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This chapter discusses the construction of kernel functions between labeled graphs.
We provide a unified account of a family of kernels called label sequence kernels
that are defined via label sequences generated by graph traversal. For cyclic graphs,
dynamic programming techniques cannot simply be applied, because the kernel is
based on an infinite dimensional feature space. We show that the kernel computation
boils down to obtaining the stationary state of a discrete-time linear system, which is
efficiently performed by solving simultaneous linear equations. Promising empirical
results are presented in classification of chemical compounds.

1.1 Introduction

Many real world data are represented not as vectors, but as graphs including se-
quences and trees as special cases. Examples of such data include biological se-
quences, phylogenetic trees, RNA structures (Durbin et al., 1998), natural lan-
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guage texts (Manning and Schütze, 1999), semi-structured data such as HTML
and XML (Abiteboul et al., 2000), and so on. In computational biology, graph data
are attracting considerable attention in drug design. Chemical compounds can be
represented as labeled graphs and their automatic classification to predict the ef-
fectiveness or toxicity of drugs is of crucial importance in the rationalization of
drug discovery processes (Kramer and De Raedt, 2001; Inokuchi et al., 2000). In
protein engineering, three dimensional structures of proteins are often represented
as distance graphs (Holm and Sander, 1993).

Kernel methods such as support vector machines are becoming increasingly
popular for their high performance (Schölkopf and Smola, 2002). In kernel methods,
all computations are done via a kernel function, which is defined as the inner
product of two vectors in a feature space. A kernel function needs to be designed
to capture the characteristics of the objects appropriately, and at the same time,
to be computed efficiently. Furthermore it must satisfy the mathematical property
called positive semidefiniteness. A kernel function should deliberately be designed
to satisfy this property, because ad hoc similarity functions are not always positive
semidefinite, e.g. Shimodaira et al. (2002) and Bahlmann et al. (2002).

Haussler (1999) introduced ’convolution kernels’, a general framework for han-
dling discrete data structures by kernel methods. In convolution kernels, objects
are decomposed into parts, and kernels are defined in terms of the (sub)kernels
between parts. After this seminal paper, a number of kernels for structured data
were proposed, for example, Watkins (2000), Jaakkola et al. (2000), Leslie et al.
(2003), Lodhi et al. (2002), and Tsuda et al. (2002) for sequences, Vishwanathan
and Smola (2003), Collins and Duffy (2002), and Kashima and Koyanagi (2002)
for trees. Most of them are basically based on the same idea. An object such as a
sequence or a tree is decomposed into substructures, e.g. substrings, subsequences,
subtrees, and a feature vector is composed of the counts of the substructures. Since
the dimensionality of feature vectors is typically very high, the explicit computa-
tions of feature values should be avoided. So most of the kernels adopt efficient
procedures such as dynamic programming or suffix trees.

In this chapter, we discuss the construction of kernel functions between labeled
graphs1. We try to give a unified overview on the recent researches for graph
kernels (Kashima and Inokuchi, 2002; Kashima et al., 2003; Gärtner, 2002; Gärtner
et al., 2003). A common point of these works is that features are composed of the
counts of label sequences produced by graph traversal. For the labeled graph shown
in Figure 1.1, a label sequence is produced by traversing the vertices, and looks like

(A, c, C, b, A, a,B), (1.1)

1. Note that they should be distinguished from kernels in graph structured input spaces
such as kernels between two vertices in a graph, e.g., diffusion kernels (Srinivasan et al.,
1996; Kandola et al., 2003; Lafferty and Lebanon, 2003) or kernels between two paths in
a graph, e.g., path kernels (Takimoto and Warmuth, 2002).
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where the vertex labels A,B, C, D and the edge labels a, b, c, d appear alternately.
The essential difference among the kernels lies in how graphs are traversed and
how weights are involved in computing a kernel. We call this family of kernel
’label sequence kernels’. This family of kernels can be computed efficiently and
capture essential features of labeled graphs. As we will see below, label sequence
kernels are closely related to the kernels between probability distributions (Jebara
and Kondor, 2003), especially the kernels between hidden Markov models (Lyngsø
et al., 1999). Mathematically it is possible to consider a kernel based on more
complicated substructures such as subgraphs. However the practical computation
becomes considerably more difficult, because counting the number of all possible
subgraphs turns out to be NP-hard (Gärtner et al., 2003).

When the graphs are acyclic, the label sequence kernels are computed simply by
dynamic programming as shown in Section 1.2.3.1. However, when the graphs are
cyclic, label sequences of infinite length can be produced because the traversal may
never end. In that case, the number of features becomes infinite. For computing
a kernel based on infinite dimensional vectors, we exploit recursive structures in
features, and it will be shown that the kernel computation is reduced to finding the
stationary state of a discrete-time linear system (Rugh, 1995), which can be done
efficiently by solving simultaneous linear equations with a sparse coefficient matrix.

In the following, we describe the kernel function proposed by Kashima et al.
(2003).2 This kernel is defined as the expectation of a string kernel over all possible
label sequences, which is regarded as a special case of marginalized kernels (Tsuda
et al., 2002). The relations to other label sequence kernels are discussed, and
several extensions are proposed as well. Finally, in order to investigate how well
our kernel performs on the real data, we show promising results on classifying
chemical compounds.

1.2 Label Sequence Kernel Between Labeled Graphs

In this section, we introduce a kernel between labeled graphs. First of all, let us
define a labeled graph. Let ΣV , ΣE be the sets of vertex labels and edge labels,
respectively. Let X be a finite nonempty set of vertices, v be a total function
v : X → ΣV , L be a set of ordered pairs of vertices called edges, and e be a
total function e : L → ΣE . Then G = (X, v,L, e) is a labeled graph with directed
edges. Figure 1.1 shows such a graph. For the time being, we assume that there
are no multiple edges from one vertex to another. Our task is to construct a kernel
function K(G,G′) between two labeled graphs.

2. Notice that the notations here are in part changed from those in Kashima et al. (2003)
for better presentation.
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Figure 1.1 An example of labeled graphs. Vertices and edges are labeled by upper
and lower case letters, respectively. By traversing along the bold edges, the label
sequence (1.1) is produced.

1.2.1 Random Walks on Graphs

For extracting features from graph G, a set of label sequences is produced by random
walking. At the first step, x1 ∈ X is sampled from an initial probability distribution
ps(x1). Subsequently, at the i-th step, the next vertex xi ∈ X is sampled subject
to a transition probability pt(xi|xi−1), or the random walk ends with probability
pq(xi−1):

|X|∑
xi=1

pt(xi|xi−1) + pq(xi−1) = 1. (1.2)

When we do not have any prior knowledge, we can set ps to be the uniform
distribution, the transition probability pt to be an uniform distribution over the
vertices adjacent to the current vertex, and the termination probability pq to be a
small constant probability.

From the random walk, we obtain a sequence of vertices called path:

x = (x1, x2, . . . , x`), (1.3)

where ` is the length of x (possibly infinite). The probability for the path x is
described as

p(x|G) = ps(x1)
∏̀

i=2

pt(xi|xi−1)pq(x`).

Let us define a label sequence as an alternating sequence of vertex labels and edge
labels:

h = (h1, h2, . . . , h2`−1) ∈ (ΣV ΣE)`−1ΣV .

Associated with a path x, we obtain a label sequence

hx = (vx1 , ex1,x2 , vx2 , . . . , vx`
).
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The probability for the label sequence h is equal to the sum of the probabilities of
the paths emitting h,

p(h|G) =
∑
x

δ(h = hx) ·
(

ps(x1)
∏̀

i=2

pt(xi|xi−1)pq(x`)

)

where δ is a function that returns 1 if its argument holds, 0 otherwise.

1.2.2 Label Sequence Kernel

Next we define a kernel Kz between two label sequences h and h′. We assume that
two kernel functions, Kv(v, v′) and Ke(e, e′), are readily defined between vertex
labels and edge labels, respectively. We constrain both kernels Kv(v, v′),Ke(e, e′) ≥
0 to be non-negative3. An example of vertex label kernel is the identity kernel,

Kv(v, v′) = δ(v = v′). (1.4)

If the labels are defined in R, the Gaussian kernel,

Kv(v, v′) = exp(− ‖ v − v′ ‖2 /2σ2) (1.5)

could be a natural choice (Schölkopf and Smola, 2002). Edge kernels are defined
similarly. The kernel for label sequences is defined as the product of label kernels
when the lengths of two sequences are equal (` = `′):

Kz(h,h′) = Kv(h1, h
′
1)

∏̀

i=2

Ke(h2i−2, h
′
2i−2)Kv(h2i−1, h

′
2i−1). (1.6)

If the lengths are different (` 6= `′), then Kz is simply zero (Kz(h,h′) = 0).
The function Kz is proven to be a valid kernel function as follows: The set of all

possible label sequences H can be divided into subsets according to their lengths
as H1,H2, . . .. Let us define K

(j)
z as Kz whose domain is limited to the subset

Hj × Hj , then K
(j)
z is a valid kernel as it is described as the tensor product of

kernels (Schölkopf and Smola, 2002). Now let us expand the domain of K
(j)
z to the

whole set H ×H by assigning zero when one of the inputs is not included in Hj ,
and call it K̄

(j)
z . This operation is called zero extension (Haussler, 1999), which

preserves positive semidefiniteness. Since Kz is the sum of all K̄
(j)
z ’s, it turns out

to be a valid kernel.
Finally, our label sequence kernel is defined as the expectation of Kz over all

possible h and h′.

K(G,G′) =
∑

h

∑

h′
Kz(h,h′)p(h|G)p(h′|G′). (1.7)

3. This constraint will play an important role in proving the convergence of our kernel in
Section 1.2.5.
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This kernel is valid, because it is described as an inner product of two vectors
p(h|G) and p(h′|G′).

1.2.3 Efficient Computation of Label Sequence Kernels

The label sequence kernel (1.7) can be expanded as

K(G,G′) =
∞∑

`=1

∑

h

∑

h′

(
Kv(h1, h

′
1)

∏̀

i=2

Ke(h2i−2, h
′
2i−2)Kv(h2i−1, h

′
2i−1)

)
×

(∑
x

δ(h = hx) ·
(

ps(x1)
∏̀

i=2

pt(xi|xi−1)pq(x`)

))
×

(∑

x′
δ(h = hx′) ·

(
ps(x′1)

∏̀

i=2

pt(x′i|x′i−1)pq(x′`)

))
,

where
∑

h :=
∑

h1∈ΣV

∑
h2∈ΣE

· · ·∑h2`−1∈ΣV
and

∑
x :=

∑|X|
x1=1 · · ·

∑|X|
x`=1. The

straightforward enumeration of all terms to compute the sum takes probibitive
computational cost. For cyclic graphs, it is simply impossible because ` spans from
1 to infinity. Nevertheless there is an efficient method to compute this kernel as
shown below. The method are based on the observation that the kernel has the
following nested structure.

K(G,G′) = lim
L→∞

L∑

`=1

∑

x1,x′1

s(x1, x
′
1)


 ∑

x2,x′2

t(x2, x
′
2, x1, x

′
1)


 ∑

x3,x′3

t(x3, x
′
3, x2, x

′
2)×


· · ·


 ∑

x`,x′`

t(x`, x
′
`, x`−1, x

′
`−1)q(x`, x

′
`)





 · · ·


 , (1.8)

where

s(x1, x
′
1) := ps(x1)p′s(x

′
1)Kv(vx1 , v

′
x′1

)

t(xi, x
′
i, xi−1, x

′
i−1) := pt(xi|xi−1)p′t(x

′
i|x′i−1)Kv(vxi

, v′x′i)Ke(exi−1xi
, ex′i−1x′i) (1.9)

q(x`, x
′
`) := pq(x`)p′q(x

′
`).

1.2.3.1 Acyclic Graphs

Let us first consider acyclic graphs, that is, directed graphs without cycles. Precisely,
it means that if there is a directed path from vertex x1 to x2 then there is no directed
paths from vertex x2 to x1. When a directed graph is acyclic, the vertices can be
numbered in a topological order4 such that every edge from a vertex numbered i

to a vertex numbered j satisfies i < j (see Figure 1.2).
Since there are no directed paths from vertex j to vertex i if i < j, we can employ

4. Topological sorting of graph G can be done in O(|X|+ |L|) (Cormen et al., 1990).
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Figure 1.2 A topologically sorted directed acyclic graph. The label sequence
kernel can be efficiently computed by dynamic programming running from right
to left.

dynamic programming. When G and G′ are directed acyclic graphs, (1.8) can be
written as

K(G,G′) =
∑

x1.x′1

s(x1, x
′
1)q(x1, x

′
1) + lim

L→∞

L∑

`=2

∑

x1,x′1

s(x1, x
′
1)× (1.10)


 ∑

x2>x1,x′2>x′1

t(x2, x
′
2, x1, x

′
1)


 ∑

x3>x2,x′3>x′2

t(x3, x
′
3, x2, x

′
2)×


· · ·


 ∑

x`>x`−1,x′`>x′`−1

t(x`, x
′
`, x`−1, x

′
`−1)q(x`, x

′
`)





 · · ·


 .

The first and second terms correspond to the label sequences of length one and
those longer than one, respectively. By defining

r(x1, x
′
1) := q(x1, x

′
1) + lim

L→∞

L∑

`=2


 ∑

x2>x1,x′2>x′1

t(x2, x
′
2, x1, x

′
1)×


· · ·


 ∑

x`>x`−1,x′`>x′`−1

t(x`, x
′
`, x`−1, x

′
`−1)q(x`, x

′
`)





 · · ·


 ,(1.11)

we can rewrite (1.10) as the following:

K(G,G′) =
∑

x1,x′1

s(x1, x
′
1)r(x1, x

′
1).

The merit of defining (1.11) is that we can exploit the following recursive equation.

r(x1, x
′
1) = q(x1, x

′
1) +

∑

j>x1,j′>x′1

t(j, j′, x1, x
′
1)r(j, j

′). (1.12)

Since all vertices are topologically ordered, r(x1, x
′
1) for all x1 and x′1 can be

efficiently computed by dynamic programming (Figure 1.3). The worst case time
complexity of computing K(G,G′) is O(c · c′ · |X| · |X′|) where c and c′ are the
maximum out degree of G and G′, respectively.
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Figure 1.3 Recursion for computing r(x1, x
′
1) using recursive equation (1.12).

r(x1, x
′
1) can be computed based on the precomputed values of r(x2, x

′
2), x2 >

x1, x′2 > x′1.

1.2.3.2 General Directed Graphs

In the case of cyclic graphs, we do not have topologically sorted graphs anymore.
This means that we can not employ the one-pass dynamic programming algorithm
for acyclic graphs. However, we can obtain a recursive form of the kernel like (1.12),
and reduce the problem to solving a system of simultaneous linear equations. Let
us rewrite (1.8) as

K(G,G′) = lim
L→∞

L∑

`=1

∑

x1,x′1

s(x1, x
′
1)r`(x1, x

′
1),

where for ` ≥ 2,

r`(x1, x
′
1) :=


 ∑

x2,x′2

t(x2, x
′
2, x1, x

′
1)


 ∑

x3,x′3

t(x3, x
′
3, x2, x

′
2)×


· · ·


 ∑

x`,x′`

t(x`, x
′
`, x`−1, x

′
`−1)q(x`, x

′
`)





 · · ·


 ,

and r1(x1, x
′
1) := q(x1, x

′
1). Replacing the order of summation, we have the follow-

ing:

K(G,G′) =
∑

x1,x′1

s(x1, x
′
1) lim

L→∞

L∑

`=1

r`(x1, x
′
1)

=
∑

x1,x′1

s(x1, x
′
1) lim

L→∞
RL(x1, x

′
1), (1.13)
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where

RL(x1, x
′
1) :=

L∑

`=1

r`(x1, x
′
1).

Thus we need to compute R∞(x1, x
′
1) to obtain K(G,G′).

Now let us restate this problem in terms of linear system theory (Rugh, 1995).
The following recursive relationship holds between rk and rk−1 (k ≥ 2):

rk(x1, x
′
1) =

∑

i,j

t(i, j, x1, x
′
1)rk−1(i, j). (1.14)

Using (1.14), the recursive relationship for RL also holds as follows:

RL(x1, x
′
1) = r1(x1, x

′
1) +

L∑

k=2

rk(x1, x
′
1)

= r1(x1, x
′
1) +

L∑

k=2

∑

i,j

t(i, j, x1, x
′
1)rk−1(i, j)

= r1(x1, x
′
1) +

∑

i,j

t(i, j, x1, x
′
1)RL−1(i, j). (1.15)

Thus RL can be perceived as a discrete-time linear system (Rugh, 1995) evolving
as the time L increases. Assuming that RL converges, (see Section 1.2.5 for the
convergence condition), we have the following equilibrium equation:

R∞(x1, x
′
1) = r1(x1, x

′
1) +

∑

i,j

t(i, j, x1, x
′
1)R∞(i, j). (1.16)

Therefore, the computation of our kernel finally boils down to solving simultaneous
linear equations (1.16) and substituting the solutions into (1.13).

Now let us restate the above discussion in the language of matrices. Let s, r1 and
r∞ be |X| · |X′| dimensional vectors such that

s = (· · · , s(i, j), · · · )>, r1 = (· · · , r1(i, j), · · · )>, r∞ = (· · · , R∞(i, j), · · · )>,

(1.17)
respectively. Let the transition probability matrix T be a |X||X′| × |X||X′| matrix,

[T ](i,j),(k,l) = t(i, j, k, l).

Equation (1.13) can be rewritten as

K(G,G′) = rT
∞s (1.18)

Similarly, the recursive equation (1.16) is rewritten as

r∞ = r1 + Tr∞.
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The solution of this equation is

r∞ = (I − T )−1r1.

Finally, the matrix form of the kernel is

K(G,G′) = (I − T )−1r1s. (1.19)

Computing the kernel requires solving a linear equation or inverting a matrix
with |X||X′| × |X||X′| coefficients. However, the matrix I − T is actually sparse
because the number of non-zero elements of T is less than c · c′ · |X| · |X′| where
c and c′ are the maximum out degree of G and G′, respectively (see (1.9) for
the definition of T ). Therefore, we can employ efficient numerical algorithms that
exploit sparsity (Barrett et al., 1994). In our implementation, we employed a simple
iterative method that updates RL by using (1.15) until convergence starting from
R1(x1, x

′
1) = r1(x1, x

′
1).

1.2.4 Allowing Multiple Edges Between Vertices

Up to this point, we assumed that there are no multiple edges from one vertex
to another. However, a slight modification allows to incorporate multiple edges.
Suppose that there are Mxi−1xi

directed edges from vertex x′i−1 to vertex x′i with
labels em

xi−1xi
, and transition probabilities pm

t (xi|xi−1) (m = 1, 2, . . . , Mxi−1xi).
Instead of (1.9), by considering all pair of em

xi−1xi
and em

x′i−1x′i
, we have only to

redefine t(xi, x
′
i, xi−1, x

′
i−1) as the following.

t(xi, x
′
i, xi−1, x

′
i−1) := K(vxi

, v′x′i)×
Mxi−1xi∑

m=1

M ′
xi−1xi∑

m′=1

pm
t (xi|xi−1)p′m

′
t (x′i|x′i−1)K(em

xi−1xi
, em′

x′i−1x′i
)

1.2.5 Convergence Condition

Since loops are allowed in general directed graphs, infinite number of paths can be
generated. Therefore some convergence condition is needed to justify (1.16). The
following theorem holds:

Theorem 1.1

The infinite sequence limL→∞RL(x1, x
′
1) converges for any x1 ∈ {1, · · · , |X|} and

x′1 ∈ {1, · · · , |X′|}, if the following inequality holds for i0 ∈ {1, · · · , |X|} and
j0 ∈ {1, · · · , |X′|},

|X|∑

i=1

|X′|∑

j=1

t(i, j, i0, j0)q(i, j) < q(i0, j0). (1.20)
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Figure 1.4 A chemical compound is conventionally represented as an undirected
graph (left). Atom types and bond types correspond to vertex labels and edge
labels, respectively. The edge labels ’s’ and ’d’ denote single and double bonds,
respectively. As our kernel assumes a directed graph, undirected edges are replaced
by directed edges (right).

For the proof, see Kashima et al. (2003). The condition (1.20) seems rather
complicated, but we can have a simpler condition, if the termination probabilities
are constant over all vertices.

Corollary 1.2

If pq(i) = p′q(j) = γ for any i and j, the infinite sequence limL→∞RL(x1, x
′
1)

converges if

Kv(v, v′)Ke(e, e′) <
1

(1− γ)2
. (1.21)

Apparently, the above lemma holds if 0 ≤ Kv,Ke ≤ 1. Standard label kernels such
as (1.4) and (1.5) satisfy this condition.

1.3 Experiments

We applied our kernel to the prediction of properties of chemical compounds.
A chemical compound can naturally be represented as an undirected graph by
considering the atom types as the vertex labels, for example C, Cl and H, and the
bond types as the edge labels, for example s (single bond) and d (double bond). For
our graph kernel, we replaced an undirected edge by two directed edges (Figure 1.4)
since the kernel assumes directed graphs.

1.3.1 Pattern Discovery Algorithm

We compare our graph kernel with the pattern-discovery (PD) method by Kramer
and De Raedt (2001) which is one of the best state-of-the-art methods in predictive
toxicology. Like our graph kernel, the PD method counts the number of label
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sequences appearing in the graph5. There are other methods which count more
complicated substructures such as subgraphs (Inokuchi et al., 2000), but we focus
on Kramer and De Raedt (2001) whose features are similar to ours.

Assume that we have n graphs G1, . . . , Gn. Let us define #(h, G) as the number
of appearances of a label sequence h in G. The PD method identifies the set of all
label sequences H which appear in more than m graphs:

H = {h |
n∑

i=1

δ (# (h, Gi) > 0) ≥ m},

where the parameter m is called the minimum support parameter. Furthermore, it
is possible to add extra conditions, for example selecting only the paths frequent
in a certain class and scarce in the other classes. Each graph G is represented by a
vector as

G → (#(x1, G), . . . ,#(x|H|, G)), (1.22)

whose dimensionality is the cardinality of H. The PD method is useful for extracting
comprehensive features. However, as the minimum support parameter gets smaller,
the dimensionality of the feature vectors becomes so large that a prohibitive amount
of computation is required. Therefore, the user has to control the minimum support
parameter m, such that the feature space does not lose necessary information and,
at the same time, computation stays feasible.

The PD method contrasts markedly with our method. Our kernel method puts
emphasis on dealing with infinite, but less interpretable features, while the PD
method tries to extract a relatively small number of meaningful features. Looking
at the algorithms, our method is described by just one equation (1.16), while the
PD method’s algorithm is rather complicated (De Raedt and Kramer, 2001).

1.3.2 Datasets

We used two datasets, the PTC dataset (Helma et al., 2001) and the Mutag
dataset (Srinivasan et al., 1996). The PTC dataset is the results of the following
pharmaceutical experiments. 417 compounds were given to four types of test
animals: Male Mouse (MM), Female Mouse (FM), Male Rat (MR) and Female
Rat (FR). According to their carcinogenicity, each compound is assigned one of
the following labels: {EE, IS,E,CE,SE,P,NE,N} where CE, SE and P indicate
”relatively active”, and NE and N indicate ”relatively inactive”, and EE, IS and
E indicate ”can not be decided”. In order to simplify the problem, we relabeled
CE, SE and P as “positive”, and NE and N as “negative”. The task is to predict
whether a given compound is positive or negative for each type of test animals.

5. Notice that the definition of label sequences is different from ours in several points, for
example a vertex will not be visited twice in a path. See Kramer and De Raedt (2001) for
details.
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Table 1.1 Several statistics of the datasets such as numbers of positive exam-
ples (#positive) and negative examples (#negative), maximum degree (max. de-
gree), maximum size of graphs (max. |X|), average size of graphs (avg. |X|), and
numbers of vertex labels (|ΣV |) and edge labels (|ΣE |).

MM FM MR FR Mutag

#positive 129 143 152 121 125

#negative 207 206 192 230 63

max. |X| 109 109 109 109 40

avg. |X| 25.0 25.2 25.6 26.1 31.4

max. degree 4 4 4 4 4

|ΣV | 21 19 19 20 8

|ΣE | 4 4 4 4 4

Thus we eventually had four two-class problems. In the Mutag dataset, the task is
a two-class classification problem to predict whether each of the 188 compounds has
mutagenicity or not. Each statistics of the datasets are summarized in Table 1.1.

1.3.3 Experimental Settings and Results

Assuming no prior knowledge, we defined the probability distributions for random
walks as follows. The initial probabilities were simply uniform, i.e. ps(x) = 1/|X|.
The termination probabilities were determined as a constant γ over all vertices.
The transition probabilities pt(x|x0) were set as uniform over adjacent vertices. We
used (1.4) as the label kernels. In solving the simultanous equations, we employed
a simple iterative method (1.15). In our observation, 20-30 iterations were enough
for convergence in all cases. For the classification algorithm, we used the voted
kernel perceptron (Freund and Shapire, 1999), whose performance is known to
be comparable to SVMs. In the pattern discovery method, the minimum support
parameter was determined as 0.5, 1, 3, 5, 10, 20% of the number of compounds, and
the simple dot product in the feature space (1.22) was used as a kernel. In our
graph kernel, the termination probability γ was changed from 0.1 to 0.9.

Table 1.2 and Table 1.3 show the classification accuracies in the five two-class
problems measured by leave-one-out cross validation. No general tendencies were
found to conclude which method is better (the PD was better in MR, FR and Mutag,
but our method was better in MM and FM). Thus it would be fair to say that the
performances were comparable in this small set of experiments. Even though we
could not show that our method is constantly better, this result is still appealing,
because the advantage of our method lies in its simplicity both in concepts and in
computational procedures.

1.4 Related Works
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Table 1.2 Classification accuracies (%) of the pattern discovery method. ’MinSup’
shows the ratio of the minimum support parameter to the number of compounds
m/n.

MinSup MM FM MR FR Mutag

0.5% 60.1 57.6 61.3 66.7 88.3

1 % 61.0 61.0 62.8 63.2 87.8

3 % 58.3 55.9 60.2 63.2 89.9

5 % 60.7 55.6 57.3 63.0 86.2

10 % 58.9 58.7 57.8 60.1 84.6

20% 61.0 55.3 56.1 61.3 83.5

Table 1.3 Classification accuracies (%) of our graph kernel. The parameter γ is
the termination probability of random walks, which controls the effect of the length
of label sequences.

γ MM FM MR FR Mutag

0.1 62.2 59.3 57.0 62.1 84.3

0.2 62.2 61.0 57.0 62.4 83.5

0.3 64.0 61.3 56.7 62.1 85.1

0.4 64.3 61.9 56.1 63.0 85.1

0.5 64.0 61.3 56.1 64.4 83.5

0.6 62.8 61.9 54.4 65.8 83.0

0.7 63.1 62.5 54.1 63.2 81.9

0.8 63.4 63.4 54.9 64.1 79.8

0.9 62.8 61.6 58.4 66.1 78.7

We have presented one kernel for graphs based on label sequences, but variants can
be obtained by changing the following two points:

Removing probabilistic constraints: In our setting, the random walk parameters
are determined such that the probabilities of all label sequences sum to one. One can
remove these constraints and simply consider transition “weights”, not probabilities.

Changing the rate of weight decay: The probabilities (or weights) associated with
a label sequence could decay as the length of the sequence increases. Variants can
be obtained by introducing an extra decaying factor depending on the sequence
length.

Recently, Gärtner et al. (2003) proposed two graph kernels called geometric and
exponential kernels. Let wt(xi|xi−1) denote a weight of for transition from xi−1 to
xi. Their kernels can be recovered in our framework by setting ps(·) = 1, pq(·) = 1



2004/03/01 10:50

1.4 Related Works 15

and replacing the transition probability pt(xi|xi−1) with
√

λkwt(xi|xi−1)

where λk is the decaying factor depending on the current sequence length k. In our
setting, when the random walk passes through an edge, the probability is multiplied
by the same factor regardless of the current sequence length. However, in their
setting, the decay rate may get larger when the edge is visited later, i.e., after
traversing many vertices.

In the geometric kernel, λk does not depend on k, i.e., λk = λ. This kernel is quite
similar to our kernel and is computed by means of matrix inversion as in (1.19).
An interesting kernel called the exponential kernel is derived when

λk =
β

k
.

It turns out that this kernel is computed efficiently by the matrix exponential:

K(G,G′) =
∑

i

∑

j

[
lim

L→∞

L∑

`=1

(βT )`

`!

]

ij

=
∑

i

∑

j

[
eβT

]
ij

.

Obviously possible variants are not limited to these two cases, so there remains a
lot to explore.

Label sequence kernels have an intrinsic relationship to the kernels between
probability distributions called probability product kernels (Jebara and Kondor,
2003). Here the kernel between two probability distributions p and p′ is defined as

K(p, p′) =
∫

Ω

p(x)ρp′(x)ρdx (1.23)

When ρ = 1, the kernel is called expected likelihood kernel, and probability with
which both two probability distributions generate x independently. Also, when
ρ = 1/2, the kernel is called Bhattacharrya kernel, which is related to the Hellinger
distance. In fact, when edges are not labeled and the vertex kernel is determined
as the identity kernel, our kernel can be regarded as the expected likelihood kernel
between two Markov models. In such cases. the graph G is perceived as a transition
graph of a Markov model and random walking amounts to the emission of symbols.
The same idea can be extended to define a kernel for hidden markov models(Lyngsø
et al., 1999). An HMM can be regarded as a labeled graph where edges are not
labeled and vertices are probabilistically labeled, that is, a vertex randomly emits
one of the symbols according to some probability distribution.

If we regard the kernel Kz(h,h′) as a joint distribution pz(h,h′) that emits a
pair of sequences h and h′, it can be an instance of rational kernels (Cortes et al.,
2003),

K(x,x′) =
∑

h

∑

h′
pz(h,h′)p(h|x)p′(h′|x′),
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that define a kernel between two probabilistic automata p(h|x) and p′(h′|x′) via
probabilistic transducer pz(h,h′). The rational kernels are not limited to the
probabilistic setting, and provide an unified framework for designing kernels via
weighted transducers. Cortes et al. (2003) provided no algorithms for acyclic cases.
The techniques we introduced in this chapter can be easily applied to the rational
kernels for cyclic cases.

1.5 Conclusion

This chapter discussed the design of kernel functions between directed graphs with
vertex labels and edge labels. We defined the label sequence kernel by using random
walks on graphs, and reduced the computation of the kernel to solving a system
of simultaneous linear equations. In contrast to the pattern-discovery method, our
kernel takes into account all possible label sequences without computing feature
values explicitly. The structure we dealt with in this paper is fairly general, and
promising in a wide variety of problems in bioinformatics. Potential targets would
be DNA and RNA sequences with remote correlations, HTML and XML documents
in MEDLINE, topology graphs and distance graphs of 3-D protein structures, just
to mention some.
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