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Abstract

We propose Link Propagation as a new semi-supervised learning
method for link prediction problems, where the task is to predict
unknown parts of the network structure by using auxiliary infor-
mation such as node similarities. Since the proposed method can
fill in missing parts of tensors, it is applicable to multi-relational
domains, allowing us to handle multiple types of links simultane-
ously. We also give a novel efficient algorithm for Link Propagation
based on an accelerated conjugate gradient method.
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1 Introduction

Many phenomena in the world can be represented by sets
of entities, and sets of static and dynamic relationships
among the entities. Such relationships include friendships
among people, actions such as someone clicking an on-line
advertisement, and physical interactions among proteins.
Collections of such relationships formnetworks.

The problem of predicting the structure of networks is
called thelink prediction problem, which is one of the im-
portant tasks of link mining [9] in the data mining commu-
nity. A typical setting of the link prediction problem is to
predict unknown parts of the structure of a network (or, the
future structure of the network) from the known parts of the
network. Link prediction has various applications in many
fields such as social network analysis, marketing, and bioin-
formatics. For example, it can be used to predict relation-
ships among participants such as friendships in social net-
works, or to predict users’ future behaviors such as clicking
advertisements for marketing. In the field of bioinformatics,
predicting protein-protein interactions and regulatory rela-
tionships can provide guidance for the design of experiments
for discovering new biological facts.

The link prediction problem can be seen as the prob-
lem of completing an adjacency matrix which represents the
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structure of a network. One of the standard approaches to the
link prediction problem is to regard it as a binary classifica-
tion problem of the elements of the adjacency matrix. In this
paper, we add another dimension to the adjacency matrix,
which indicates the extension of single-type link prediction
to multiple-type link prediction. The extension results in in-
troducing a third-order tensor which represents an adjacancy
matrix with link types. Consequently, we consider a comple-
tion problem of the tensor as a generalization of the standard
link prediction problem (Section 2). This is regarded as a
binary classification problem of the elements of the tensor.
The tensor representation of the network structure allows us
to handle not only the existence of links but also the types of
links, including temporal links. Furthermore, the tensor rep-
resentation makes it possible to simultaneously predict mul-
tiple networks that have correlations with each other.

The link prediction problem can fall into two categories
in accordance with the information used for prediction:
(i) topological-information-based link prediction and (ii)
node-information-based link prediction. The former type
of link prediction uses only adjacency matrices. Based on
observed parts of the adjacency matrices, the missing parts
are predicted by using, for example, matrix factorization
techniques [23, 28]. On the other hand, the latter type of link
prediction exploits node information such as feature vectors
of nodes or similarity values among nodes. One of the
state-of-the-art approaches for this purpose is the pair-wise
support vector machine (pair-wise SVM), which combines
node-wise kernel matrices to construct a pair-wise kernel
matrix [2, 3, 26]. In this paper, we discuss the latter type,
i.e. link prediction based on node information.

In this paper, we propose using one of the well-known
approaches of semi-supervised learning called label propa-
gation [40, 41] for link prediction (Section 3.1). Label prop-
agation was originally intended for use in node classification,
but we apply the idea to pairs of nodes with multiple link
types (i.e. (node, node, type)-triplets) and predict the rela-
tionships among the nodes. Since we need a triplet-wise sim-
ilarity matrix to apply the label propagation idea to triplets,
we propose to use the Kronecker product and the Kronecker
sum of the element-wise similarity matrices (Section 3.2).
To solve the resultant system of linear equations, we apply
the conjugate gradient method (Section 4.1). Since naive



application of the conjugate gradient method causes serious
scalability problems, we use an acceleration technique called
“vec-trick” [22, 36] and its generalized versions for tensors,
which significantly reduces the computation time and space
requirements (Section 4.2). Moreover, we show interesting
special cases that can be implemented very easily by using
the functions of MATLABR⃝ (Section 5).

Finally, we discuss the relationships between our ap-
proach and related approaches (Section 6), and demonstrate
the performance of the proposed method by using several
real-world network data sets (Section 7).

In summary, this work makes three main contributions:
(i) We develop a new semi-supervised link prediction method
by applying the label propagation method [40, 41] to link
prediction. The new method is the first method for tensor
completion using auxiliary information. It allows us to han-
dle not only strength of links among pairs of nodes, but also
various types of links.
(ii) We propose using the Kronecker sum similarity as a
novel similarity measure among node pairs, which is shown
to outperform the existing Kronecker product similarity in
many cases.
(iii) We propose an efficient learning algorithm based on the
conjugate gradient method. It mitigates the scalability prob-
lem caused by naive application of the label propagation.

2 Link prediction problem

The link prediction problem is usually described as a task to
predict how likely a link exists between an arbitrarypair of
nodes. In this paper, we consider a more general problem of
predicting multipletypesof links among the pairs of nodes1.

Let us denote two sets of nodes byX :=
{x1, x2, . . . , xM} andY := {y1, y2, . . . , yN}, and the types
of link by Z := {z1, z2, . . . , zT }. Some or all ofX andY
may be identical in accordance with applications. Note that
M := |X|, N := |Y | andT := |Z|. Taking an on-line store
as an example,X, Y , andZ are sets of users, items, and pos-
sible actions by a user to an item, respectively. The actions
include “click”, “buy”, and “evaluation”. So, a type-zk link
between two nodesxi andyj indicates that an userxi takes
an actionzk to an itemyj (Figure 1(left)). Let us consider an-
other example. If we want to predict the relationships among
the members of a community, BothX andY are the mem-
bers, andZ is a set of relationship types among the members,
for example,Z := {friendship, working relationship}. Note
that we assumeX = Y in this case.

Since a type-zk link for a node pair(xi, yj) can be

1The models and techniques used in this paper are easily extended
to handling links among more than triplets, but we will limit ourselves
on triplets since we want to keep the description simple and triplets can
accommodate many important cases.

An action
A user An item

link strength
A user
An item
An action

Figure 1: An example of a link. The fact that a userxi ∈ X
gives an action (e.g. “evaluation”) to an itemyj ∈ Y is
represented as a (single-type) link for a triplet(xi, yj , zk).
The link strengthfijk indicates confidence of the existence
of the link.

considered as a (single-type) link for a triplet(xi, yj , zk),
multiple-type link prediction for node pairs is equivalent to
single-type link prediction for node triplets. Therefore, we
denote a set of single-type relationships among triplets by an
M × N × T third-order tensor,

[F ]i,j,k := fijk.

The variablefijk indicates how likely a link exists for the
triplet (xi, yj , zk) ∈ X × Y × Z, which we refer to aslink
strength(Figure 1(right)). A large value of link strength
indicates high confidence of the existence of a link, and a
small value indicates high confidence of the absence of a
link.

Now, we define anotherM × N × T third-order tensor
F∗ which represents the observed parts of the network.F∗

plays the role of the target values given in a training data set
in supervised learning. LetE be the set of indices for triplets
whose link existence/absence is known (i.e. the set of indices
of the labeled instances). Each element ofF∗ is defined as

[F∗]i,j,k :=

{
f∗

ijk if (i, j, k) ∈ E,

0 otherwise,

wheref∗
ijk is set to some positive value if a link exists for

(xi, yj , zk), and to some negative value if no link exists for
(xi, yj , zk). For (i, j, k) /∈ E, [F∗]i,j,k is filled with zero
for convenience, since we do not use them. Particularly, we
recommend to setf∗

ijk as

f∗
ijk :=

{
|E|/|E+| if a link exists for(xi, yj , zk),

−|E|/|E−| if no link exists for(xi, yj , zk),

where |E+| and |E−| are the numbers of triplets with
links and those without links, respectively. Note that



(|E+| + |E−| = |E| ≤ MNT ). This way of setting the tar-
get values corresponds to the Fisher discriminant if we use
the squared loss function [4].

Since we consider node-information-based link predic-
tion, we are also given similarity matricesWX , WY , andWZ

among the elements ofX, Y , andZ, respectively2. Those
matrices are non-negative and symmetric. In the previous
example of(user, item, action)-link prediction, WX repre-
sents similarities among the users, where its(i, ℓ)-th element
[WX ]i,ℓ indicates the similarity between thei-th userxi and
theℓ-th userxℓ. Similarly,WY andWZ are for the items and
the actions, respectively.

In summary, the link prediction problem discussed in
this paper is defined as follows.

INPUT:
· Three symmetric and nonnegative matricesWX , WY ,
andWZ for three entity setsX, Y , andZ.
· A third-order tensorF∗ representing the known parts
of the network.

OUTPUT: A third-order tensorF representing link
strength for all triplets.

3 Link Propagation: A new semi-supervised link
prediction method

In this section, we introduce our new approach to the link
prediction problem. We refer to our semi-supervised link
prediction method as “Link Propagation”, which has the ob-
jective function (3.2) and either of the triplet-wise similarity
matrices (3.4) and (3.6).

3.1 Formulation. Since the link prediction problem de-
scribed in the previous section is a semi-supervised learn-
ing problem (more precisely, a transductive learning prob-
lem since we have the test data set in the training phase), we
uselabel propagation[40, 41], which is one of the state-of-
the-art semi-supervised learning methods. The label propa-
gation method was originally used for predicting the labels
of unlabeled nodes by using thelabel propagation principle,
that is, “Two nodes that are similar to each other are likely
to have the same label”. The idea of label propagation can
be generalized to link prediction, since the link prediction
problem can be regarded as a task of predicting labels for
(node, node, type)-triplets. Applying the label propagation
method to triplets, we can predict link strength as the labels
for the triplets.

Modifying the label propagation principle, we can state
the triplet version of the inference principle as “Two similar
(node, node, type)-triplets are likely to have the same link

2Even if they are not given, there is a possibility of constructing them
from the observed links, for example, by similarities among the fibers of
F∗. However, we do not discuss this further in this paper.

? Similartriplets
A type-zk linkexistsUnknown

A node pair PropagationA node pair Similartriplets
A type-zk linkexists

A node pair A node pair

A type-zk linkexists
zk zk zk

(a) The link propagation principle for existence of a link

? Similartriplets
No type-zk linkexistsUnknown

A node pair PropagationA node pair Similartriplets
No type-zk linkexists

A node pair A node pair

No type-zk linkexists
zk zkzk

(b) The link propagation principle for absence of a link

Figure 2: The idea of the link propagation principle for (a)
existence of a link and (b) absence of a link. The figures
depict that if two triplets are similar to each other, their
existence/absence of links is likely to be identical.

strength”. In accordance with this “link propagation princi-
ple”, we define the objective function to minimize as

(3.1)

J({fijk}) :=
σ

2

∑
i,j,k,ℓ,m,n

wijk,ℓmn(fijk − fℓmn)2

+
1
2

∑
(i,j,k)∈E

(fijk − f∗
ijk)2 +

µ

2

∑
(i,j,k)/∈E

f2
ijk,

wherewijk,ℓmn is the symmetric triplet-wise similarity be-
tween two triplets(xi, yj , zk) and(xℓ, ym, zn) (which will
be defined later). The first term of Eq. (3.1) indicates that
the two link strength valuesfijk andfℓmn for the two triplets
should be close to each other if the similaritywijk,ℓmn be-
tween the two triplets is large. The second term is the loss
function that fits the predictions to their target values for the
triplets in E. The last term is a regularization term to pre-
vent the predictions from being too far from zero, and also
for numerical stability.σ > 0 andµ > 0 are regularization
parameters which balance the three terms in Eq. (3.1).

Now, we rewrite Eq. (3.1) using tensors. For that, we
define anM × N × T tensorG as

[G]i,j,k =

{
1 if (i, j, k) ∈ E,
√

µ otherwise,

and letL be anMNT × MNT matrix calledLaplacian



matrix defined as
L := D − W,

whereD is a diagonal matrix whose diagonal elements are

[D]i,i :=
∑

j

[W]i,j ,

andW is a triplet-wise similarity matrix whose elements are
defined as

[W]MN(k−1)+M(j−1)+i,MN(n−1)+M(m−1)+ℓ := wijk,ℓmn.

UsingG andL, Eq. (3.1) is rewritten as

J(F) =
σ

2
vec(F)⊤ Lvec(F)(3.2)

+
1
2
∥ vec(F ∗ G) − vec(F∗) ∥2

2,

where ∗ is the Hadamard product (i.e. the element-wise
product of two tensors), andvec(A) is the vector constructed
by stacking the mode-1 fibers (i.e. column) of the tensor
A, defined asvec(A)(k−1)NT+(j−1)N+i := [A]i,j,k. Note
that, whenX = Y and there is no link direction, the frontal
slices ofF∗ are symmetric, then the solutionF∗ becomes
symmetric.

To obtainF that minimizes Eq. (3.2), we differentiate
Eq. (3.2) with respect tovec(F), which results in

∂J(F)
∂vec(F)

= σLvec(F) + vec(F ∗ G) − vec(F∗) .

Setting this to0 for obtaining the stationary point, we obtain
the following linear equation,

(3.3) (σL + diag (vec(G))) vec(F) = vec(F∗) ,

where the operatordiag produces a diagonal matrix whose
diagonal elements are given by its argument vector.

3.2 Designing the triplet-wise similarity matrix. Since
it is not realistic to give all of theM2N2T 2 elements of
the triplet-wise similarity matrixW, we consider systematic
construction ofW using the element-wise similarity matrices
WX , WY , andWZ . For addressing the scalability issues
discussed in the next section, we restrict the class ofW, and
consider two ways for constructingW.

The first one is theKronecker product similarity, which
is based on the idea that two triplets are similar to each other
if each of the three cross-triplet pairs of nodes are similar
to each other (Fig. 3(a)). The Kronecker product similarity
matrix is defined as

(3.4) W := WZ ⊗ WY ⊗ WX ,

where⊗ indicates the Kronecker product. This is equiva-
lently expressed in an element-wise manner as

wijk,ℓmn := [WX ]i,ℓ [WY ]j,m [WZ ]k,n.

Thus, the Kronecker product similarity between two triplets
is designed as the product of the similarities in each set.
This is an extension of the pair-wise similarity used in
kernel methods [2, 3, 26] to triplets. The Kronecker product
similarity corresponds to the inner product in the product
space of the three feature spaces, ifWX , WY , and WZ

are kernel matrices defined as the inner products in the
feature spaces ofWX , WY , andWZ , respectively. Using the
Kronecker product similarity, we can express the Laplacian
matrix in Eq. (3.3) as

(3.5) L = DZ ⊗ DY ⊗ DX − WZ ⊗ WY ⊗ WX ,

whereDX is a diagonal matrix whose diagonal elements are
defined as[DX ]i,i :=

∑
j [WX]i,j ; DY andDZ are defined

similarly.
Since the product space of the Kronecker product simi-

larity sometimes becomes too complex and is of overly high
dimensions, we also consider another similarity with a more
restricted feature space (if it is a kernel function), which we
call theKronecker sum similarity. The Kronecker sum simi-
larity is based on the idea that two triplets are similar to each
other if two of the three cross-triplet pairs of nodes are iden-
tical, and the other cross-triplet pair is similar to each other
(Fig. 3(b)). We define the Kronecker sum similarity as

W := WZ ⊕ WY ⊕ WX(3.6)

= (WZ ⊗ IN ⊗ IM ) + (IT ⊗ WY ⊗ IM )
+ (IT ⊗ IN ⊗ WX) ,

where⊕ indicates the Kronecker sum defined byWZ ⊕
WY := WZ ⊗ IN + IT ⊗WY , andIM is an identity matrix of
sizeM × M . This is equivalently expressed in an element-
wise manner as

wijk,ℓmn := [WX ]i,ℓ δ(j = m) δ(k = n)
+ δ(i = ℓ) [WY ]j,m δ(k = n)
+ δ(i = ℓ) δ(j = m) [WZ ]k,n,

whereδ is a function which returns1 if the argument is true,
and0 otherwise. Using the Kronecker sum similarity, we can
express the Laplacian matrix in Eq. (3.3) as

(3.7) L = LZ ⊕ LY ⊕ LX ,

whereLX is the Laplacian matrix defined asLX := DX −
WX . LY andLZ are defined similarly.

As is clear from the definitions, the Kronecker product
can give an arbitrary pair of triplets a similarity score greater
than zero, while the Kronecker sum can give a positive score
only to the pairs which share at least two elements of the
triplets.

At first sight, since the Kronecker sum similarity has a
fewer number of pairs with positive similarity values than
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Figure 3: Intuitive examples of (a) the Kronecker product
similarity and (b) the Kronecker sum similarity.

the Kronecker product similarity, it seemingly can not fully
exploit node similarity information. But as we will see in
the experiments (Section 7), the Kronecker sum similarity is
compatible with the Link Propagation method, since pairs
with zero similarity values can utilize link information of
each other through the other pairs with positive similarity
values using the label propagation mechanism.

Another intuition behind the Kronecker sum similarity
is that similar nodes tend to form triangle link structure,
which is one of the generative processes of small world
networks [10]. It is known that a variety of real-world
networks including biological networks and social networks
are small world networks.

The two definitions of the triplet-wise similarity can be
seen as constructing a product graph over the triplets if we
consider the element-wise similarity matrices as weighted
graphs. The Kronecker product and the Kronecker sum
correspond to the tensor product graph and the Cartesian
product graph of the weighted graphs [14], respectively.

Finally, we mention the scalability problem occurred
in using the Kronecker product/sum similarity matrix. As
mentioned earlier, even if the element-wise similarity ma-
trices are small, their Kronecker product becomes huge
(MNT × MNT ), so it is not reasonable to store them ex-
plicitly in the memory. The matrix is rather sparse for the
Kronecker sum similarity, but still needs much space. Since
the kernel methods use the same similarity matrix we use as
kernel matrices [2, 3, 26]. they also suffer from the severe

scalability problem. In the next section, we overcome this
problem by the conjugate gradient method using the “vec-
tricks”.

4 A fast algorithm for Link Propagation method

In this section, we propose a conjugate gradient method
accelerated by using the technique called “vec-tricks”. The
resultant algorithm needsO(M2N2T 2(M + N + T )) time
andO(M2 + N2 + T 2 + MNT ) space.

4.1 Conjugate gradient method for Link Propagation.
The conjugate gradient method is a standard approach to
solving a system of linear equations [11]. The algorithm
of the conjugate gradient method forAf = f∗ is shown in
Algorithm 1. We modify it to solve our system of linear
equations (3.3) for Link Propagation.

First, we replaceA, f, and f∗ by using the correspon-
dences,A = σL + diag (vec(G)), f = vec(F), and f∗ =
vec(F∗). We also replace the other vectorsf(t), p(t), q(t),
andr(t) by tensorsF(t), P(t), Q(t), andR(t), respectively.
Then, we obtain the conjugate gradient algorithm for our sys-
tem of linear equations (3.3) as detailed in Algorithm 2. Note
that the algorithm is described using tensor notation in con-
trast to the standard conjugate gradient algorithm (Algorithm
1) being described in terms of vectors.

Most of the steps in Algorithm 2 are easily obtained
by simple substitutions, but Line 2 and Line 4 need some
derivation. Here, we derive only Line 2. Line 4 can be
derived in a similar manner. First, we define the following
two operatorsLPROD andLSUM for the Kronecker product and
for the Kronecker sum, respectively, as

LPROD(B) := (DZ ⊗ DY ⊗ DX(4.8)

−WZ ⊗ WY ⊗ WX) vec(B) ,

LSUM(B) := (LZ ⊗ LY ⊗ LX) vec(B) ,(4.9)

whereB is an M × N × T tensor. Bearing the above
correspondences in mind ,r(0) := f∗ − Af(0) is rewritten
as

vec(R(0)) := vec(F∗) − (σL + diag (vec(G))) vec(F(0))
= −σL{PROD|SUM}vec(F(0)) ,

where we usedF∗ = F(0) = diag (vec(G)) vec(F(0)),
and Eqs. (3.5) and (3.7). In Algorithm 2, the operator
L{PROD|SUM} is replaced withLPROD when we use the Kronecker
product similarity, or withLSUM when we use the Kronecker
product similarity.

However, evaluation of Eqs. (4.8) and (4.9) is still a
computational bottleneck of Algorithm 2, since the triplet-
wise similarity matrix is huge.

4.2 The “vec-tricks”. We here show that computation of
Eqs. (4.8) and (4.9) can be made significantly efficient



Algorithm 1 Conjugate Gradient(A, f∗, ϵ).
1: f(0) := f∗

2: r(0) := f∗ − Af(0), andp(0) := r(0)
3: for t = 0, 1, 2, . . . do
4: q(t) := Ap(t)

5: α(t) :=
⟨

r(t),p(t)
⟩⟨

p(t),q(t)
⟩

6: f(t + 1) := f(t) + α(t)p(t)
7: r(t + 1) := r(t) − α(t)q(t)
8: β(t) := ∥r(t+1)∥2

2
∥r(t)∥2

2

9: if ∥r(t+1)∥2
2

∥r(0)∥2
2

< ϵ2, return f (t + 1)
10: p(t + 1) := r(t + 1) + β(t)p(t)
11: end for

Algorithm 2 Link Propagation(F∗,G, WX , WY ,WZ , σ, ϵ);
L{PROD|SUM} is replaced withLPROD (Eq. (4.16)) for the Kro-
necker product similarity, or withLSUM ( Eq. (4.17)) for the
Kronecker sum similarity.

1: F(0) := F∗

2: R(0) := −σL{PROD|SUM}(F(0)), andP(0) := R(0)
3: for t = 0, 1, 2, . . . do
4: Q(t) := σL{PROD|SUM}(P(t)) + G ∗ P(t)

5: α(t) :=
⟨
R(t),P(t)

⟩⟨
P(t),Q(t)

⟩
6: F(t + 1) := F(t) + α(t)P(t)
7: R(t + 1) := R(t) − α(t)Q(t)
8: β(t) := ∥R(t+1)∥2

2
∥R(t)∥2

2

9: if ∥R(t+1)∥2
∥R(0)∥2

< ϵ, return F(t + 1)
10: P(t + 1) := R(t + 1) + β(t)P(t)
11: end for

by using the “vec-tricks” [22, 36], which accelerates the
multiplication of matrix Kronecker products and a vectorized
matrix/tensor.

Let AX , AY , andAZ beM × M , N × N , andT × T
symmetric matrices, respectively. LetB be anM×N matrix,
andB be anM × N × T tensor. The basic idea of the “vec-
tricks” lies in the following equation [22]:

(4.10) (AY ⊗ AX)vec(B) = vec(AXBAY ) .

The left-hand side of Eq. (4.10) needsO(M2N2) compu-
tation time and space, while the right-hand side needs only
O(MN(M + N)) time andO(MN) space. Vishwanathan
et al. [36] used this formula for accelerating the computation
of the graph kernels.

Now, we generalize Eq. (4.10) to obtain its tensor
version. Bearing in mind that matrices are second-order
tensors, we rewrite Eq. (4.10) using mode-n multiplication
of tensors [20] as

(4.11) (AY ⊗ AX)vec(B) = vec(B ×1 AX ×2 AY ) ,

where mode-n multiplication is an operation that multiplies
the mode-n fibers of a tensor by a matrix. For third-order
tensors, these are defined as

[B ×1 AX ]i,j,k :=
M∑

ℓ=1

[B]ℓ,j,k[AX ]i,ℓ,

[B ×2 AY ]i,j,k :=
N∑

ℓ=1

[B]i,ℓ,k[AY ]j,ℓ,

[B ×3 AZ ]i,j,k :=
T∑

ℓ=1

[B]i,j,ℓ[AZ ]k,ℓ,

and each of them returns anM × N × T tensor. For more
on general tensor calculation, see [20], for example. The
form of Eq. (4.11) is naturally extendable to third-order (or
higher-order) tensors, and we obtain the following equation.
(4.12)

(AZ ⊗ AY ⊗ AX)vec(B) = vec(B ×1 AX ×2 AY ×3 AZ) .

While the naive computation in the left-hand side needs
O(M2N2T 2) computation time and space, we can reduce it
to O(MNT (M +N +T )) computation time andO(MNT )
space in the right-hand side.

Next, we consider the case with the Kronecker sum.
Similar to the case of the Kronecker product, we have

(AY ⊕ AX)vec(B) = vec(BAY + AXB)(4.13)

= vec(B ×1 AX + B ×2 AY ) .(4.14)

Again, Eq. (4.14) is generalized to tensors as

(4.15)

(AZ ⊕ AY ⊕ AX)vec(B)
= vec(B ×1 AX + B ×2 AY + B ×3 AZ) .

When AX = AY , the number of multiplications can be
reduced, sinceB ×1 AX andB ×2 AY are essentially the
same.

By using Eqs. (4.11) and (4.15), the computation of Eqs.
(4.8) and (4.9) can be significantly simplified as

LPROD(B) = B ×1 DX ×2 DY ×3 DZ(4.16)

− B ×1 WX ×2 WY ×3 WZ ,

LSUM(B) = B ×1 LX + B ×2 LY + B ×3 LZ .(4.17)

4.3 Discussion on efficiency.A great advantage of our
Link Propagation algorithm is in its memory efficiency.
It requires onlyO(MNT + M2 + N2 + T 2) memory
thanks to the “vec-tricks”. In terms of the computational
complexity, it requiresO(M2N2T 2(M + N + T )) time
theoretically, because each iteration of the conjugate gradient
algorithm can be executed inO(MNT (M + N + T )) time,
and O(MNT ) iterations are required to solve the linear



equations completely. In practice, the number of iterations
required for convergence is much smaller thanO(MNT ),
and we observed that the predictive performance did not
change after only several iterations in our experiments.

The improvement by using the “vec-tricks” is signifi-
cant, because it is not clear so far how to apply the “vec-
tricks” to kernel methods. If we imagine the triplet-wise
extension of the pair-wise SVM using the same similar-
ity matrix without the “vec-tricks”, the space complexity is
O(M2N2T 2) and the time complexity isO(M3N3T 3). The
time complexity comes from the fact that the quadratic pro-
gramming problem needs cubic time complexity with respect
to the number of parameters (in the case of kernel mathods,
it is the same as the number of training examples). As many
fast optimization methods have been developed for SVM, its
practical speed is not too slow in general. Nevertheless, as
it is difficult to keep the whole kernel matrix in the memory,
we cannot always use the fastest software packages in our
problems.

5 Easily implementable special cases

In this section, we show special cases of pair-wise link
prediction (i.e. whenT = 1) with µ := 1, where we can
easily implement the proposed method by using the built-
in functions of existing numerical computing environments
such as MATLABR⃝.

Since settingµ := 1 implies [G]i,j = 1 for all (i, j),
it holds thatdiag (vec(G)) = IMN . Therefore, Eq. (3.3)
becomes

(5.18) (σL + IMN ) vec(F) = vec(F∗) .

Note thatF = F, F∗ = F∗, andG = G whenT = 1.
WhenW is the Kronecker product similarity, Eq. (5.18)

becomes

(σDY ⊗ DX − σWY ⊗ WX + IMN ) vec(F) = vec(F∗) .

By using Eq. (4.10), we obtain

σDXFDY − σWXFWY + F = F∗.

This equation is called the generalized Sylvester equa-
tion [22]. Vishwanathan et al. [36] proposed usingS and
T that satisfyDY ⊗ DX + WY ⊗ WX ≈ S ⊗ T for approx-
imating the equation asTFS + F = F∗, and solving it by
using thedlyap function in MATLAB R⃝.

When W is the Kronecker sum similarity, Eq. (5.18)
becomes

(5.19) (σLY ⊕ LX + IMN ) vec(F) = vec(F∗) .

We can derive the relation

σLY ⊕ LX + IMN =
(

σLY +
1
2
IN

)
⊕

(
σLX +

1
2
IM

)
,

which is substituted into Eq. (5.19) to obtain((
σLY +

1
2
IN

)
⊕

(
σLX +

1
2
IM

))
vec(F) = vec(F∗) .

By using Eq. (4.13), this can be rewritten as

F

(
σLY +

1
2
IN

)
+

(
σLX +

1
2
IM

)
F = F∗.

This equation is called the Sylvester equation [22], and can
be solved by using thelyap function in MATLAB R⃝. Un-
like the case with the Kronecker product, no approximation
is involved, and therefore we can obtain the exact solution.

6 Related work

The link prediction problem has been studied in the context
of predicting biological networks such as protein-protein
interaction networks and gene regulatory networks in the
bioinformatics area, and also in the context of link mining [9]
in the data mining community.

In bioinformatics, several node-information-based ap-
proaches were proposed, such as an EM-based approach [19]
and metric-learning-based approaches [35, 38]. The pair-
wise kernel which we will compare our method with in our
experiments (Section 7) was proposed for predicting protein-
protein interactions [3]. Interestingly, the same kernel was
also proposed for entity resolution [26], and collaborative fil-
tering [2], independently.

In the data mining community, the link prediction prob-
lem is studied as one of the fundamental tasks of link min-
ing. There are several methods that utilize only structural in-
formation such as link metrics (e.g. [24]). Matrix factoriza-
tion approaches [23, 28] are also grouped into topological-
information-based methods.

There are also supervised learning methods using node
information as well as topological information, for example,
[13, 25]. There have also been several works (e.g. [27, 31]
) that apply the framework of statistical relational learning
to link prediction. A similar model is called the exponen-
tial random graph model in social network analysis [1]. Re-
cently, sophisticated generative models of networks from
Bayesian perspective have been proposed [5, 39].

Recently, there have been proposed several approaches
to extending the existing network analysis methods to mod-
eling the temporal dynamics of network structure. For ex-
ample, Fu et al. [7] extended the exponential random graph
model [1, 31] to temporal modeling. Some attempts (e.g.
[29, 30]) use tensor analysis techniques [20] for temporal re-
lation data as generalization of matrix analysis for pair-wise
relations. Note that they do not exploit node information
such as the node similarity matrices used in this paper.

The basic idea of label propagation was proposed by
Zhou et al. [40] and Zhu et al. [41]. The scalability problems



are often discussed [8, 42], but the technique we used in
this paper is totally different from theirs. To the best of our
knowledge, we are the first to use auxiliary information in
semi-supervised link prediction.

The matrix “vec-trick” (Eq. (4.10)) was used by Vish-
wanathan et al. [36] for accelerating the computation of the
graph kernels.

7 Experiments

In this section, we show some experimental results for
single-type link prediction (matrix completion) and multiple-
type link prediction (third-order tensor completion) based
on node information. Section 7.1 describes the results of
single-type link prediction problems. We demonstrate that
our semi-supervised link prediction performs better than the
pair-wise kernel method, where both approaches are based
on combined node information. Section 7.2 describes the re-
sults of multiple-type link prediction problems, where our
task is simultaneous prediction of multiple networks re-
lated to each other. We demonstrate that predicting multiple
networks simultaneously achieves better predictive perfor-
mance than predicting each network separately.

Throughout all of the experiments, we setσ = 0.001
andµ = 1 for Link Propagation. Note that for pair-wise link
prediction, we takeT = |Z| = 1, andF andF∗ are the
second-order tensors (i.e. matrices)F andF∗, respectively.

7.1 Pair-wise link prediction (T = 1). We compared our
method with the pair-wise kernel method [2, 3, 26], which is
one of the state-of-the-art link prediction methods using node
information. In the pair-wise kernel method, link strength
between a node pair(xi, yj) is modeled by

f(i, j) :=
∑
(ℓ,m)

αℓ,mκPAIR((i, j), (ℓ,m)).

The kernelκPAIR((i, j), (ℓ,m)) represents similarity between
two node pairs(xi, yj) and (xℓ, ym), and theαs are the
model parameters. In its original definition [2, 3, 26], the
pair-wise kernel is defined by using the node-wise kernelκ
as
(7.20)

κPAIR((i, j), (ℓ,m)) := κ(i, ℓ)κ(j, m) + κ(i,m)κ(j, ℓ),

which corresponds to the Kronecker product similarity. Note
that the above kernel is symmetrized.

Alternatively, we can use another pair-wise kernel cor-
responding to the Kronecker sum similarity as follows.

(7.21)

κPAIR((i, j), (ℓ,m)) := δ(i = ℓ)κ(j, m) + κ(i, ℓ)δ(j = m)
+δ(i = m)κ(j, ℓ) + κ(i,m)δ(j = ℓ).

Since the size of the pair-wise kernel matrices were
too huge to construct explicitly in the memory, it was not

reasonable to apply standard SVM implementations such
as SVMlight [16]. Therefore, we used an on-line learning
algorithm which processes one training example at each
training step, so it is computationally and spatially efficient.
In our experiments, we employed the passive-aggressive
algorithm [6], which is an efficient on-line large-margin
learning algorithm. We used the1-norm version (PA-I) of the
algorithm withC = 1. All of the kernels were normalized as
κPAIR((i, j), (ℓ,m))/

√
κPAIR((i, j), (i, j))κPAIR((ℓ,m), (ℓ,m)).

All of the training data was processed three times in the
training phase for better convergence and prediction.

We used three data sets for pair-wise link prediction.
The first data set [38] contains the metabolic pathways of the
yeastS. Cerevisiaein the KEGG/PATHWAY database [17].
Proteins are represented as nodes, and a link indicates that
the two proteins are enzymes that catalyze successive reac-
tions. The number of nodes in the network is 618, and the
number of links is 2,782. In this data set, three kernel matri-
ces based on gene expressions, localization sites, and phylo-
genetic profiles are given. We used them as the kernel matri-
ces or the similarity matrices3.

The second data set is a protein-protein interaction
network data set constructed by von Mering et al. [37].
We followed Tsuda and Noble [32], and used the medium
confidence network, containing2, 617 nodes and11, 855
links. In this data set, each protein is given a76-dimensional
binary vector, each of whose dimensions indicates whether
or not the protein is related to a particular function. We used
the inner product values between the vectors as the kernel
matrix or the similarity matrix4.

The third data set is a social network representing the
co-authorships in the NIPS conferences, containing2, 865
nodes and4, 733 links. Authors correspond to nodes, and a
link between two nodes means that there is at least one co-
authored paper by the corresponding authors. In this data
set, each author is given a feature vector, each of whose
dimensions corresponds to occurrences of a particular word
in the author’s papers. We used the inner product of the
vectors as the kernel matrix or the similarity matrix5.

We randomly selected10% of all the pairs
(|E|/(MNT ) ≈ 0.10) as training data, and evaluated
AUC on the remaining pairs; this procedure was repeated10
times.

Figure 4 shows the averaged AUCs and their standard
deviations for the metabolic network data. “Pair-wise Kernel
(prod)” and “Pair-wise Kernel (sum)” denote the pair-wise
kernel method using the passive-aggressive algorithm with
the Kronecker product kernel (7.20) and the Kronecker sum

3Available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/ismb05/. Al-
though a kernel matrix based on chemical information is also given in this
data set, we did not use it since it includes negative entries.

4Available at http://noble.gs.washington.edu/proj/maxent/.
5Available at http://ai.stanford.edu/˜gal/data.html.
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network.
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Figure 5: Summary of results for the protein-protein interac-
tion network (left) and the social network (right).

kernel (7.21), respectively. “Link Propagation (prod)” and
“Link Propagation (sum)” denote the proposed method with
the Kronecker product similarity and the Kronecker sum
similarity, respectively. Three results are shown for each of
the information sources, gene expression (expression), phy-
logenetic profile (phylogenetic), and localization sites (local-
ization). Figure 5 shows the results for the protein-protein
interaction network data (left) and the social network data
(right), respectively. In most of the cases, Link Propagation
outperforms the pair-wise kernel method. Interestingly, de-
spite its restricted feature space, the Kronecker sum performs
better than the Kronecker product in many cases.

Next, we compare the computation time by each
method. Figure 6 shows the average computation time in log
scale spent on each data set in the training and test phases.
Note that the passive-aggressive learner with the pair-wise
kernels was trained with only one scan of the training data
(which degrades the predictive performance though). All of

1 10 100 1000 10000 100000
socialnetwork

protein-proteininteractionnetwork
metabolicnetwork Pair-wise Kernel  (prod)Link Propagation (prod)Pair-wiseKernel   (sum)Link Propagation (sum)(sec)computation time

Figure 6: Comparison of computation time by each method.

the algorithms were implemented in R for MicrosoftR⃝ Win-
dows XPR⃝ on an IBMR⃝ IntelliStationR⃝ ZPro 6221 with an
Intel R⃝ XeonR⃝ 3.06-GHz CPU and1.5-GB RAM.

The results show the efficiency of Link Propagation. We
can see that Link Propagation is much faster than the pair-
wise kernel method, and the improvement is significant when
we use the Kronecker product similarity. Also, the Kro-
necker sum is consistently faster than the Kronecker product.
This is because the number of pairs with positive Kronecker
sum similarity is smaller than that for the Kronecker product
similarity in the case of the pair-wise kernel method, and be-
cause the number of iterations needed for convergence by the
Kronecker sum similarity is smaller than that the Kronecker
product similarity in the case of Link Propagation.

7.2 Triplet-wise link prediction (T > 1). Using the
proposed method for triplet-wise link prediction, we can
predict two networks simultaneously. Alternatively, we can
predict the two networks separately by using the proposed
method for pair-wise link prediction. We compared the
two approaches in order to investigate whether or not the
simultaneous network prediction improves the predictive
performance.

We used two biological network data sets for triplet-
wise link prediction. Each data set contains two related
networks. Therefore, tensors withT = 2 arise, when we
consider two networks simultaneously. The first data set
is two protein-protein interaction networks from different
labs [15, 34]. In this data set, we collected two sets of
protein-protein interactions detected from the yeast-two-
hybrid system in two different labs, one of which forms a
network (Ito) with1, 422 nodes and744 links, and the other
(Uetz) forms a network with the same nodes as those of the
Ito network and888 links. They share123 links in common.

The second data set is a pair of a physical protein-protein
interaction network and a genetic protein-protein network
stored in the MIPS database [12]. In the physical network,



two proteins have a link if the interaction between the two
proteins is experimentally confirmed. In the genetic network,
two proteins have a link if the simultaneous mutations in the
two corresponding genes cause a cell death. The physical
network consists of1, 225 nodes and3, 474 links, while the
genetic network consists of the same nodes as those of the
physical network and1, 333 links. The two networks share
198 links in common.

In both of the two data sets, the kernel matrices and the
similarity matrices are constructed using gene expressions,
phylogenetic profiles, and localization sites by following the
same procedure as Yamanishi et al. [38]. Also, we set the
similarity between the two networks to one.

We randomly selected50% of all the triplets
(|E|/(MNT ) ≈ 0.50) as training data, and evaluated AUC
for the remaining pairs; this procedure was repeated10
times. We used a higher proportion of the data as training
data than those we used for pair-wise link prediction, since
we need the two networks to overlap to some degree.

Figure 7 shows the averaged AUCs and their standard
deviations for the two protein-protein interaction networks
with the Kronecker product similarity and the Kronecker
sum similarity. “Ito (each)” and “Ito (simultaneous)” indi-
cate the results for the Ito network by network-by-network
prediction and simultaneous prediction, respectively. Sim-
ilarly, “Uetz (each)” and “Uetz (simultaneous)” are for the
Uetz network. Three results are shown for each of the infor-
mation sources. We find that predicting the two networks si-
multaneously improved the predictive performances in many
cases.

Figure 8 shows the results for the genetic network and
the physical network with the Kronecker product similar-
ity and the Kronecker sum similarity. “genetic (each)” and
“genetic (simultaneous)” indicate the results for the genetic
network by network-by-network prediction and simultane-
ous prediction, respectively. Similarly, “physical (each)” and
“physical (sum)” are for the physical network. Three results
are shown for each of the information sources. Although
the improvement is not so significant as the experiment with
the two protein networks, simultaneous prediction improves
the performance especially when using the Kronecker sum
similarity. Again, in both of the data sets, the Kronecker
sum similarity consistently outperforms the Kronecker prod-
uct similarity.

Finally, we show experimental results for three net-
works. We constructed three networks consisting of223
common proteins in the previous three networks, the genetic
network, the Ito network, and the Uetz network. Each of
them has 70–140 links, and they share 5–30 links in com-
mon. Figure 9 shows the results with the Kronecker product
similarity and the Kronecker sum similarity. Since the num-
ber of links is small, the variance of the AUC values tends
to be high. Even so, we can still see the trend that the re-

sults improve as the number of networks used in simultane-
ous prediction increases.

8 Concluding remarks

We proposed a new semi-supervised link prediction method
by applying the label propagation technique to link predic-
tion. This allows us to handle not only strength of the links
among pairs of nodes, but also the type of links. We used
the Kronecker sum similarity as the similarity matrices as
well as the Kronecker product similarity. Moreover, we pro-
posed an efficient learning algorithm based on the conjugate
gradient method. Use of the tensor “vec-tricks” mitigated
the scalability problem caused by naive application of label
propagation. The experimental results showed that the pro-
posed approach is quite promising.

Finally, we conclude this paper by mentioning some fu-
ture work. First, we will considercompressed representation
of the solution. Even if the similarity matrices andF∗ are
sparse, the solutionF is usually dense, so it is hard even to
storeF in the main memory for large-scale problems. One
possible approach might be to use compact tensor represen-
tations [20] for storingF . Use of topological informationis
also promising. It is possible to construct similarity matrices
from visible parts ofF∗. It would be interesting to compare
our method using those similarity matrices with the other
methods using only topological information such as matrix
factorization [23, 28] and tensor decomposition [20].Infor-
mation integrationis crucial, since we often have multiple
similarity matrices obtained from various data sources. We
will consider incorporating methods that adjust the weight
of each similarity matrix automatically [18, 21, 33]. Our fu-
ture work might also includeout of sample predictionusing
approximated inference without solving entire systems, and
prediction with only positive links.
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