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Abstract

A new approach for cost-sensitive classification is proposed.

We extend the framework of cost-sensitive learning to miti-

gate risks of huge costs occurring with low probabilities, and

propose an algorithm that achieves this goal. Instead of min-

imizing the expected cost commonly used in cost-sensitive

learning, our algorithm minimizes expected shortfall, a.k.a.

conditional value-at-risk, known as a good risk metric in

the area of financial engineering. The proposed algorithm is

a general meta-learning algorithm that can utilize existing

example-dependent cost-sensitive learning algorithms, and

is capable of dealing with not only alternative actions in

ordinary classification tasks, but also allocative actions in

resource-allocation type tasks.
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1 Introduction

Classification learning is one of the fundamental tasks
in data mining. It is widely seen in many important
tasks in the real world such as diagnostics in health care,
credit administration in finance, campaign management
in direct marketing, and so on. Commonly, classification
algorithms are designed to minimize the probability
of misclassification. However, there are many cases
where it is not enough only to minimize the number
of mistakes. For example, the cost of misdiagnosis of
classifying healthy people as sick and that of classifying
sick people as healthy are apparently not equal, since
the latter leads to serious results. Moreover, the degree
of seriousness differs among patients.

Cost-sensitive learning [4, 3, 10, 5, 11, 1] is a suitable
framework for such cases where costs are different
among data, and the amounts of them are unknown
at the stage of prediction. Wider range of problems can
be treated in the framework since it aims to minimize
not the probability of misclassification, but the expected
cost of misclassification. The ordinary classification
problem is understood as a special case with 0-1 costs.
However, from the standpoint of risk management, there
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are situations where cost-sensitive learning is still not
enough. If there is not a little chance of huge cost
occurring, and also if users are interested in mitigating
the risk, it can not avoid such a risk of disasters since it
does not aggressively suppress the occurrence of huge
costs. Risk aversion is one of the central topics in
financial engineering. For example in portfolio theory,
it is expected to find a portfolio that maximizes profit
while suppressing the risks of huge costs occurring with
low probabilities [7].

In this paper, we propose an approach of risk-
sensitive classification that considers cost distributions
not to decrease the expected cost, but to mitigate the
risks of huge costs. Instead of the expected cost, we
employ a risk metric called expected shortfall [2], a.k.a.
conditional value-at-risk. We propose a risk-sensitive
learning algorithm that minimizes the expected shortfall
as the objective function. Also, our algorithm is a meta-
learning algorithm, which is quite a general procedure
that can convert existing cost-sensitive learners to risk-
sensitive learners.

2 Drawback of Cost-Sensitive Learning

We first review cost-sensitive learning with example-
dependent costs, and point out its drawback from the
standpoint of risk management.

Let X be a set of all target objects, e.g. X = RM ,
and Y be a finite set of actions taken against the
target objects. For example in the context of direct
marketing, x ∈ X is a customer profile, and Y is a set
of possible marketing actions such as direct mail, email,
telemarketing, and so on.

Function h is called hypothesis, and defined as
h(x, y;θ) : X×Y → R, where θ is its model parameters.
An action ŷ ∈ Y taken against x ∈ X is determined by

(2.1) ŷ = argmax
y∈Y

h(x, y;θ).

Usually, only one action is assumed to be taken at
a time, hence we call this type of actions alternative
actions. If it is allowed to take multiple actions at a
time, and to allocate resources to each of |Y | actions in
proportion to h(x, y;θ) with the following constraint,

(2.2)
∑

y∈Y

h(x, y;θ) = 1, s.t. h(x, y;θ) ≥ 0,



for ∀x ∈ X, ∀y ∈ Y , those kind of actions are called
allocative. Allocative actions are popular in the context
of portfolio selection [7] where funds are allocatively
invested to financial products. In this paper, we deal
with those two cases, in one of which an action is
alternatively chosen with (2.1), and in the other of which
resources are allocated with (2.2).

Cost function is a function c(x, y) : X × Y →
R, which indicates how bad an action y ∈ Y taken
against x ∈ X is. For instance in medical diagnosis,
c(x, y) becomes small if the treatment is appropriate,
and becomes large if not. We deal with the most
general problem setting in cost-sensitive learning, where
the true cost function is unknown, and depends on
examples [10, 5, 1]. Let c(x, h(θ)) be the cost of the
action for x by using hypothesis h(x, y;θ). In the case
of alternative actions (2.1), c(x, h(θ)) becomes

(2.3) c(x, h(θ)) = c(x, argmax
y∈Y

h(x, y;θ)).

In the case of allocative actions, it is not trivial to
represent c(x, h(θ)). We consider the simplest case
where c(x, h(θ)) is represented as

(2.4) c(x, h(θ)) =
∑

y∈Y

h(x, y;θ)c(x, y),

where the cost of each action linearly depends the
amounts of investment to the action. This form cor-
responds to the return of a portfolio used in portfolio
theory [7].

Cost-sensitive learning [4, 3, 10, 5, 11, 1] is a frame-
work for supervised classification learning with cost
functions c(x, y). The expected cost is conventionally
used as the objective function for training to find the
best θ. The expected cost with respect to data distri-
bution D over X × RY is defined as

(2.5) CD(θ) = ED[c(x, h(θ))].

Unfortunately, since we do not know D, we exploit
training examples E instead. N training examples
in E are assumed to be independently sampled from
D. Let the i-th training example in E be e(i) =
(x(i), {c(i)(x(i), y)}y∈Y ), where x(i) ∈ X is the i-th
target object and c(i)(x(i), y) is the cost of action y ∈ Y
for x(i). Note that the cost of every action is given for
each training example. The parameter θ is determined
so that the following empirical expected cost CE(θ) is
minimized [10, 5, 1],

(2.6) CE(θ) =
1
N

N∑

i=1

c(x(i), h(θ)).

However, let us imagine such a situation where the
occurrences of huge costs are fatal. For example, if we

would like to decide where to invest our fund, several
consecutive failed investments might directly leads to
risk of bankruptcy. In such cases where there are
chances of unacceptably huge costs occurring even with
small probability, one would like to avoid those risks
as far as possible. Let us consider another example.
Assume that two hypotheses h(θ1) and h(θ2), and both
of them have identical expected costs. h(θ1) has a cost
distribution with high peak around its expected cost,
and h(θ2) has one with a gentle slope and a heavy tail
in its high cost area. In this situation, risk aversive
investers would apparently prefer h(θ1) to h(θ2). The
above discussion implies us that minimization of the
expectation of c(x, h(θ)) is not enough, and suggests
the need to consider the distribution of c(x, h(θ)) and
aggressively avoid the risk of huge costs.

3 Risk-Sensitive Learning via Expected
Shortfall Minimization

Motivated by the discussion in the previous section,
we propose our risk-sensitive learning approach using
a new objective function that aggressively avoids the
risk of huge costs, and then propose a meta-learning
algorithm that reduces cost-senstive learners to risk-
sensitive learners.

3.1 Expected Shortfall Expected shortfall [2], a.k.a.
conditional value-at-risk, is attracting attentions as
a relatively new risk metric in the field of financial
engineering. It is defined as the expected costs above
the value-at-risk, in other words, the expectation of the
top 100(1 − β)% costs for a given constant 0 ≤ β ≤
1 (See Figure 1.), hence it can consider the amount of
huge costs. Moreover, expected shortfall has desirable
characteristics such as convexity [8].

In our setting, the expected shortfall φD
β (θ) with

respect to hypothesis h and data distribution D is
defined as
(3.7)

φD
β (θ) =

1
1− β

ED

[
I
(
c(x, h(θ)) ≥ αD

β (θ)
)
c(x, h(θ))

]

αD
β (θ) = min

{
α ∈ R ∣∣ ED

[
I
(
c(x, h(θ)) ≥ α

)] ≤ 1− β
}
,

where αD
β (θ) is called value-at-risk (VaR) [2], i.e. the

β-quantile of cost distribution, and I(·) is a function
that returns 1 when its argument is true, and returns 0
otherwise. Since the expected shortfall is the expected
costs surpassing αD

β (θ), (3.7) is decomposed into two
terms as
(3.8)

φD
β (θ) = αD

β (θ) +
1

1− β
ED

[
c(x, h(θ))− αD

β (θ)
]+

,

where [x]+ is a function that returns x when x ≥ 0, and



Figure 1: Expected shortfall.

returns 0 otherwise.

3.2 MetaRisk: A Risk-Sensitive Learner to
Minimize Expected Shortfall Let us derive an algo-
rithm to optimize parameter θ. Instead of (3.8), we em-
ploy the following empirical expected shortfall defined
on training examples E instead of D which is unknown.

(3.9)

φE
β (θ) = αE

β (θ)+
1

(1− β)N

N∑

i=1

[
c(x(i), h(θ))−αE

β (θ)
]+

,

where αE
β (θ) is the value-at-risk for the training exam-

ples E,
(3.10)

αE
β (θ)=min

{
α ∈ R ∣∣ 1

N

N∑

i=1

I
(
c(x(i), h(θ)) ≥ α

) ≤ 1−β
}

.

Now, if we suppose that αE
β (θ) is a known constant

α̃ in (3.9), we only have to minimize the second term of
the second term (3.9),

(3.11) C̃E
α̃ (θ) :=

1
N

N∑

i=1

[
c(x(i), h(θ))− α̃

]+
.

Note that (3.11) is convex if c(x(i), h(θ)) is convex with
respect to θ. For the time being, we assume existence
of algorithms to find θ that minimizes (3.11). Next,
we fix θ, and find the VaR (3.10) for the θ. This
is equivalent to finding c(x(k), h(θ)) where k is the
index of the training datum with the b(1 − β)Nc-th
largest cost by θ. Based on the above discussion, we
propose a risk-sensitive meta-learning algorithm named
MetaRisk (Figure 2)1, which minimizes the empirical
expected shortfall by exploiting existing cost-sensitive

1MetaRisk is named after the cost-sensitive meta-learning
algorithm MetaCost [3].

Algorithm: MetaRisk(E, β)
[Step:1] Set α̃ := 0.
[Step:2] For the current α̃, find θ′ = argmin

θ
C̃E

α̃ (θ),

and set θ := θ′.
[Step:3] For the current θ. find the empirical

VaR αE
β (θ), and set α̃ := αE

β (θ).
[Step:4] Continue [Step:2] and [Step:3] until the

convergence of FE
β (θ, α̃).

Figure 2: MetaRisk: A risk-sensitive meta-learner.

learners, and by finding the model parameter and the
corresponding value-at-risk alternately.

The optimality and convergence of MetaRisk are
directly guaranteed by the following theorem that shows
the convexity of the upper bound of expected shortfall.

Theorem 3.1. ([8], Theorem 1&2) Let
(3.12)

FE
β (θ, α) = α +

1
(1− β)N

N∑

i=1

[
c(x(i), h(θ))− α

]+
,

then

(3.13) min
θ

φE
β (θ) = min

θ,α
FE

β (θ, α).

FE
β (θ, α) is convex with respect to α. If (2.6) is convex

with respect ot θ, FE
β (θ, α) is also jointly convex with

respect to θ and α. Also,

(3.14) αE
β (θ) = min{α ∈ argmin

α
FE

β (θ, α)}

holds. ¤

(3.13) indicates that minimization of (3.12) is equivalent
to minimization of expected shortfall. The joint con-
vexity of (3.12) ensures the gradient-based optimization
with respect to θ and α. Moreover, from (3.14), αE

β (θ)
is the minimizer of FE

β (θ, α) at θ, hence MetaRisk ex-
actly performs coordinate-wise descent of FE

β (θ, α).

3.3 Recycling Existing Cost-Sentive Learners
We propose methods to minimize (3.11) by calling
existing cost-sensitive learners with reweighted costs.

Reduction is relatively easy in the case of alternative
actions (2.1). Paying attentions to its similarity to
(2.6), we notice that this is the expectation of only
costs exceeding αE

β (θ). Also, since actions are exclusive
to each other, realized costs are limited to the form of
[c(i)(x(i), y)− α̃]+ + α̃. Therefore, substituting

c̃(i)(x(i), y) = [c(i)(x(i), y)− α̃]+(3.15)

for the original costs, (2.6) becomes



(3.16) C̃E
α̃ (θ) =

1
N

N∑

i=1

c̃(i)(x(i), y),

and this has the same form as the expected cost (2.6).
The reduction is realized by feeding example-dependent
cost-sensitive learners [5, 11, 1] with modified training
examples Ẽ, where the i-th example of Ẽ is defined as
ẽ(i) =

(
x(i), {c̄(i)(x(i), y)}y∈Y

)
.

Next, let us consider the case where stochastic or al-
locative decision making by the constrained hypothesis
(2.2) is allowed. (3.11) is rewritten as

(3.17) C̃E
α̃ (θ) =

N∑

i=1

[∑
y

h(x(i), y;θ)c(x(i), y)− α̃
]+

.

Unlike the case of alternative actions, c(i)(x(i), h(θ)) de-
pends on a convex combination of c(i)(x(i), y), hence
simple reweighting like (3.15) does not work. Although
a natural choice of such a classifiers is the exponential
family satisfying (2.2) such as multi-class logistic regres-
sion, c(x(i), h(θ)) is not convex with respect to its pa-
rameters, and even worse, it can be a multi-modal func-
tion. Therefore, we employ a family of classifiers with
which c(x(i), h(θ)) is linear with respect to θ. (3.17)
is convex with respect to its parameters. Especially,
we employ the gradient boosting method [9], where
h(x, y;θ) is represented as a linear combination of T
deterministic hypotheses f1, . . . , fT ,

h(x, y;θ) = hT (x, y;θT ) =
T∑

t=1

wtft(x, y),

where θt = (w1, . . . , wt) are the parameters. Since
h(x, y;θ) has to satisfy the stochastic constraints (2.2),
we need

∑T
t=1 wt = 1, s.t. wt ≥ 0. At each boosting

round t, suppose that we already have ht−1, a new weak
hypothesis ft is sequentially added to ht−1 to construct
ht. ht is recursively represented as

ht(x, y;θt) = (1− γt)ht−1(x, y;θt−1) + γtft(x, y),

where 0 < γt ≤ 1 is a updating parameter at round t,
and wt = γt

∏T
τ=t+1(1− γτ ).

In order to find ft at round t, assume that γt is
sufficiently small, then the second order term of the
Taylor series expansion of (3.17) around ht−1 gives

γt

N∑

i=1

I
( ∑

y

ht−1(x(i), y;θt−1)c(x(i), y) > α̃
)

·(
∑

y

c(x(i), y)ft(x(i), y)
)
.

As is the case with alternative actions, this is also
minimized by feeding example-dependent cost-sensitive

learners with modified training examples Ẽ, where
(3.15) is modified as

c̃(x(i), y) = c(x(i), y)I
( ∑

y

ht−1(x(i), y;θt−1)c(x(i), y) > α̃
)

in the case of allocative actions.

4 Experiments

We conducted a preliminary experiment on a dataset
for credit administration. In this task, the learner must
predict whether a particular customer can make a loan
or not based on his/her profile. Misclassification of a
”good customer” as a ”bad customer” loses the potential
interest, and on the contrary, misclassification of a
”bad customer” as a ”good customer” loses most of the
loan. We used the ”German Credit Data Set” from the
STATLOG PROJECT2 also used in [5]. This dataset
includes 700 good customers and 300 bad customers,
and x consists of 24 attributes including sex, age, job,
credit history, purpose, and so on. Although the original
dataset does not have example-dependent costs, we
follow the instruction in [5], and the misclassification
cost of a “good customer” as a “bad customer” is defined
to be 0.1 · duration

12 · amount, which means 10% interest
per year. The average, variance and maximum cost of
this type of cost are 6.27, 43.512, and 78.27, respectively.
Also, the misclassification cost of a “bad customer” as a
“good customer” is defined to be 0.75× amount, which
means 75% of the loan is lost. The average, variance and
maximum cost of this type of cost are 29.54, 78.092,
and 138.18, respectively. The other costs are defined
to be 0. While the learner with alternative actions
makes binary decisions of whether making loan or not,
we can interpret that the learner with allocative actions
determines what fraction of the loan is allowed. The
realized cost becomes (2.4) in this case.

We used the kernelized version of the cost-sensitive
perceptron algorithm [5] with Gaussian kernel3 as the
cost-sensitive learner. Table 1 show the results in the
cases of alternative actions and allocative actions mea-
sured by 3-fold cross validation (666 training data and
334 test data). The columns labeled ‘Cost-Sensitive’
show the results by the cost-sensitive perceptron. The
columns labeled ‘Risk-Sensitive’ show the results by the
MetaRisk with β = 0.80, 0.90, 0.95, 0.99, respectively.
Each row shows the values of the expected shortfall on
test data for the corresponding β, and the numbers in
the brackets show the value-at-risks. The row at the

2Data are available from UCI Machine Learning repository [6].
3The width parameter of the Gaussian kernel was determined

as σ = 50 so that the cost-sensitive perceptron record the best
expected cost.



Table 1: Experimental results for alternative actions (top) and allocative actions (bottom).

Test ES Cost- Risk-Sensitive
(VaR) Sensitive β = 0.80 β =0.90 β =0.95 β =0.99

β =0.99 64.47 (46.59) 66.23 (50.66) 67.91 (50.92) 60.68 (38.21) 55.34 (40.66)
β =0.95 34.66 (17.67) 35.69 (15.28) 34.45 (14.74) 30.13 (15.28) 32.00 (17.96)
β =0.90 23.58 (10.16) 23.26 (7.58) 23.04 (9.09) 21.15 (10.45) 22.89 (11.58)
β =0.80 14.71 (3.30) 14.40 (3.66) 14.93 (5.12) 14.33 (5.48) 15.38 (5.03)

Mean Cost 3.31 3.52 3.92 3.90 3.99

Test ES Cost- Risk-Sensitive
(VaR) Sensitive β = 0.80 β =0.90 β =0.95 β =0.99

β =0.99 64.47 (46.59) 60.29 (45.53) 57.89 (41.25) 52.74 (38.47) 44.29 (30.69)
β =0.95 34.66 (17.67) 31.48 (14.06) 30.03 (13.26) 26.17 (14.13) 28.16 (20.65)
β =0.90 23.58 (10.16) 20.76 (7.42) 20.25 (8.95) 19.21 (11.31) 22.45 (13.79)
β =0.80 14.71 (3.30) 13.01 (3.74) 13.73 (6.09) 14.47 (8.20) 16.65 (8.77)

Mean Cost 3.31 3.98 4.68 5.08 5.55

bottom show the mean cost. The values indicated by
boldface show the best results among each row. The re-
sults show that MetaRisk achieves lower expected short-
falls than those of the cost-sensitive perceptron at the
corresponding βs at the price of the mean cost. Al-
locative actions achieve better results than alternative
actions since the former can realize “portfolios” by com-
bining the costs of two actions.

5 Conclusion

In this paper, we tackled cost-sensitive learning prob-
lem from the perspective of risk aversion, and proposed
to minimize not the expected cost but the risk met-
ric called expected shortfall. Its definition and charac-
teristics such as convexity play key roles to elegantly
realize risk aversion, which has not been discussed in
the area of data mining. The proposed method is a
meta-learning algorithm that exploits any existing cost-
sensitive learner to solve risk-sensitive problems with
alternative or allocative actions.

Although we focused on supervised classification in
this paper, the basic idea is also applicable to a wide
class of data mining problems, such as clustering, re-
gression, and so on. Also, the meta-learning framework
we proposed in this paper has possibilities of converting
existing machine learning algorithms to have large mar-
gin and sparsity properties by enforcing them to focus
on difficult examples just like boosting and SVM.
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