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Abstract

In this paper, we apply kernel methods to graph clas-
sification problems. To achieve the goal, we have to de-
sign an appropriate kernel for computing inner products for
pairs of graphs represented in a feature space. We define a
graph kernel by a random walk on a vertex product graph
of two graphs. Some experiments on predicting properties
of chemical compounds show encouraging results.

1 Introduction

Recently, it is needed to develop various kinds of data
mining methods that can handle structural data. As semi-
structured data such as XML and HTML are increasing,
data mining methods that can handle not only relational
data, but also for semi-structured data are attracting con-
siderable attention. In pharmaceutical area, it is valuable
for rationalization of drug discovery processes to predict the
effectiveness or toxicity of drugs from their chemical struc-
tures since we can evaluate candidate compounds before we
synthesize them.
In this paper, we aim to develop solutions to classification
problems of graphs with vertex labels and edge labels (Fig-
ure 1). For example, semi-structured data and chemical
compounds stated above can be represented as such graphs
naturally.
In general learning problems, objects are represented as
vectors in a feature space, and training classifiers is reduced
to deciding on rules to separate vectors that belong to pos-
itive examples from vectors that belong to negative exam-
ples. However, when we handle more complex objects such
as sequences, trees, and graphs that have structures among
their constituent elements, design of a suitable feature space
is not trivial. Probably, one of the sound strategies for han-
dling such complex objects is to use local structures in them
as features. However, in most cases, considering all possi-
ble local structures as features is inhibitive since it often
leads to combinatorial explosion. Therefore, some mech-

anism is needed to select a subset of local structures that
can contribute to classification. Relational learning [13] is
a general method that can handle local structures in ob-
jects. In relational learning, several relationships among
constituent elements are defined, and the relationships con-
stitute local structures. The local structures used as fea-
tures are incrementally built up in the process of training.
However, since the problem of finding the best hypothesis
is generally NP-hard, we must use heuristic methods. An-
other method is based on pattern discovery algorithms that
find local structures appearing frequently [11, 6], and these
structures are used as features. The pattern-discovery-based
method has an advantage in that it can make use of unla-
belled data. However, the process of discovering patterns is
again almost always NP-hard.
Yet another approach is to use kernel methods such as sup-
port vector machines (SVMs) [15]. One of the important
properties of kernel methods is their access to examples via
kernels. In kernel methods, examples are mapped into a
feature space implicitly, and only the inner products of the
vector representations are used when learning machines ac-
cess the examples. This means that even in cases where the
dimension of the vector representations is extremely high,
the dimensions do not explicitly appear in the process of
training and classification as long as an efficient procedure
to compute the inner products is available. The function
giving the inner products is called the ’kernel’, and kernel
methods can work efficiently in high dimensional feature
spaces by using kernels. Moreover, SVMs are known to
have good generalization properties, both theoretically and
experimentally, and overcome the ’curse of dimensionality’
problem in high dimensional feature spaces [15].
Now, our task is to design suitable kernels that can classify
structural objects, and that can be computed efficiently. We
need a kernel function �������
	����� that can be efficiently
computed the inner product of two vectors represent two
graphs ��� and �� in a suitably defined feature space where
graphs can be classified. There are several works that aim
at classification of structural objects. Haussler [4] intro-
duced ’convolution kernels’, a general framework for han-



dling discrete data structures by kernel methods. In the con-
text of the convolution kernels, Watkins [16] and Leslie et
al. [12] proposed kernels for strings, and Collins et al. [1]
and Kashima et. al. [9] proposed kernels for trees. Be-
sides, Jaakkola et al. [7] proposed Fisher kernels that define
kernels using given probabilistic models, and apply them
to classification of protein sequences. Of special interest
here, Kandola et al. [8] proposed diffusion kernels that de-
fine kernels when input spaces are represented as undirected
graphs. They employed the idea of diffusion over given
graphs to define similarity between arbitrary two vertices.
Kondor et al. [10] applied this idea to document classifica-
tion, where a document corresponds to a vertex. In diffusion
kernels, graphs represent the structures of the input spaces,
and the vertices are the objects to be classified, while in this
paper, our aim is to classify graphs themselves.
To define a kernel between arbitrary two graphs, we use a
random walk on the vertex product graph of the two graphs.
Precisely, the kernel is defined to be the probability with
which two label sequences generated by two ’synchronized’
random walks on the graphs are identical. In the feature
space, each feature of the vector representation of a graph
corresponds to a particular label path that can possibly be
generated by a random walk on the graph. Although it is in-
hibitive to compute inner products explicitly since the num-
ber of possible paths is exponentially large, we show simul-
taneous linear equations to compute them. Therefore, we
can compute the kernels efficiently by methods such as iter-
ative methods.
Our kernel is closely related to the diffusion kernels, and
we can show their structures are similar. However, while
diffusion kernels are defined by a symmetric adjacent ma-
trix which represents the input space graph, our kernel is
defined by an asymmetric matrix which represents the ver-
tex product graph of two graphs.
Finally, we perform some experiments on predicting prop-
erties of chemical compounds to investigate how our kernel
performs well on real data, and the results show encourag-
ing results.
This paper is organized as follows. In Section 2, we define
our task, and introduce the idea of kernel methods. In Sec-
tion 3, we propose a new kernel for graph classification. In
Section 4, we summarize the results of our experiments on
classification of chemical compounds. We conclude with
Section 5 in which we provide a summary and duscussion.

2 Graph Classification Problems and Kernel
Methods

In this section, we define the graph classification prob-
lem, and introduce the idea of the kernel methods. We de-
fine a graph classification problem as the followings. A
learning machine receives a set of � training examples

Figure 1. an example of graphs with labels

� ��� � 	�� ����	 ����
	��
����	�������	 ����� 	���� ��		� where each example
����
�	���
�� is given as a pair of a graph ��
� ����
�	���
�� and the
class ��
�� ����� 		� � � that the graph belongs to. We assume
that each vertex ������
 is labeled by one of the possible ver-
tex labels ��� � ��! � �
	 ! � � 	������ � , and each edge is labeled
by one of the possible edge labels in �#" . Figure 1 shows an
example of graphs that we treat in this paper. The objective
of the learning machine is to correctly predict the classes of
test examples whose classes are unknown.
In this paper, we employ kernel methods for this task. One
of the important properties of kernel methods is their access
to examples via kernels. In kernel methods, examples are
mapped into a feature space implicitly, and only the inner
products of the vector representations are used when learn-
ing machines access the examples. For example, in the sup-
port vector machine that is a well-known kernel learning
algorithm, training a classifier is reduced to the following
quadratic programming problem,
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We can see all the accesses to the examples are done by
inner products. This means that even in cases where the di-
mension of the vector representations is extremely large, the
dimension does not explicitly appear in the process of train-
ing and classification as long as an efficient procedure to
compute the inner products is available. The function giv-
ing the inner products is called ’kernel’, and kernel methods
can work efficiently in high dimensional feature spaces by
using kernels. Therefore, now, our task is to design a suit-
able feature space where graphs can be classified, and to



give a kernel function ����� �
	����� that can efficiently com-
pute the inner product of the two vector representations of
two graphs ��� and �� .

3 Kernels for Graph Classification

3.1 Graph Kernels

Probably, the most simplest way of defining a vector rep-
resentation ��� of a graph � � ��� 	��� is to define each
element of a vector using the number of times a particular
vertex label appears in the graph.

3 �7� ��� � ! � �
	���� � � 	
� � ! � � 	���� � � 	�������	 � � ! ��� 	�
�� 	���� � �  (3)

where
� � ! � 
�	��� is the number of times vertex label

! � 

appears in graph � . This corresponds to the bag-of-words
representation of a document which is usually used in infor-
mation retrieval [2]. Suppose we want to calculate the ker-
nel for a pair of graphs � ��� ��� �
	�� ��� and �� � ��� � 	�� ��� .
Then the kernel is defined as

����� �
	������� � 3 � % 3�� ��� (4)� �� � � ��� � � � +� %�� � % +� � � ����� �9� �
	��
��� (5)

� �9� �
	��
����� ��� �9� � 	��
��� (6)

where � is an indicator function that returns
�

when the la-
bels of two arguments are identical, and returns 0 otherwise.
The kernel for graphs can be considered to be decomposed
in the kernels of pairs of vertices. The vertex-wise kernel
of � �9� �
	��
��� checks if the labels of the vertices � � and �
�
are identical, and this can be seen as a kind of similarity
between two vertices. However, � �9� � 	��
� � does not incor-
porate any local information around � � and �
� at all, and
therefore we modify � �9� �
	��
��� to consider the local structure
of graphs. We redefine � �9�
�
	��
��� so as to take higher scores
when not only the labels of � � and �
� are identical, but also
the labels of the edges and vertices adjacent to � � and �
� ,
and the further edges and vertices are identical. Concretely,
we redefine � �9�
� 	��
� � as
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where � ��5 8 	 �)6 is a decaying constant, and

4 �9� � is a set of
edges adjacent to � , and 3 �9� 	)( � is a transition function that
returns the vertex at the other side of ( adjacent to � . Note
that Equation (7) is identical to Equation (6) when � � 8 .The new kernel ����� � 	����� with modified � �9� �
	��
��� can be
interpreted using a random walk on the vertex product graph
� �07 ��� ��� ��8 � � 	�� �07 ��9 � ��8�� � � of two graphs � � and
�� . Suppose that two ’synchronized’ random walks are per-
formed on ��� and �� as the following. At first � ���7� � and�
�7� � � are selected randomly as the starting points. At
each round, both random walks are simultaneously halted
with probability

� �:� , and continued with probability � . If
continued, in each graphs, a transition is made by randomly
selecting an edge among the edges adjacent to the current
vertex. When the random walks are halted, the trial suc-
ceeds if the two label sequences generated from two graphs
are identical. ����� �
	����� can be interpreted as the proba-
bility with that this trial succeeds.
From the viewpoint of constructing a feature space, each
feature of graph � is the probability with which a particu-
lar label path is generated by a (single) random walk on �
with halting probability � . 1 Explicit Computation of Equa-
tion (7) is inhibitive because of the exponentially many la-
bel sequences. However, we can rewrite the equation as the
following linear equations.
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	��
��� � � � �"� � (12)
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	)(
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�
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1For deriving Equations (7)-(11), each feature should be multiplied byA B'C�DD,E
where F is the length of the random walk that generate the label

sequence. However, these factors do not influence the kernel values after
appropriate scaling.



3.2 Relation to Diffusion Kernels

In this subsection, we discuss the relationship between
our kernel and von Neumann kernel proposed by Kandora et
al. [8]. This kernel is a kind of diffusion kernels introduced
by Kondor et al. [10], and Kandora et al. [8] applied the
idea of diffusion kernels to document classification. They
regard a document as a vertex in a graph, and represent the
similarity between two documents as the weight of an edge.
In other words, suppose that � is a symmetric adjacent ma-
trix of the graph, the �9: 	�� � -th element indicates the ’direct’
similarity defined to be the inner product of the two bag-of-
words vector representations of : -th document and the � -th
document. Although � itself is a kernel matrix defined over
the vertices as long as � is positive definite, they defined
von Neumann kernel as

� � � � ��� � � � � � � (13)� � � � � � � � � � / � �0�0� (14)� �2���"� � ��� � � (15)

to incorporate the ’indirect’ similarities. Intuitively, this
kernel implements the idea that two documents are simi-
lar if both of them are similar to another document. The
�9: 	�� � -th element of ��� indicates the sum of the products of
the edge weights in all possible paths of length � between
the : -th vertex and the � -th vertex. Note that the paths can
include a particular edge more than once.
Similarly, we can rewrite Equation (12) by matrices. Let 	
be a vector whose dimension is

� � � � � � � � � , and whose : � % � � -
th element is � �9� �
	��
� � be � �9� �
	��
��� where : � % � � is the index
for �9� �
	��
��� . Similarly, let 	  be a vector whose : � % � � -th el-
ement is � �9� �
	��
��� . Using the

� � � � � � � � � 8 � � � � � � � � � matrix
� . defined as
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� �2(
�
	)( � �� 4 �9� ��� ��� 4 �9�
��� � ,
(16)

we rewrite Equation (12) as

	 � � � ��� ��	  � � � .�	 (17)� � � ��� ���	  � � � .�	  � � � � . � 	  � �0�0� � (18)� � � ��� ���2���"� � . � � � 	  . (19)

Apparently, Equations (13)-(15) and (17)-(19) have a com-
mon structure, and both can be interpreted as a random
walks on graphs. However, we point some differences be-
tween them. The diffusion kernels are defined over undi-
rected graphs, that is, � is symmetric. On the other hand,
our kernel is defined over directed graphs, that is, � . is
asymmetric. Moreover, in diffusion kernels, a kernel func-
tion defines the similarity between an arbitrary pair of ob-
jects in the input space represented as a graph, while in

our kernel, an object itself is a graph, and the similarity
between two arbitrary pairs of vertices is defined over the
vertex product graph � �07 ��� ��� � 8 � � 	�� �07 ��9 � � 8 � ���
of two graph � � and �� . In other words, while the �9: 	�� � -th
element of �2��� � � � � � � indicates the similarity between
the : -th vertex and the � -th vertex, the � � � � ���9: � % � �
	�: � *% � *� � -
th element of �2��� � � . � � � indicates the contribution from
the similarity of vertex pair � . � and � .� to the similarity of
vertex pair � � and �
� .
4 Experiments

In this section, we apply our kernel to prediction of the
properties of chemical compounds. A chemical compound
can be represented as a graph by considering the names of
atoms as vertex labels, and the types of bonds as edge la-
bels. We used two datasets, mutag dataset [14] and PTC
dataset [5]. In mutag dataset, the task is to predict muta-
genicity, and 188 compounds are included, and the max-
imum number of vertices is 40, and the average number
of vertices is 31.4. In PTC dataset, the task is to predict
carcinogenicity, and 417 compounds are included, and the
maximum number of vertices is 109, and the average num-
ber of vertices is 25.7. Each compound in PTC dataset is
given four classes, MM(Male Mouse), FM(Female Mouse),
MR(Male Rat) and FR(Female Rat), each of which takes
one of

�
EE 	 IS 	 E 	 CE 	 SE 	 P 	 NE 	 N � . Therefore, PTC pro-

vides four classification problems. We use
�
CE 	 SE 	 P �

as positive class, and
�
NE 	 N � as negative class. In both

datasets, four types of bond are included.
We compare our kernel with a pattern discovery-based
method that uses frequent substructures as features of vector
representations. Pattern discovery algorithms [11, 6] find
all substructure patterns that appear more frequently than a
given threshold in a dataset. In this paper, we use a frequent
path finding algorithm [11] for constructing feature spaces.
Suppose that the pattern discovery algorithm finds � fre-
quent paths

��������� � 	 ������� �
	������ 	 ��������� � in the dataset. The
vector representation of a graph � is defined as����� �� � �9?���� � ������� �
	����	�?���� � ������� � 	����	������ 	?���� � ��������� 	��� � (20)

where ?���� � ������� 
�	��� is the number of times
������� 
 appears

in graph � . The inner product of two vector representation� ��� �� % and � ��� ���� of two graphs � � and �� is defined as the
following.

�����
�
��� � 	������ �+ 
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�	�� ������?���� � ������� 
�	�����

(21)
Another possible vector representation uses a binary func-
tion
B :9? � ������� 
�	��� which returns

�
when

������� 
 appears in



� , and returns 8 otherwise.

��� 
 � ��� �
	����� � �+ 
-, � B :9? � ������� 
 	�� ����� B :9? � ������� 
�	�����
(22)

Note that our kernel also assumes the similar feature space,
however, our kernel allows to use an edge more than once
when checking whether a certain path appears in a graph.
This implies that our kernel counts the appearances of paths
approximately.
Computing our kernel needs to solve simultaneous linear
equations (18) with a

� � � � � � � � � 8 � � � � � � � � � matrix. However,
the matrix is sparse since the number of non-zero elements
is
� � � � � � � � � ������� � %�� � % � 4 �9� ��� � ������� � � � ��� � 4 �9�
��� � , and we

can employ various kinds of efficient numerical algorithms.
In this experiment, we just use an iterative method using the
recursive equations (12).
As for the learning algorithm, for ease of implementation,
we used the voted kernel perceptron [3] whose performance
is known to be comparable to that of SVMs.
Table 1 - Table 4 show the test accuracy measured by leave-
one-out cross validation. ’num’ and ’bin’ indicate the re-
sults for frequent-path-based kernels (21) and (22) respec-
tively. ’MinSup’ is a parameter for the pattern discovery
algorithm that decides the minimum support. Although our
graph kernel is not as well as the frequent-path-based ker-
nels for mutag dataset, it is comparable to the frequent-path-
based kernels for PTC dataset.

5 Conclusion

In this paper, we applied kernel methods to classification
of graphs with vertex labels and edge labels. We defined
a graph kernel for a pair of graphs by a random walk on a
vertex product graph of the two graphs. Concretely, the ker-
nel was defined to be the probability with which two label
sequences generated by two synchronized random walks on
the graphs were identical.
Next, we performed some experiments on predicting prop-
erties of chemical compounds to investigate how our kernel
performed well on real data, and the results showed encour-
aging results.
Our kernel approximately counts all the appearances of the
paths included in a graph, and at the same time, the whole
process avoids NP-hard steps. This implies our kernel may
be effective for larger graphs that pattern discovery algo-
rithms suffer from, and we plan to apply our kernel to such
datasets.
In this paper, we applied our kernel only to undirected
graphs, however, we can naturally treat directed graphs such
as semi-structured data and WWW structure by incorporat-
ing the edge directions into the edge labels. We plan to
apply our kernel to such various datasets to investigate the

ability of our kernel further.
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MinSup bin num
0.5 % 89.4% 88.3%
1 % 88.3% 87.8%
3 % 89.9% 89.9%
5 % 89.4% 86.2%
10 % 84.0% 84.6%
20 % 85.1% 83.5%

Table 1. Result for mutag (frequent-path-based kernel)� Graph Kernel
0.1 78.7%
0.2 79.8%
0.3 81.9%
0.4 83.0%
0.5 83.5%
0.6 85.1%
0.7 85.1%
0.8 83.5%
0.9 84.e%

Table 2. Result for mutag (graph kernel)

MM FM MR FR
MinSup bin num bin num bin num bin num

0.5% 61.0% 60.1% 57.3% 57.6% 59.0% 61.3% 63.8% 66.7%
1 % 59.8% 61.0% 59.0% 61.0% 59.3% 62.8% 64.7% 63.2%
3 % 59.2% 58.3% 59.6% 55.9% 57.8% 60.2% 63.2% 63.2%
5 % 56.8% 60.7% 58.2% 55.6% 55.5% 57.3% 64.1% 63.0%

10 % 57.4% 58.9% 61.0% 58.7% 58.4% 57.8% 60.1% 60.1%
20% 61.6% 61.0% 57.0% 55.3% 60.2% 56.1% 60.7% 61.3%

Table 3. Result for PTC (frequent-path-based kernel)� MM FM MR FR
0.1 62.8% 61.6% 58.4% 66.1%
0.2 63.4% 63.4% 54.9% 64.1%
0.3 63.1% 62.5% 54.1% 63.2%
0.4 62.8% 61.9% 54.4% 65.8%
0.5 64.0% 61.3% 56.1% 64.4%
0.6 64.3% 61.9% 56.1% 63.0%
0.7 64.0% 61.3% 56.7% 62.1%
0.8 62.2% 61.0% 57.0% 62.4%
0.9 62.2% 59.3% 57.0% 62.1%

Table 4. Result for PTC (graph kernel)


