
Kernels for Semi-Structured Data

Hisashi Kashima hkashima@jp.ibm.com
Teruo Koyanagi Teruok@jp.ibm.com

IBM Tokyo Research Laboratory, 1623-14, Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan

Abstract

Semi-structured data such as XML and
HTML is attracting considerable attention.
It is important to develop various kinds of
data mining techniques that can handle semi-
structured data. In this paper, we dis-
cuss applications of kernel methods for semi-
structured data. We model semi-structured
data by labeled ordered trees, and present
kernels for classifying labeled ordered trees
based on their tag structures by generalizing
the convolution kernel for parse trees intro-
duced by Collins and Duffy (2001). We give
algorithms to efficiently compute the kernels
for labeled ordered trees. We also apply our
kernels to node marking problems that are
special cases of information extraction from
trees. Preliminary experiments using artifi-
cial data and real HTML documents show
encouraging results.

1. Introduction

Recently, semi-structured data (Abiteboul et al., 2000)
such as XML and HTML is attracting considerable at-
tention. Not only relational databases, but also semi-
structured databases are likely to increase in the fu-
ture. Also, the WWW can be seen as a huge semi-
structured database whose instances are HTML docu-
ments. Since semi-structured data can be modeled by
labeled ordered trees, it is important to develop var-
ious kinds of data mining techniques that can handle
labeled ordered trees.
In this paper, we aim to develop solutions to two-class
classification problems of labeled ordered trees by ex-
ploiting their structural information. In general learn-
ing problems, objects are represented as vectors in a
feature space. Training a classifier is reduced to de-
ciding on rules to separate vectors that belong to pos-
itive examples from vectors that belong to negative
examples. If we can properly define the bases of the
feature space for classification, we can just pass the
vectors to learning algorithms such as decision trees
and neural networks. However, when we handle more
complex objects such as sequences, trees, and graphs
that have structures among their constituent elements,

the proper vector representation is not obvious, and
the step of feature definition can be difficult and time-
consuming.
One of the strategies for handling such complex ob-
jects is to use local structures of the objects as fea-
tures. Relational learning (Mitchell, 1997) is a general
method that can handle local structures in objects. In
relational learning, several relationships among con-
stituent elements are defined, and the relationships
constitute local structures. The local structures used
as features are incrementally built up in the process
of training on examples. However, since the problem
of searching for the best hypothesis is generally NP-
hard, we must use heuristic methods. Another method
is based on pattern discovery algorithms that find lo-
cal structures appearing frequently (Inokuchi et al.,
2000), and these structures are used as features. The
pattern-discovery-based method has an advantage in
that it can make use of unlabelled data. However, the
process of discovering patterns is again almost always
NP-hard.
Yet another approach is to use kernel methods such
as support vector machines (SVMs) (Vapnik, 1995).
One of the important properties of kernel methods is
their access to examples via kernels. Kernel methods
use only the inner products of the vector representa-
tions when they access the examples. This means that
even in cases where the dimension of the vector rep-
resentations is extremely large, the dimensions do not
explicitly appear in the process of training and classi-
fication as long as an efficient procedure to compute
the inner products is available. The function giving the
inner products is called the ’kernel’, and kernel meth-
ods can work efficiently in high dimensional feature
spaces by using kernels. Moreover, SVMs are known
to have good generalization properties, both theoret-
ically and experimentally, and overcome the ’curse of
dimensionality’ problem in high dimensional feature
spaces (Vapnik, 1995).
Haussler (1999) introduced ’convolution kernels’, a
general framework for handling discrete data struc-
tures by kernel methods. In convolution kernels, ob-
jects are decomposed into parts, and kernels are de-
fined in terms of the parts. In the context of convolu-
tion kernels, convolution kernels specialized for several
discrete data structures have been proposed. Gärtner
et al. (2002) introduced kernels for sets, cosets and

multi-instances. Watkins (1999) developed a sequence
kernel that considers all possible substrings in text se-
quences. Of special interest here, Collins and Duffy
(2001) developed a convolution kernel for parse trees
for natural language texts. Their kernel is also viewed
as an instance of coset kernels for multisets (Gärtner
et al., 2002). In Collins and Duffy (2001), each element
of a vector is the number of times a particular subtree
appears in a parse tree. However, since the number of
subtrees appearing in a tree can grow exponentially as
the size of the tree grows, their explicit enumeration is
computationally problematic. They proposed an effi-
cient way of recursively computing the kernels. How-
ever, the trees that their kernel can handle are limited
to trees where all children of a given node are dis-
tinguishable. Since their recursive rules to efficiently
compute the parse tree kernel are strongly based on
this assumption, the kernel cannot be used for more
general trees. In this paper, we develop an efficient
algorithm applicable to labeled ordered trees. Fur-
thermore, we extend our kernel to be able to flexibly
decide whether a subtree appears in a tree. The ex-
tended kernels can allow some mutations of node labels
and elastic subtree structures. The time complexities
of computing our kernels are still the same as for the
parse tree kernel.
Next, we consider node marking problems for labeled
ordered trees. The node marking problems are tasks
to learn which nodes are to be marked in a tree. Af-
ter being trained on example trees, each having some
marked nodes, the learning machine must correctly
mark the nodes of new trees that have not yet been
seen. The node marking problems can be considered as
special cases of information extraction (Cowie & Lehn-
ert, 1996) from tree structures. Information extraction
is a technology for analyzing documents and extract-
ing information that users want, for example, for con-
structing a relational database automatically by ex-
tracting job descriptions and salaries from HTML doc-
uments describing jobs. Several research projects have
discussed the node marking problem in the context of
information extraction. Craven et al. (2000) employed
relational learning (Mitchell, 1997). Sakamoto et al.
(2001) proposed a method based on the idea of wrap-
per induction (Kushmerick, 2000). Their algorithm
generalizes paths from roots to marked nodes. Our
approach is similar to that of (Craven et al., 2000), in
that we reduce a node marking problem to a classifi-
cation problem of marked trees.
Finally, we performed some computational experi-
ments of classification and node marking on artificial
data and on real HTML data to demonstrate that
structural information has some predictive power for
some data and that our kernel can efficiently capture
this information. The artificial data is generated so
that learning machines make mistakes if they can not
handle local structures, and the results prove that our
kernel can successfully handle them. The results for
the HTML documents imply our kernel is promising
for real world data.

This paper is organized as follows. In Section 2, we
describe the parse tree kernel (Collins & Duffy, 2001)
that our kernels are based on. In Section 3, we intro-
duce the kernels for labeled ordered trees. In Section
4, we describe how to make use of our kernels for node
marking problems for labeled ordered trees. In Sec-
tion 5, we summarize the results of our experiments
on artificial data and on real HTML data. We con-
clude with Section 6 in which we provide a summary
and discussion.

2. Parse Tree Kernel

In this section, we briefly review the convolution ker-
nel for parse trees for context-free languages suggested
by Collins and Duffy (2001). The parse tree kernel is a
specialized convolution kernel introduced by Haussler
(1999). In their vector representation of a parse tree,
the features correspond to the subtrees that can pos-
sibly appears in a parse tree (Figure 1), and the value
of a given feature is the number of appearances of the
subtree in the parse tree. However, since the number
of subtrees appearing in a tree can grow exponentially
as the size of the tree grows, their explicit enumera-
tion is computationally problematic. They proposed a
method to compute the inner product of two vectors
without accessing the large vectors directly.
Let subtree1, subtree2, . . . be all subtrees possibly ap-
pearing in parse trees. A parse tree T is represented
as a vector

VT = (#subtree1(T),#subtree2(T),
#subtree3(T), . . .) (1)

where #subtreei(T) is the number of appearances of
subtreei in T . Then the inner product of the vector
representations of two trees, T1 and T2, becomes

< VT1 , VT2 >

=
∑

i

#subtreei (T1) ·#subtreei (T2)

=
∑

i


 ∑

n1∈NT1

Isubtreei
(n1)


 ·


 ∑

n2∈NT2

Isubtreei
(n2)




=
∑

n1∈NT1

∑

n2∈NT2

C(n1, n2) (2)

where NT1 and NT2 are the sets of nodes in T1 and
T2 respectively, and Isubtreei(n1) is a function that re-
turns the number of appearance of subtreei rooted at
n1 in T1, and C(n1, n2) is the sum of the product of
the numbers of times each subtree appears at n1 and
n2, i.e.

C(n1, n2) =
∑

i

Isubtreei(n1) · Isubtreei(n2). (3)

C(n1, n2) can be recursively calculated by using the
following recursive rules:

Figure 1. (a) Parse tree (b) Subtrees appearing below the
right NP

1. If the productions at n1 and n2 are different,
C(n1, n2) := 0.

2. Else if both n1 and n2 are pre-terminals,
C(n1, n2) := 1.

3. Else,

C(n1, n2) :=
nc(n1)∏

i

(1 + C(ch(n1, i), ch(n2, i))), (4)

where nc(n1) is the number of children of node n1

and ch(n1, i) is the i-th child of node n1. The recur-
sive equation (4) is based on the fact that all subtrees
rooted at a certain node can be constructed from com-
bining some of the subtrees rooted at each of its chil-
dren. The time complexity of computing this kernel is
O(|NT1 ||NT2 |).

3. Labeled Ordered Tree Kernels

3.1 A Labeled Ordered Tree Kernel

In this subsection, we give a kernel for labeled ordered
trees by generalizing the parse tree kernel. The vector
representation and kernel definition of labeled ordered
trees are the same as those stated for the parse tree
in Equations (1) and (2). Unfortunately, we cannot
use the recursive rules for the parse tree kernel for
computing this kernel since the use of the parse tree
kernel is limited to trees where no node shares its label
with any of its siblings. In the parse tree kernel, the
recursive equation (4) is invoked only when the pro-
duction rules used at n1 and n2 are the same. Since
the production rule derives both of the two groups of
children of n1 and n2, the one-to-one correspondences
between the two groups of children can be uniquely
determined, and therefore we can recursively compute
C(n1, n2) by Equation (4). However, since such corre-
spondences are not unique in general trees, we have to
consider all the ways of correspondences.
Since we are interested in labeled ordered trees,
we only have to consider one-to-one correspondences
where the order of the children is preserved, that is,

i1 < j1 and i2 < j2 hold whenever the i1-th child of
n1 matches against the i2-th child of n2 and the j1-th
child of n1 matches against the j2-th child of n2. For
a certain node pair, n1 and n2, let Sn1,n2(i, j) be the
sum of the products of the numbers of times each sub-
tree appears at n1 and n2 when we consider only the
nodes up to the i-th child of n1 and the nodes up to
the j-th child of n2. Apparently,

C(n1, n2) = Sn1,n2(nc(n1), nc(n2)). (5)

Since all correspondences preserve the left-to-right or-
dering, Sn1,n2(i, j) can be recursively defined as

Sn1,n2(i, j) = Sn1,n2(i− 1, j) + Sn1,n2(i, j − 1) (6)
−Sn1,n2(i− 1, j − 1)
+Sn1,n2(i− 1, j − 1) · C(ch(n1, i), ch(n2, j)).

Therefore, we can efficiently compute C(n1, n2) by dy-
namic programming. The algorithm for computing the
kernel of two labeled ordered trees T1 and T2 is shown
in Appendix A.
Finally, we consider the time complexity of comput-
ing the kernel. The computation time for an arbitrary
C(n1, n2) is proportional to the product of the num-
bers of children of n1 and n2. The following simple
analysis shows the time complexity of computing the
kernel of two labeled ordered trees is the product of
their sizes, which is as same as for the parse tree ker-
nel.

∑

n1∈NT1

∑

n2∈NT2

O(nc(n1) · nc(n2))

=
∑

n1∈NT1

O(nc(n1)) ·
∑

n2∈NT2

O(nc(n2))

= O(|NT1 | · |NT2 |) (7)

3.2 Extension to Allow Label Mutations

In the previous subsection, subtrees were required to
match some portion of the labeled ordered tree per-
fectly. In this subsection, we loosen the condition
for the appearance of a subtree by allowing some la-
bel mutations. When we count the number of oc-
currences of subtreei in T , we penalize the count for
label mutations. In other words, we modify the cri-
teria by which a subtree is said to appear. Let Σ
be a set of labels and f : Σ × Σ → [0, 1] be a mu-
tation score function. For ∀l1, l2 ∈ Σ, a low value
of f(l2|l1) indicates a low acceptance of the mutation
from l1 to l2. For example, if subtreei were to struc-
turally match the portion of T as shown in Figure 3,
the shaded nodes would be interpreted as mutations.
Supposing f(A|A) = 1, f(A|D) = 0.5, f(C|B) = 0.8
and f(C|C) = 1, the penalized score is defined as their
product f(A|A) ·f(A|D) ·f(C|B) ·f(C|C) = 0.4. This
is interpreted as subtreei appearing 0.4 times for the
matching shown in Figure (2). The i-th element of
the vector representation of T is defined as the sum of

Figure 2. An example of mutation of labels

the penalized scores of subtreei over all positions in T
where a structural matching occurs.
Since the penalized score is defined by the product,
we have only to modify the computation of C(n1, n2)
in the algorithm. By introducing a kind of similarity
between the labels of two nodes as

Sim(l(n1), l(n2)) =
∑

a∈Σ

f(l(n1)|a)f(l(n2)|a) , (8)

we can compute C(n1, n2) as

C(n1, n2) = Sim(l(n1), l(n2)) · Sn1,n2(nc(n1), nc(n2)).
(9)

The reason for summing over all labels is to take all
the possibilities of label mutations into account. The
modified algorithm is shown in Appendix B.

3.3 Extension to Allow Elastic Structure
Matchings

In this subsection, we further extend our kernel to be
able to recognize the occurrence of subtrees even more
flexibly by allowing the structures of the subtrees to
be elastic. We say that a subtree appears in a tree if
the subtree is ’embedded’ in the tree while the rela-
tive positions of the nodes of the subtree are preserved
(Figure 3). If a node is a descendant of another node
in the subtree, that relationship between them must
hold in the embedding of the subtrees into the tree.
Similarly, if a node is to the left of another node in
the subtree, the same relationship must hold in the
embedding. In Figure 3, we can say that subtreei ap-
pears at the shaded node.
In the case of non-elastic structures, all subtrees rooted
at a certain node can be constructed by combining
some of the subtrees rooted at each of its children.
However, for allowing elastic structures, they can be
constructed by combining some of the subtrees rooted
at each of its descendants. For this reason, we should
introduce new variables Ca(n1, n2) defined as

Ca(n1, n2) =
∑

na∈Dn1

∑

nb∈Dn2

C(na, nb) (10)

where Dni is the set of nodes including ni and all the
descendant nodes of ni in Ti. By using Ca(n1, n2), the
recursive equation (7) is modified as

Sn1,n2(i, j) = Sn1,n2(i− 1, j) + Sn1,n2(i, j − 1)

Figure 3. Example of embedding subtreei into T

−Sn1,n2(i− 1, j − 1) (11)
+Sn1,n2(i− 1, j − 1) · Ca(ch(n1, i), ch(n2, j)).

We can maintain Ca(n1, n2) efficiently since Ca(n1, n2)
can also be recursively defined as

Ca(n1, n2) (12)

=
nc(n2)∑

j=1

Ca(n1, ch(n2, j)) +
nc(n1)∑

i=1

Ca(ch(n1, i), n2)

−
nc(n2)∑

j=1

nc(n1)∑

i=1

Ca(ch(n1, i), ch(n2, j)) + C(n1, n2).

The algorithm for computing the kernel allowing such
elastic structures is shown in Appendix C. The time
complexity of the algorithm still remains the same as
for the parse tree kernel.

4. Application to Node Marking
Problems

While only classification problems have been discussed
up to now, in this section, we consider node marking
problems, especially for labeled ordered trees. The
node marking problems are tasks to learn which nodes
to mark from example trees, some of whose nodes are
marked. After being trained, the learning machine
must correctly mark the nodes of trees that have not
yet been evaluated. The node marking problems can
be considered as special cases of information extrac-
tion from trees by regarding marked nodes as either
leaves or the roots of subtrees to be extracted from
the trees. The input of a node marking problem is a
set of trees Tm, some of whose nodes are marked, and
a set of trees Tu that have not yet been evaluated. The
output is Tu with appropriate marks.
Our approach is similar to that of Craven et al. (2000),
in that we reduce a node marking problem to a classi-
fication problem of marked trees. Figure 4 shows the
procedure of our reduction. We regard the trees whose
nodes are correctly marked as positive examples and
the trees whose nodes are incorrectly marked as neg-
ative examples. In Step 3, the transformation from

1 Receive correctly marked trees Tp.
2 From Tp, make incorrectly marked trees Tn.
3 Make a set of positive examples Ep from Tp

and make a set of negative examples En from Tn.
4 From Ep and En, construct a kernel classifier.
5 Receive a set of new trees Tu.
6 For each node n in each tree t ∈ Tu,

6.1 Make a tree where the node n is marked.
6.2 Classify the tree using the kernel classifier.
6.3 If the classification result is positive, mark n.

Figure 4. Node marking as classification

Figure 5. Transformation of a tree

a tree to the examples is done by inserting a special
node indicating a mark between a marked node and
its parent node (Figure 5). After training on the ex-
amples, each of the new trees is evaluated. One of
the candidate nodes is hypothetically marked and the
marked tree is classified by the trained kernel classi-
fier. We actually mark the node if the tree is classified
as positive. Each of the candidate nodes in the tree is
evaluated in turn.

5. Experiments

In this section, we describe our computational experi-
ments in classification and node marking on artificial
data and real HTML data to confirm the ability of
our kernel to exploit structural information. For ease
of implementation, we implemented our method using
the voted kernel perceptron (Freund & Shapire, 1999),
whose performance is known to be competitive with
that of SVMs. We refer to the tree kernel that allows
only strict checking of the occurrence of subtrees as
the ’strict tree kernel’, and the tree kernel that allows
elastic structures as the ’elastic tree kernel’. For both,
we do not allow label mutations. The performance of
each method was measured by leave-one-out cross val-
idation where the learning machines were trained on
all but one of the trees, and attempted to predict for
the remaining tree.

Figure 6. Two substructures included in positive examples

Table 1. Classification results for the artificial data

Poly BoL Kernel Strict Tree Kernel

1 57.8% 80.5%
2 55.6% 84.4%
3 56.7% 80.6%
4 57.8% 76.1%
5 55.0% 76.1%

5.1 Classification

5.1.1 Artificial Data

First, we performed experiments on artificial data sets.
They were designed so that learning machines would
fail in learning unless they considered local structures.
A positive example is a tree including both of the two
trees in Figure 6 as subtrees. We generated A total of
30 trees as positive examples and 30 as negative ex-
amples. The size of each tree was between 30 and 50
nodes, and 10 different labels were used. As a tree ker-
nel, we used the strict tree kernel. We also performed
experiments with a ’bag of labels (BoL)’ kernel. In
the vector representation of the BoL kernel, the ele-
ments were just the numbers of each label appearing
in a tree. Since the BoL kernel can not use any struc-
tural information, we use this kernel as the baseline.
Each kernel was combined with the polynomial kernel
(Vapnik, 1995).
Table 1 shows the classification accuracy averaged over
several experiments. POLY means the degree of the
polynomial kernel combined with the tree kernels or
the BoL kernel. POLY=1 means the tree kernel or the
BoL kernel alone. The bold font indicates the best re-
sult for each kernel. We can see that the tree kernel
made good use of the structural information.

5.1.2 HTML Documents

In this experiment, we performed classification of real
HTML documents based on their structures. We rec-
ognize that the state-of-the-art text classification ap-
proaches are based on the ’bag-of-words’ vector rep-
resentation (Salton & Buckley, 1988; Joachim, 1998)
in which each element of a vector is the number of
times a particular word appears in a document, and
that the same strategy is usually used for HTML doc-
uments. However, besides textual information, HTML
documents have structural and visual information as-

Table 2. Classification results for the HTML data

Poly BoL Strict Tree Elastic Tree

1 41.7% 63.3% 61.7%
2 55.0% 71.7% 60.0%
3 58.3% 75.0% 66.7%
4 51.7% 80.0% 60.0%
5 51.7% 71.7% 63.3%

sociated with tags, and our kernels make use of the
structure of the tags. In this experiment, we ran-
domly chose 30 HTML documents in the IBM Japan
site1 and 30 HTML documents in the IBM US site2

and classified them. Although they are very similar to
each other, we hypothesize that the subtle differences
between the templates for the two sites or the differ-
ences among the designers would be reflected in the
details of the tag structures. Since we were concen-
trating on structural classification, we used only the
tags and omitted the attributes and text3. The sizes
of the obtained trees were from 10 to 1,500 nodes, but
mostly ranging from 200 to 400, and there were about
90 distinct tags included. Each kernel was combined
with the polynomial kernel. Table 2 shows the classifi-
cation accuracy. The strict tree kernel performed the
best, being about 20% more accurate than the BoL
kernel.

5.2 Node Marking

5.2.1 Artificial Data

We also started with artificial data for the node mark-
ing experiments. Each node to be marked had either of
the two local structures shown in Figure 7. The nodes
to be marked are represented as double circles. A set
of 30 trees with such nodes were randomly generated.
The size of each tree was between 30 and 50 nodes and
10 labels were used. The average number of negative
examples generated from them was 142. We used the
strict tree kernel combined with the polynomial kernel.
The tests were performed for only the nodes labeled
C.
Table 3 shows the results averaged over several trials.
The precision, recall and F1-measure are defined as
follows:

precision = 100 · #true positive predictions
#false positive predictions

(13)

1http://www.ibm.com/jp/
2http://www.ibm.com/
3In this data set, the HTML documents in IBM Japan

site are written in Japanese, while those in IBM US site are
written in English. The bag-of-words representation triv-
ially achieves 100% classification accuracy since a learning
machine only needs to verify the language a particular doc-
ument is written in.

Table 3. Node marking result for the artificial data

Poly Precision Recall F1-measure

1 98.6% 55.9% 0.713
2 100.0% 80.8% 0.899
3 100.0% 83.4% 0.910
4 100.0% 90.0% 0.947
5 99.1% 94.1% 0.965

Figure 7. The local structures around the nodes to be
marked

recall = 100 · #true positive predictions
#false negative predictions

(14)

F1-measure =
2 · precision · recall
precision + recall

(15)

We can see that the tree kernel also made good use of
the structural information for node marking tasks.

5.2.2 HTML Documents

Finally, we performed an experiment on information
extraction. Concretely, we tried to extract product
images from catalogues written in HTML. We used
54 randomly selected pages of product catalogues for
desktop PCs and notebook PCs in the IBM Japan Web
site (Figure 8) with the text removed. Besides product
images, the pages included images for product names,
buttons, logos such as ’Intel inside’, and so on. Each
page had just one image to be extracted. The size of
the each tree was from 200 to 800, but mainly from
300 to 400, and again, 90 kinds of tags were used in
these pages. From these trees, we generated negative
examples that were trees where an inappropriate im-
age node was marked. The number of the generated
negative examples was 2,668. Both the strict tree ker-
nel and the elastic tree kernel were used. The tests
were performed for only the image nodes.
The results are shown in Table 4. The results for
combinations of our kernels and the polynomial ker-
nel are not shown since they did not improve the re-
sults. While the elastic tree kernel showed good per-
formance, the precision of the strict tree kernel was
low. However, investigating the result, almost all false
positives for the strict tree kernel were caused by 6
documents which were only 11% of the entire set of
documents. Considering this, we feel the result for
the strict kernel is reasonable. Therefore, we feel that
our kernel-based methods show promise for informa-
tion extraction tasks.

Figure 8. An example of the catalogue pages

Table 4. Node marking result for the HTML documents

Kernel Precision Recall F1-measure

Strict Tree 11.9% 79.6% 0.207
Elastic Tree 99.3% 68.6% 0.811

6. Conclusion

In this paper, we discussed the applicability of the ker-
nel methods to semi-structured data mining problems
such as classification and information extraction. We
modeled semi-structured data by labeled ordered trees,
and gave kernels for labeled ordered trees by general-
izing the convolution kernel for parse trees (Collins &
Duffy, 2001), and applied our kernels to classification
and node marking problems. The time complexities
of computing our kernels are still the same as for the
parse tree kernel.
Next, we performed some experiments of classification
and node marking on artificial data and real HTML
documents. Although the experiments performed in
this paper were limited, to some extent, we could
demonstrate that structural information has some pre-
dictive power for some data, and that our kernel can
efficiently capture this information. The results were
encouraging and showed the potential of the applica-
bility of our method to more complex authentic semi-
structured data. However, it is still not clear how much
performance is improved by using structural informa-
tion in addition to textual information. In future ex-
periments, we plan to extend our kernel method to
handle textual information. We believe that this can
be achieved by further developing the techniques of la-
bel mutation.

In some experiments of node marking, we sometimes
observed that a relatively small number of trees caused
many false positives, which resulted in low precisions.
It is also an open problem to decrease such burst false
positives. The advantage of using SVMs for the node
marking problem is their good generalization perfor-
mance for small datasets. This advantage is impor-
tant, especially for such problems as information ex-
traction, since it costs too much to label many exam-
ples by hand.

Acknowledgements

We would like to thank Michael Houle and Takeshi
Fukuda for helpful discussions. We would also like to
thank the reviewers for their helpful suggestions.

References

Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data
on the Web. Morgan Kauffman.

Collins, M., & Duffy, N. (2001). Convolution kernel
for natural language. Proceedings of the Fourteenth
Neural Information Processing Systems.

Cowie, J., & Lehnert, W. (1996). Information extrac-
tion. Communications of the ACM, 88–91.

Craven, M., DiPasquo, D., Freitag, D., McCallum,
A., Mitchell, T., Nigam, K., & Slattery, S. (2000).
Learning to construct knowledge bases from the
World Wide Web. Artificial Intelligence, 118, 69–
113.

Freund, Y., & Shapire, R. (1999). Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37.

Gärtner, T., Flach, P. A., Kowalczyk, A., & Smola,
A. J. (2002). Multi-instance kernels. Proceedings of
the Ninteenth International Conference on Machine
Learning.

Haussler, D. (1999). Convolution kernels on dis-
crete structures (Technical Report UCSC-CRL-99-
10). University of Calfornia in Santa Cruz.

Inokuchi, A., Washio, T., & Motoda, H. (2000). An
Apriori-based algorithm for mining frequent sub-
structures from graph data. The Fourth European
Conference on Principles and Practice of Knowledge
Discovery in Databases (pp. 13–23).

Joachim, T. (1998). Text categorization with support
vector machines. Proceedings of the tenth European
Conference on Machine Learning.

Kushmerick, N. (2000). Wrapper induction: efficiency
and expressiveness. Artificial Intelligence, 118, 15–
68.

Mitchell, T. (1997). Machine learning. McGraw-Hill.

Sakamoto, H., Murakami, Y., Arimura, H., & Arikawa,
S. (2001). Extracting partial structures from HTML
documents. Proceedings of the Fourteenth Florida
Artificial Intelligence Research Symposium.

Salton, G., & Buckley, C. (1988). Term weighting ap-
proaches in automatic text retrieval. Information
Processing and Management, 24, 513–523.

Vapnik, V. (1995). The nature of statistical learning
theory. Springer Verlag.

Watkins, C. (1999). Kernels from matching operations
(Technical Report CSD-TR-98-07). University of
London, Computer Science Department, Royal Hol-
loway.

Appendix

We describe our algorithms for computing kernels for
labeled ordered trees. Note that the nodes are post-
ordered, and l(n) is the label of n.

A. Algorithm for The Labeled Ordered Tree
Kernel

Tree Kernel(T1,T2):
for n1 = 1, . . . , |NT1 |,

for n2 = 1, . . . , |NT2 |,
if l(n1) and l(n2) are distinct,

C(n1, n2) := 0
else if both n1 and n2 are leaves,

C(n1, n2) := 1
else,

for i = 0, . . . , nc(n1),
for j = 0, . . . , nc(n2),

if i = 0 or j = 0,
Sn1,n2(i, j) := 1

else,
compute Sn1,n2(i, j) by Equation (7)

end if
end for

end for
C(n1, n2) := Sn1,n2(nc(n1), nc(n2))

end if
end for

end for
return

∑|NT1 |
n1=1

∑|NT2 |
n2=1 C(n1, n2)

B. Algorithm for The Labeled Ordered Tree
Kernel Allowing Label Mutations

Tree Kernel(T1,T2):
for n1 = 1, . . . , |NT1 |,

for n2 = 1, . . . , |NT2 |,
if both n1 and n2 are leaves,

C(n1, n2) := Sim(l(n1), l(n2))
else,

for i = 0, . . . , nc(n1),
for j = 0, . . . , nc(n2),

if i = 0 or j = 0,
Sn1,n2(i, j) := 1

else,
compute Sn1,n2(i, j) by Equation (7)

end if
end for

end for
compute C(n1, n2) by Equation (9)

end if
end for

end for
return

∑|NT1 |
n1=1

∑|NT2 |
n2=1 C(n1, n2)

C. Algorithm for The Labeled Ordered Tree
Kernel Allowing Elastic Structure Matchings

Tree Kernel(T1,T2):
for n1 = 1, . . . , |NT1 |,

for n2 = 1, . . . , |NT2 |,
if both n1 and n2 are leaves,

C(n1, n2) := Sim(l(n1), l(n2))
else ,

for i = 0, . . . , nc(n1),
for j = 0, . . . , nc(n2),

if i = 0 or j = 0,
Sn1,n2(i, j) := 1

else,
compute Sn1,n2(i, j) by Equation (12)

end if
end for

end for
C(n1, n2) :=

Sim(l(n1), l(n2)) · Sn1,n2(nc(n1), nc(n2))
compute Ca(n1, n2) by Equation (13)

end if
end for

end for
return

∑|NT1 |
n1=1

∑|NT2 |
n2=1 C(n1, n2)

