¢(x,y) becomes
small if the treatment is appropriate, and becomes large

fWe do not care whether or not there are influential
factors c(x,y) for other than z and y.
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if not. If the treatment is significantly inappropriate,
and his or her health is lost, ¢(x,y) becomes huge.

In this paper, we deal with the most general prob-
lem setting in cost-sensitive learning, where the true
cost distribution is unknown, and depends on exam-
ples [5], [6], [8]. Note that although those literatures as-
sume that the cost also depends on classes, we adopt the
notation without the dependency since it is convenient
to think that the cost incorporates the dependency on
classes implicitly.

Also, following the context of cost-sensitive learn-
ing, we evaluate actions in terms of cost instead of re-
ward or profit, but the following discussion still holds
for reward or profit by simply changing those signs.

Let ¢(x,h(f)) be the cost of the action for x by
using hypothesis h(x,y;0). In the case of alternative
actions (1), c¢(x, h(#)) becomes

c(x, h(0)) = c(x,argmax h(x, y;0)). (3)
yey
In the case of allocative actions, it is not trivial to rep-
resent ¢(x, h(6)). We consider the simplest case where
c(x, h(0)) is represented as

= Z h(x,y;0)c(x,y), (4)

yey

where the cost of each action linearly depends the
amounts of investment to the action. This form cor-
responds to the return of a portfolio used in portfolio
theory [9].

Note that if we make stochastic selection of an al-
ternative action by (2), we can also use (4), but this is
not the realized cost, but the expected cost for x.

2.3 Cost-Sensitive Learning

Cost-sensitive learning [1]-[8] is a framework for super-
vised classification learning with cost ¢(x,y). In cost-
sensitive learning, the expected cost is conventionally
used as the objective function for training to find the
best 6. The expected cost with respect to data distri-
bution D over X x RY is defined as

cP(0) = Ep [c(x,h(e))} . (5)

Unfortunately, since we do not know D, we exploit
training examples E instead. N training examples
in F are assumed to be independently sampled from
D. Let the i-th training example in E be el =
(x@, {cD(xD y)} ey ), where x(¥) € X is the i-th tar-
get object and ¢ (x() y) is the cost of action y € YV’
for (9. Note that the cost of every action is given for
each training example.

The empirical expected cost for the training exam-
ples is defined as

N
Z ()h (6)

2 \
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Since C¥(6) is a good approximation of CP(6) for suf-
ficiently large N, parameter 6 is determined so that
CF(9) is minimized [5], [6], [8].

2.4 Drawback of Mean-Cost Minimization Approach

Let us imagine a situation where occurrences of huge
costs are fatal. For example, if we have to make im-
portant management decisions, several consecutive mis-
taken judgements might directly lead to bankruptcy.
Also, if the costs follow heavy-tailed distributions, the
expected cost is highly affected by one big cost. In
those cases where there are chances of unacceptably
huge costs occurring even with small probability, one
would like to avoid those risks as far as possible. In
this paper, we define the term risk as chances of huge
costs occuring even with small probability.

Let us consider another example. Assume that
two hypotheses h(6) and h(f2), and both of them
have identical expected costs. Consider two hypothe-
ses h(61) and h(6f3), both of them having identical ex-
pected costs. h(f1) has a cost distribution with high
peak around its expected cost, and h(f3) has one with
a gentle slope and a heavy tail in its high cost area. In
this situation, risk aversive investors would apparently
prefer h(671) to h(62).

The above discussion implies that minimization of
the expectation of ¢(x, h(#)) is not enough, and suggests
the need to consider the distribution of ¢(x, h(#)) and
aggressively avoid the risk of huge costs.

3. Risk-Sensitive Learning

Motivated by the discussion in the previous section, we
define risk-sensitive learning as approaches using risk
metrics as the alternative objective functions that ag-
gressively avoid huge costs instead of the expected cost,
and propose to use the conditional value-at-risk (CVaR)
as our objective function. And then we propose a meta-
learning algorithm that reduces cost-sensitive learners
to risk-sensitive learners to minimize CVaR.

3.1 Risk-Sensitive Learning via Minimizing Condi-
tional Value-at-risk

3.1.1 Value-at-Risk

In the area of financial engineering, various risk metrics
such as standard deviation, beta, and Sharpe ratio [9]
have been studied for decision making with low risk of
huge costs. Probably, one of the most popular risk met-
rics is value-at-risk (VaR) [12]. Value-at-risk is defined
to be the (-quantile of the cost distribution for a given
constant 0 < 8 < 1. In other words, it is the minimum
of the top 100(1 — 8)% costs. In our problem setting,
the value-at-risk 04[133 (#) with respect to hypothesis h
and data distribution D is defined as (See Figure 1.)

a?(@):
min{aeR‘ED [I(c(x,h(Q))ZOé)}Sl—ﬁ}v

where I(-) is a function that returns 1 when its argu-
ment is true, and returns 0 otherwise. Note that the
value-at-risk depends on model parameters 6.

Although value-at-risk is a widely-accepted risk
metric, some drawbacks have been pointed out [12].
One problem is that once the cost surpasses the value-
at-risk, it is not cared at all how huge the cost becomes.
On the other hand, we are rather interested in suppress-
ing the amount of huge costs itself. Also, value-at-risk
has been shown to be non-convex in most cases theoret-
ically and empirically, which is extremely inconvenient.
If the cost distribution follows a Gaussian distribution,
the value-at-risk becomes a linear combination of the
mean and the standard deviation of the cost, and the
above problems are resolved. However, the assumption
usually does not hold.

3.1.2  Conditional Value-at-risk (CVaR)

Conditional value-at-risk (CVaR) [10], also known as
expected shortfall, is attracting attentions as a rela-
tively new risk metric in the field of financial engi-
neering. It is defined as the expected costs above the
value-at-risk, in other words, the expectation of the top
100(1 — 3)% costs (See Figure 1.), hence it can consider
the amount of huge costs. Moreover, CVaR has de-
sirable characteristics such as convexity [13]. This is
exactly the risk metric that we want to employ as the
objective function of risk-sensitive learning.

In our problem setting, the CVaR ¢g (9) with re-
spect to hypothesis h and data distribution D is defined
as

95 (0) = (7)

1
e [ 1 (etx,1(0) = B (9) ) -clx,n(0)) |,
where ozg (0) is the value-at-risk defined above, and note
that the definition of th CVaR uses value-at-risk.

Since the CVaR can be seen as the conditional ex-
pected cost surpassing ozg (0), (7) is decomposed into
two terms as

oB(6) = aB(6) + T3 Eb [ el h8) —aB®) | (8)

where [z]* is a function that returns z when z > 0,
and returns 0 otherwise.

3.2 Model Estimation

3.2.1 MetaRisk: A Risk-Sensitive Learner to Mini-
mize CVaR

Let us derive an algorithm to optimize parameter 6.



4
Probability
'y
Conditional value-at-risk (CVaR) ¢2(0) =
Expected cost of the top 100(1 — 3)% costs
Expected cost ¢P(g)  Value-at-risk (VaR) Cost ¢(x, h(0))
D
ag @)
Fig.1 Expected cost, value at risk (VaR), and conditional

value-at-risk (CVaR).

Although (8) is the objective function that we want
to minimize, we employ the following empirical CVaR,
defined on training examples E instead of D which is
unknown.

N +
v 2 Lo —af ] o)

i=1

where ag (0) is the value-at-risk for the training exam-
ples E,

ag (0) = (10)
| X
min{aeR‘ NZI(C(

Now, if we suppose that ag (9) is a known constant
& in (9), we only have to minimize the second term (9),

z |«

x® 1)) > a)<1-p }

x@ h(6)) — " (11)

Note that (11) is convex if ¢(x(¥, h(f)) is convex with
respect to 6. For the time being, we assume existence
of algorithms to find 6 that minimizes (11).

Next, we fix 0, and find the VaR (10) for 6. Since
(10) is defined for the training examples F, it is rewrit-
ten as

af(6) = min { e(x, hw))\

k=1
£ s

which is equivalent to ¢(x*), h(#)) where k is the index
of the training datum with the [(1 — )N ]-th largest
cost by 6. ag (0) is naively computed by sorting the
costs by 6 in O(N log N), or it can be reduced to O(N)
by using efficient algorithms for finding order statis-
tics [14].

e(x™, () <15 }
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Algorithm: MetaRisk(FE, 3)

[Step:1] Set & := 0.

[Step:2] For the current &, find 6’ = argénin CE(v),
and set 6 :=0'.

[Step:3] For the current . find the empirical
VaR ag(e), and set & := ag(e).

[Step:4] Continue [Step:2] and [Step:3] until the
convergence of Fg(e, Q).

Fig.2 MetaRisk: Risk-sensitive meta-learning algorithm.

Based on the above discussion, we propose a risk-
sensitive meta-learning algorithm named MetaRisk (Fig-
ure 2)T, which minimizes the empirical CVaR by ex-
ploiting existing cost-sensitive learners, and by finding
the model parameter and the corresponding value-at-
risk alternately.

3.2.2 Optimality and Convergence of MetaRisk

The optimality and convergence of the algorithm (Fig-
ure 2) are directly guaranteed by the following theorem
by [13] that shows the convexity of the upper bound of
CVaR.

Theorem 1 (Rockafellar and Uryasev, 2000): Let
x9 (o
T Z [ e, )~

Ff(0,a) = +,(12)

then
By e B
min b5 (0) = min F5(0,a), (13)

where qbg (0) is the empirical CVaR defined in (9).

FZ (0, @) is convex with respect to a. If (6) is con-
vex with respect to 6, FﬁE(Q,a) is also jointly convex
with respect to 6 and . Also,

ag(e) = min { a € arginin Fg(@,a) } (14)

holds. O

(13) indicates that minimization of (12) is equiva-
lent to minimization of CVaR, and the joint convexity
of (12) ensures the gradient-based optimization with
respect to ¢ and a. Moreover, from (14), aj 5(0) is the

minimizer of FﬁE (0,«) at 6, hence MetaRisk exactly
performs coordinate-wise descent of FBE (0, ).

3.3 Reduction from Risk Sensitive Learners to Cost-
Sensitive/Insensitive Learners

3.3.1 Recycling Existing Cost-Sensitive Learners

In the previous subsection, we assumed to have learn-
ing algorithms to find € that minimizes (11). However,

fMetaRisk is named after the cost-sensitive meta-
learning algorithm MetaCost [3].
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MetaRisk
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cost cost-sensitive
reweighting hypothesis

cost-insensitive
learner

Fig.3
learners.

Reduction from risk-sensitive learners to cost-insensitive

it is not desired to design from scratch the risk-sensitive
versions of existing learners such as perceptrons, deci-
sion trees, or SVMs. In this subsection, we demonstrate
approaches that minimize (11) by iteratively calling ex-
isting example-dependent cost-sensitive learners with
reweighted costs based on the current hypothesis.

Several example-dependent cost-sensitive learn-
ers [4],[7], [8] realize cost-sensitive learning by weight-
ing or resampling training examples according to their
costs, and feeding them to cost-insensitive learners.
Merging this mechanism with our reduction enables
converting existing cost-insensitive learners into risk-
sensitive learners (See Figure 3).

3.3.2 Hypothesis with Alternative Actions

Reduction is relatively easy in the case of alternative
actions (1). Paying attentions to its similarity to (6),
we notice that this is the expectation of only costs
exceeding ag (0). Also, since actions are exclusive to
each other, realized costs are limited to the form of
[c®(x®) y) — &]* + & Therefore, substituting

DD y) = [V (xD,y) —at (15)

for the original costs, (6) becomes

N

A 1 ~(1) (4 (i

CE®) = 2 d 0, y), (16)
=1

and this has the same form as the expected cost (6).

The reduction is realized by feeding example-
dependent cost-sensitive learners [6]—[8] with modified
training examples E, where the i-th example of E is
defined as

e = (x (£ (xD y)}yey).

3.3.3 Hypothesis with Allocative Actions

Next, let us consider the case where stochastic or al-
locative decision making by the constrained hypothesis
(2) is allowed. (11) is rewritten as

Z[Zh

7y7 (X(i)ay)fd}—’— (17)

5
Unlike the case of alternative actions, ¢ (x(¥),h(#))
depends on a convex combination of c(l) (x),y), hence

simple reweighting like (15) does not work.

A natural choice of the classifiers used as h(x, y; 0)
is the exponential family satisfying (2) such as multi-
class logistic regression. However, in logistic regres-
sion, ¢(x(, h(6)) is not convex with respect to its pa-
rameters, and even worse, it is a multi-modal function.
Therefore, we employ a family of classifiers with which
c(x h()) is linear with respect to 6. (17) is con-
vex with respect to its parameters. In this paper, we
use gradient boosting [15], [16] as our optimization ap-
proach.

In gradient boosting, h(x,y;0) is represented as
a linear combination of T deterministic hypotheses

fla"'afTa

h(x,y;&) - hT X yng

Zwtft (x,9),

where 0; = (wi,...,w;) are the parameters. Since
h(x,y;0) has to satisfy the stochastic constraints (2),
we need

T
Zwt =1, s.t. wy > 0.

t=1

At each boosting round ¢, suppose that we already have
ht—1, a new weak hypothesis f; is sequentially added to
ht—1 to construct h;. h; is recursively represented as

he(x,y;0:) = (1 — ve)he—1(x, 4504 —1) + Ve fe (%, y)
= htfl(xay; 9t71) + ’Yt(ft(Xa y) - ht71(x»y; 9t71))7

where 0 < v < 1 is a updating parameter at round ¢,
and finally, the parameters 6; are determined as

T

we=x [ 0-7)

T=t+1

Once f; is determined, (17) is convex and piecewise
linear with respect to ;. Therefore, ~; is easily found
by linear search or linear programming.

In order to find the weak hypothesis f; at the
boosting round ¢, assume that 7, is sufficiently small,
then the Taylor series expansion of (17) around h;_q
gives

7y70t 1) ( ® y)id:|+

SpoE

=1 Yy

| . -
0 {Zy heo1 (X9, y; 0,-1)e(x, y) — @}

0 hi— 1( )yvet 1)

(B0 = a2 ) ) +O02).



Neglecting the second or higher order terms, it is
enough to find f; that minimized the second term,

N
Tt ZI ( Zht—l(X(i),y;9t—1)C(X(i),y) >a )
=1 Y
: (Z c(x®,y) fi(xV, y) ) :

As is the case with alternative actions, this term is also
minimized by feeding example-dependent cost-sensitive
learners with modified training examples E, where (15)
is modified as

&x,y) = e(xD,y)
g ( Z htfl(x(i)a Y; Htil)C(X(i% y) > )
y

in the case of allocative actions, since the learners suffer
from the cost ¢(x(¥, y) only when the argument of I
holds.

4. Experiments

In order to compare the risk aversion abilities of cost-
sensitive learning and risk-sensitive learning, we con-
ducted two preliminary experiments on a synthetic
dataset and a more realistic dataset for credit adminis-
tration.

4.1 Experimental Settings

First, we explain the implementation and datasets used
in the experiments. We used the cost-sensitive percep-
tron algorithm [6] as the hypothesis h(x,y) in the case
of alternative actions and the weak hypothesis f;(x,y)
in the case of allocative actions. Especially for the
second dataset, we used the kernelized version of the
cost-sensitive perceptron with Gaussian kernel to incor-
porate nonlinearity into the hypothesis. All constant
parameters of the perceptron are chosen to have the
cost-sensitive perceptron (our baseline method) record
the best expected cost with respect to the test data
and, they are recycled for the perceptrons used in risk-
sensitive learning’. This is because we would like to ob-
serve the effect of switching the objective function from
the cost-sensitive one to the risk-sensitive one. We used
the following two datasets.

Synthetic Dataset

In this dataset, there are two-dimensional data x =
(z1,22), and two actions y € {+1,—1}. z1 and x5 are
uniformly randomly sampled over —5 < x1,z9 < 5.
The cost for each action only depends on x; as shown
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Cost
A
1 e(x,+1)
0.5
0
C(X7 _1)
—-0.5
! l » 1

-5 0 5

Fig.4 Expected cost for each action on the synthetic dataset.
Note that Gaussian noise N'(0,0.52) with 0.5 standard deviation
is added to ¢(x, —1) (shown as the dotted lines).

in Figure 4. The cost of action +1 is determined by
c(x,+1) = 0.1(x1+5) (Figure 4, solid line), and the cost
of action —1 is determined by c(x,—1) = N(0,0.5?)
(Figure 4, dashed line). In each experiment, 300 data
were generated for training, and 30,000 for test.

Since the expected cost of action —1 is always
smaller that that of action +1, it is enough for cost-
sensitive learners to have the trivial hypothesis that
always take action —1. However, the costs of action
-1 sometimes exceed those of action +1 because of the
noise added, In the area of large x1, it is needed for
risk-sensitive learners to switch the action to action +1
to suppress the chance of large costs, since the cost of
action +1 is more stable than that of action —1.

Credit Administration

Next, we consider a more realistic application of risk
sensitive learning, which is to predict the credit risks
of customers. In this task, the learner must predict
whether a particular customer can reimburse a loan
or not based on his/her profile. Misclassification of a
”good customer” as a ”bad customer” loses the poten-
tial profit, and on the contrary, misclassification of a
”bad customer” as a ”good customer” loses most of the
loan.

We used the ”German Credit Data Set” [17] from
the STATLOG PROJECT'! also used in [6]. This
dataset includes 700 good customers and 300 bad cus-
tomers, and x consists of 20 attributes including sex,
age, job, credit history, purpose, and so on. In our
experiment, we used the data included in the dataset
whose attributes are converted into 24 numerical at-
tributes.

Although the original dataset does mnot have
example-dependent costs, we follow the instruction in
[6], and the misclassification cost of a “good customer”

as a “bad customer” is defined to be 0.1 - d“rf% .

TFor example, the width parameter of the Gaussian ker-
nel was determined as o = 50.

fData are available from the UCI Machine Learning
repository [18].
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amount, which means 10% interest per year. The av-
erage, variance and maximum cost of this type of cost
are 6.27, 43.512, and 78.27, respectively. Also, the mis-
classification cost of a “bad customer” as a “good cus-
tomer” is defined to be 0.75 x amount, which means
75% of the loan is lost. The average, variance and
maximum cost of this type of cost are 29.54, 78.092,
and 138.18, respectively. The other costs are defined to
be 0.

While the learner with alternative actions makes
binary decisions of whether making loan or not, we can
interpret that the learner with allocative actions deter-
mines what fraction of the loan is allowed. The realized
cost becomes (4) in this case.

4.2 Results

Table 1 and Table 2 show the results for the syn-
thetic data in the cases of alternative actions and al-
locative actions, respectively. Similarly, Table 3 and
Table 4 show the results for the German Credit Data
Set. The results for the synthetic data were measured
by the averaged values of 5 experiments, and those for
the German Credit Data Set were measured by 3-fold
cross validation (666 training data and 334 test data).
The columns labeled ‘Cost-Sensitive’ show the results
by the cost-sensitive perceptron. The columns labeled
‘Risk-Sensitive’ show the results by the MetaRisk with
6 = 0.80,0.90,0.95,0.99, respectively. Each row shows
the values of the CVaR on test data for the correspond-
ing (6, and the numbers with + show the standard
errors. The row at the bottom show the mean cost.
The values indicated by boldface show the best results
among each row.

Overall, as we expected, the cost-sensitive learner
has the smallest expected cost, and MetaRisk achieves
lower CVaRs than those of the cost-sensitive percep-
tron at the corresponding (s at the price of the mean
cost. When MetaRisk is trained for a particular 3, the
corresponding test CVaR is almost always better than
the test CVaRs by the other training (.

Also, allocative actions achieve better results than
alternative actions since the former can realize “portfo-
lios” by combining the costs of two actions. Note that
the results for allocative actions are also interpreted as
the results from the distribution of the cost expected
for each example when the stochastic selection (2) is
performed.

Let us examine the cost distributions of the re-
sulted hypotheses. Figure 5 shows the cost distribu-
tions for the synthetic data by MetaRisk with alterna-
tive actions and 4 = 0.95. Even in such a simple case,
the cost distribution shows non-Gaussianity since it is
a mixture of Gaussian distributions and uniform distri-
bution. Generally, the cost distribution easily becomes
non-Gaussian even if each costs follows a Gaussian dis-
tributions, since the resulted cost distribution becomes

Probability
A

Cost

Fig.5 Cost distribution at 8 = 0.95 for the synthetic data
shows its non-Gaussianity.

Probability
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kL

0 Cost

Fig.6 Cost distribution at 8 = 0.95 for the German Credit
Data shows its non-Gaussianity.
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Fig.7 Double logarithmic plot of cost distribution at 3 = 0.95
for the German Credit Data shows its heavy tail property.

an infinite mixture of Gaussian distributions.

Figure 6 the cost distributions for the German
Credit Data Set by MetaRisk with alternative actions
and 8 = 0.95. The cost are significantly skewed to left,
and shows its heavy tail property. In order to confirm
the heavy tail property, Figure 7 is a double logarith-
mic plot of the cost distribution. We can observe the
linear trend that typical heavy tail distributions show.
In both datasets, traditional mean-variance type ap-
proaches are not appropriate.

5. Related Work

In this section, we review some works related to risk-
sensitive learning, and discuss relations among them.
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Cost- Risk-Sensitive (B := training )

test 3 | Sensitive B =0.80 £ =0.90 B =0.95 £ =0.99

£ =0.99 | 1.30+0.01 1.24+0.01 1.19+0.01 1.114+0.05 1.10+0.09

£ =0.95 0.98+0.01 0.91+0.02 0.84+0.01 0.83+0.02 0.98+0.02

B =0.90 0.824+0.01 0.7440.02 0.71+0.01 0.75+0.02 0.93+0.04

B3 =0.80 0.63+0.01 0.58+0.01 0.60+0.01 0.67+0.04 0.85+0.06

Mean Cost | 0.03+0.01 0.10+0.02 0.17+0.01 0.25+0.04 0.37+0.01

Table 1  Alternative prediction results for synthetic data. The results are shown in the

format of ‘CVaR = standard error’.

Cost- Risk-Sensitive (B := training B3)

test 3 | Sensitive B =0.80 £ =0.90 B =0.95 £ =0.99

£ =0.99 | 1.29+0.00 1.20+0.01 1.12+0.04 1.07+0.06 0.99+0.05

6 =0.95 | 0.98+0.00 0.8740.01 0.81+0.02 0.80+0.02 0.87+0.02

£ =0.90 | 0.8240.01 0.7140.01 0.68+0.01 0.7140.01 0.8240.05

£ =0.80 | 0.6340.01 0.56+0.01 0.58+0.01 0.6440.02 0.7540.08

Mean Cost | 0.03+0.01  0.1240.01 0.2040.03 0.2640.05 0.3740.08

Table 2  Allocative prediction results for synthetic data. The results are shown in the

format of ‘CVaR = standard error’.

Cost- Risk-Sensitive (B := training 3)
test 5 | Sensitive =080 8 =0.90 8 =0.95 8 =0.99

£ =0.99 | 64.47+6.46 66.23+6.45 67.91£3.95 60.68+7.06 55.34+5.16

£ =0.95 | 34.66+1.14 35.69+1.32 34.45+1.76 30.13+2.30 32.00+£3.73

£ =0.90 | 23.58+0.94 23.26+0.51 23.04+1.74 21.15+1.61 22.89+3.04

£ =0.80 | 14.71+0.78 14.4040.56 14.93+1.16 14.33+1.10 15.384+1.99

Mean Cost 3.31+0.23 3.52+1.12 3.9240.32 3.90+0.34 3.99+0.63
Table 3  Alternative prediction results for the German Credit Data Set [17] (3-fold cross

validation). The results are shown in the format of ‘CVaR =+ standard error’.

Cost- Risk-Sensitive (B := training 3)
test 3 Sensitive B =0.80 £ =0.90 B =0.95 £ =0.99

B =0.99 | 64.47+6.46 60.29+6.70 57.89+3.71 52.74+1.61 44.29+7.28

£ =0.95 | 34.66+1.14 31.48+2.03 30.03+1.45 26.17+1.27 28.16+3.19

£ =0.90 | 23.58+0.94 20.76+1.36 20.25+1.25 19.2140.85 22.45+2.31

£ =0.80 | 14.71+0.78 13.01+0.80 13.734+0.70 14.47+0.58 16.65+1.87

Mean Cost 3.31+0.2 3.98+0.13 4.6840.22 5.0840.17 5.55+0.51
Table 4  Allocative prediction results for the German Credit Data Set [17] (3-fold cross

validation). The results are shown in the format of ‘CVaR =+ standard error’.

5.1 Financial Engineering

Decision making theory considering risk aversion origi-
nates [19]’s mean-variance model, and thereafter, has
been actively studied as the portfolio theory in the
fields of operations research and financial engineer-
ing [9]. Value-at-Risk (VaR) [12] is probably the most
commonly used metric of risks. The convexity of the
optimization problem of VaR is guaranteed if the un-
derlying cost distribution follows Gaussian distribu-
tion, but this assumption does not hold in many real
situations. Recently, a new risk metric called condi-
tional value-at-risk (CVaR) [10] (a.k.a. expected short-
fall) is attracting considerable attention since it con-
siders the amount of costs exceeding VaR, and conve-
niently, is convex without the Gaussian assumption of
the cost distribution. Most of the works in this field
focus on estimating the amount of risks [12], or solving
mathematical programming for optimal decision mak-
ing given models [13], and there are little works [22]-
[24] from machine learning perspective such as learning
risk-avoiding decision rules from examples.

5.2 Cost-Sensitive Learning

There are many types of costs treated in cost-sensitive
learning [20]. In early works [1]-[3], the costs are as-
sumed to be known, and not to depend directly on
x, but on classes as latent variables. Recently, direct
minimization of the expected cost (6) in more general
situations where the costs are not known beforehand,
and depend on x, has been widely accepted [4]-[8].
There are three types of approaches in existing cost-
sensitive learners. One is decision-theoretic approaches
that perform Bayes-optimal decision making based on
estimated class probabilities and cost distributions [1],
[5]. Another approach is the cost-sensitive versions
of the existing cost-insensitive learners such as deci-
sion trees [2], perceptrons [6], and support vector ma-
chines [6], [21], and the other approach is meta-learners
that exploit existing cost-insensitive learners to realize
cost-sensitive learning by reweighting or resampling ex-
amples [3], [4], [6]-[8]. However, all works are oriented
toward minimizing the expected cost, and not toward
mitigating the risks of huge costs as we discussed in this
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paper.
5.3 Risk-Sensitive Reinforcement Learning

After the seminal work by [22], there are some attempts
to incorporate the idea of risk aversion in the context of
reinforcement learning [23], [24]. However, they all re-
main to focus on minimizing the value-at-risk in limited
cases. For example, instead of the expected discounted
reward, Herger proposes the a-value criterion [22] as
the objective function, which is essentially identical to
value-at-risk of the discounted reward, and which is not
convex. Also, the Bellman equation is presented for the
worst case, that is, 8 = 1, and it is not possible for gen-
eral 3. [23] realized soft risk aversion by employing a
parameter that emphasizes actions whose rewards are
less than expected, but this parameter is rather heuris-
tic, and does not have clear correspondence to the risk
metric to be optimized.

The above methods are both designed as variants
of Q-learning, hence do not aim directly to optimize
the risk metrics, but aim to estimate the expected dis-
counted reward function accurately. On the other hand,
[24] propose an approach that directly optimizes an ob-
jective function defined as a linear combination of the
mean and the variance of discounted reward. This is
based on the assumption of the mean-variance model
where the distribution of the discounted reward follows
Gaussian distribution, which does not hold in most sit-
uations. Moreover, in the case of alternative actions,
the objective function is not convex even under the as-
sumption.

5.4 Robust Statistics

Robust statistics [25], [26] aims to robust estimation of
models by eliminating influence of outliers, which is
antithetical to our risk-sensitive approach. There are
some classes of robust estimators, one of which is the
L-estimator defined as a linear combination of order
statistics. For example, least trimmed square [26] is an
instance of the L-estimator which minimizes the sum of
squared losses less than some quantile by trimming off
the largest losses. The idea of trimmed estimator has
been generalized for general loss functions [27].

Since minimization of CVaR is identical to mini-
mization of the losses above (3-quantile, our approach
goes against the trimmed estimators in that sense. In
contrast to cutting off outliers to robustify estimators,
it makes the most of the outliers, and aggressively
“overfits” to them to avoid potential risks. In addition,
trimmed estimation is not usually a convex optimiza-
tion problem, while minimizing CVaR is.

6. Conclusion and Future Works

In this paper, we tackled cost-sensitive learning prob-

lem from the perspective of risk aversion, and proposed
to minimize not the expected cost but the risk met-
ric called conditional value-at-risk (CVaR) which is be-
ing widely accepted in the area of financial engineering.
Its definition and characteristics such as convexity play
key roles to elegantly realize risk aversion, which has
not been discussed in the area of data mining. The
proposed method is a meta-learning algorithm that ex-
ploits any existing cost-sensitive learner to solve risk-
sensitive learning problems with alternative or alloca-
tive actions.

Although we focused on supervised classification
problems in this paper, this idea is also applicable to a
wide class of data mining problems, such as clustering,
regression, and so on. Also, from another perspective,
the cost can be substituted by general loss functions
such as log-likelihood. This indicates that the meta-
learning framework we proposed in this paper has pos-
sibilities of converting existing machine learning algo-
rithms to have large margin and sparsity properties by
enforcing them to focus on difficult examples just like
boosting and suport vector machines.

Finally, we conclude this paper with mentioning
some possible future works. Although we used the
CVaR in a stand-alone manner in this paper, there
might be cases where one wants not only to minimize
risks of large costs but also to minimize the expected
cost at the same time. Actually, such idea is widely
accepted in portfolio theory that maximizes expected
returns while suppressing risks. Similarly, we should in-
corporate the expected cost into the objective function
in real applications. One way to do this is to employ
a linear combination of the expected cost (6) and the
risk metric (9) as the objective function,

nC¥(0) + (1 —n)¢5 (0),

where 0 < n < is a mixing constant. It is easily con-
firmed that this objective function also has convexity,
and MetaRisk can be extended to afford this objective
function.

Another possibility is to develop tailor-made al-
gorithms for risk-sensitive learning that minimize (12)
with respect to both 6 and « at the same time, while
MetaRisk optimizes # and « alternately in this paper.
In the case of allocative actions, we assumed a lin-
ear constraint (4) on the cost of action portfolio, and
this made it possible to take the gradient boosting ap-
proach. However, this assumption might be too strong
in some applications. As Theorem 1 assures, CVaR
is convex if we make a more general assumption that
c(x,h()) is convex. Approaches from direct convex
optimization might be pursued in such cases. From
the viewpoint of computational efficiency, perceptron
learning that we employed in the experiment is incre-
mental with respect to 8, but MetaRisk itself is a batch
algorithm. This is not efficient for large data sets, and
thoroughly on-line type algorithms are desirable.
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The other direction of the future research is to
loosen the assumption on the training data. The as-
sumption that we know costs for all actions seems to
be too strong. There should be many cases where we
know the cost for the action we really took, for exam-
ple, data on direct marketing usually has the results
only for the actions that were actually taken. These
kinds of situations might be modeled as a one-benefit
learning problem [28], or similarly, an associative rein-
forcement learning problem [29],[30]. More generally,
reinforcement learning with the CVaR of discounted re-
ward might be seen beyond these problems.
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