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Abstract

We introduce a new perceptron-based dis-
criminative learning algorithm for labeling
structured data such as sequences, trees, and
graphs. Since it is fully kernelized and uses
pointwise label prediction, large features, in-
cluding arbitrary number of hidden variables,
can be incorporated with polynomial time
complexity. This is in contrast to existing la-
belers that can handle only features of a small
number of hidden variables, such as Max-
imum Entropy Markov Models and Condi-
tional Random Fields. We also introduce sev-
eral kernel functions for labeling sequences,
trees, and graphs and efficient algorithms for
them.

1. Introduction

Sequence labeling is one of the important problems
widely seen in the areas of natural language processing
(NLP), bioinformatics and Web data analysis. Label-
ing problems generalize supervised classification prob-
lems, since not only the label of one hidden variable,
but the labels of a set of hidden variables are pre-
dicted. Labeling problems for sequences have been
extensively studied for years. However, there has been
almost no significant work on labeling more general
structured data such as trees and graphs. In this pa-
per, we consider kernel-based approaches for labeling
problems with general structured data.

Conventionally, in sequence labeling problems, gener-
ative models such as Hidden Markov Models (HMMs)
have been used. However, they tend to need a lot of
data since they target the more difficult problems of es-
timating joint probabilities of observable variables and
hidden variables. Also, they can not handle overlap-
ping features naturally, since observable variables must
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be independent of each other given the labels of the
hidden variables. Recently, conditional models such
as Maximum Entropy Markov Models (MEMMs) (Mc-
Callum et al., 2000) and Conditional Random Fields
(CRFs) (Lafferty et al., 2001) are attracting consid-
erable attention, since they are more suitable for the
purpose of predicting the labels of hidden variables
given the labels of observable variables. Recently,
Collins (2002) proposed the Hidden Markov (HM) Per-
ceptron, a more efficient sequence labeling algorithm
based on perceptrons as an alternative to CRFs and
MEMMs. SVM-based algorithms (Altun et al., 2003c)
and boosting-based algorithms (Altun et al., 2003a)
have also been proposed.

In some labeling problems, combinations of local fea-
tures such as bi-grams are not sufficient for modeling
long-distance dependencies such as idioms in NLP, or
motifs in bioinformatics. However, in all of the meth-
ods proposed so far, there is a fundamental problem
that they can handle only local features considering
small numbers of hidden variables. Label prediction is
based on the Viterbi decoding using dynamic program-
ming, which requires exponential time with respect
to the maximum number of hidden variables included
in one feature. Although HM-Perceptrons and HM-
SVMs have dual form representations, features must
be explicitly considered in label prediction. Of special
interest here, Kakade et al. (2002) proposed a point-
wise log-loss objective function for CRFs and MEMMs
that aims to maximize the number of individually cor-
rect labels. The important point of their objective
function is that it does not need to predict the la-
bels for the entire sequence all at once. In this paper,
inspired by the idea of a pointwise log-loss function,
we propose marginalized labeling perceptrons that solve
the label prediction problem by using the marginalized
feature vectors. Marginalized labeling perceptrons re-
alize point-wise label prediction, and are fully kernel-
ized by using marginalized kernel functions (Tsuda
et al., 2002) with long-distance dependencies among
hidden variables.

Also, in this paper, we propose several marginal-
ized kernels used in the kernel marginalized labeling



perceptron for labeling various structured data such
as sequences, trees, and graphs. Recently, kernel-
based methods for classification of structured data
have been extensively studied!, for instance, string
kernels (Lodhi et al., 2002; Leslie et al., 2002), tree
kernels (Collins & Duffy, 2002; Kashima & Koy-
anagi, 2002), and graph kernels (Kashima et al., 2003;
Gértner et al., 2003). Most of them are based on fea-
ture vectors composed of the counts of the substruc-
tures such as subsequences, subtrees, or subgraphs,
to incorporate long-distance dependencies. As the di-
mensionality of feature vectors is typically very high
(possibly infinite), they adopt efficient procedures such
as suffix trees, dynamic programming, or matrix com-
putation to avoid explicit enumeration of the fea-
tures. By extending these kernels, we propose several
marginalized kernels for labeling sequences, trees, and
graphs, and efficient algorithms for computing them.
Finally, we show some promising results for experi-
ments on sequence labeling and tree labeling for real-
world tasks which require structure information.

Our contributions in this paper are twofold: (i) A fully-
kernelized labeling learning algorithm that solves the
problem in label prediction for handling features of ar-
bitrary size. (ii) Fast marginalized kernels for labeling
sequences, trees and graphs.

2. Hidden Markov Perceptrons

The labeling problem is defined to be the problem
of learning a function that maps the observable vari-
ables = (1, 2,...,2r) to the hidden variables y =
(y1,Y2,--.,yr), where each z, € ¥, and each y;, € 3,
For instance, in part-of-speech tagging, x; represents
the ¢-th word, and y; represents the part-of-speech tag
of the t-th word (Figure 1). The learner may exploit
a set of training examples F = (e, e .. elED)
where e = (2 y®) is the i-th example, and
|m(i)‘ — |y<i)| — 7@,

Collins (2002) introduced the HM-Perceptron, a dis-
criminative learning algorithm for sequence labeling
as an alternative to CRFs and MEMMs. It can be
trained efficiently by processing the training examples
one by one. Its ability was shown to be comparable
to CRFs (Altun et al., 2003b). The key idea of the
HM-Perceptron is to interpret the mapping as a bi-
nary classification, i.e. £, x¥,7 — {+1,~1}. Let F
be a set of features for vector representation of (x,y).
Let ¢¢(x,y) be the number of times a feature f € F
appears in (x,y), and ®(x,y) be their vector form.
Given x, the HM-Perceptron outputs the prediction g
according to the current weights of the features:

argmax Z wror(x,y)
yer, T rop

= argmax <w,<I>(a:,y)>, (1)
yex, T

! An extensive survey is found in Gértner (2003)
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Figure 1. (a) Graphical model representation of a labeled
sequence under a first-order Markov assumption. Shad-
owed nodes indicate observable variables, and white nodes
indicate hidden variables. The sentence “the, man, saw
,-- -, glasses.” is the label sequence « of the observable vari-
ables. The part of speech tag sequence “DT, NN, VBD,
..., NNS” is the label sequence y of the hidden variables.
(b) A pair of an observable variable and a hidden variable.
(¢) A pair of two hidden variables.
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he clearly marked is
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Figure 2. Features for labeling sequences (of length 3). Bi-
gram features are not sufficient for disambiguation of the
label of "marked”.

where wy is the weight of a feature f, and w is the vec-
tor form of the weights. Under a first-order Markov
assumption, two types of features, such as pairs of
an observable variable and a hidden variable (Figure
1(b)), and pairs of two hidden variables (Figure 1(c))
are used.
Starting at w = 0, the weights are updated by using
w" = w4+ o(aW, y) — o, §v), (2
when the prediction for e is wrong, i.e. §¥ # y®.
Equation (1) is also written in a dual form as follows
by using the weights of the examples a.

|E]

Y a@) (e, g), e(z,y) ()

j=1lgex,T

Y = argmax
yex, T

Starting with a = 0, the updating rules are rewritten
as

¢ o (y®) = oty ) +1

K2

o ap(g") =af(g?) -1,

when 9@ # y@. (® §9) is called a pseudo-
negative example since it acts like an negative exam-
ple.

Now, we discuss using features that consider long-



distance dependencies in the HM-Perceptron. Some-
times, bi-gram features (Figure 1(b)(c)) are not suffi-
cient for modeling long-distance dependencies such as
idioms in NLP, or motifs in bioinformatics. What if
we employ longer features such as in Figure 27 Let
us assume that we allow features of lengths up to d.
Let mf be the subset of the observable variables from

position t; to position ts of x, and yt is defined ac-
cordingly. Taking into account that all features depend
on at most d consecutive hidden variables, ®(x,y) is
decomposed as

®(z,y)

+0(xs ™ ysth) - (et Y5

(4)
T-1 T—1 )

T—1  T-1
) — ®(xp_ dr1 Y1r—d+1

+@(xp_ g Yr_g
+(I)(:C%—d+1a yT_d+1)-

Substituting Equation (4) into Equation (1), the
argmax operation in Equation (1) is performed via the
following dynamic programming.

max<w,<I>(w,y)> = max S(ylv'”ayd)
Yy Y1s--,Yd
S(yn cee 7yt+d—1) = max 8(yt+1, e 7yt+d)
Yt+d
+Hw, (2T y ) — o2l Lyl h)
S(YT—dg1s---5YT) <w7 (I)(x%?—d—&-la yT_d+1)>

However, the computation time in each step of the re-
cursion grows exponentially with respect to the maxi-
mum feature length d. Even the dual form (3) still has
the same problem, because we have to evaluate all of
the features explicitly when predicting labels. This is a
serious problem when we want to employ kernels with
arbitrarily long features (possibly of infinite length).
Also, CRFs have the same problem since they employ
dynamic programming procedures based on the same
decomposition in learning and prediction. In addition,
even the decomposition (4) is not applicable to kernels
enumerating the occurrences of features when allowing
gaps (Lodhi et al., 2002), since a feature of length of
d can occur over an interval of length longer than d.
Collins (2000) avoids this problem by a reranking ap-
proach where a pre-trained labeler using local features
generates an affordable number of candidates for y,
and the candidates are reranked by using global fea-
tures. However, the correct answer is not guaranteed
to be contained in the candidates based on the local
features.

3. Marginalized Labeling Perceptrons

We now propose a new kernel-based labeler that
solves the problems of the previous section. Usu-
ally, in MEMMs and CRFs, model P;(y|x)

trained by maximizing the sum of the log-likelihood
> log Ps(y@]x). This objective function aims to

w"

label an entire sequence correctly. On the other hand,
Kakade et al. (2002) noticed that it suffices to maxi-
mize the number of individually correct labels in many
labeling tasks. They proposed to use the marginalized
P,(yl|x) over all possible assignments of labels for the
hidden variables with the ¢-th hidden variable fixed as
Yt € Xy

Py =y |2) = Py(y®)2")

>

Y yt= ()

The pointwise objective function >, >, log Py(y: =

y§1)|x(i)) is shown to be comparable to the original
sequential log-loss function (Altun et al., 2003b). The
important point is that label prediction is performed
in a pointwise manner since P, depends only on y;.
We combine this idea with perceptron-based labelers.
We propose a marginalized labeling perceptron defined

as follows.
argmax E
b
YeExy Yyt =0t

Gt P(ylz)(w, ®(x,y)). (5)

Note that the pointwise label prediction works since
the argmax operation depends only on ;. The main
idea is that, when y; is predicted, the original out-
put (w,®(x,y)) is marginalized over all possible as-
signments of labels for the hidden variables with the
t-th hidden variable fixed as y;. P(y|x) is some
prior distribution over hidden variables that might
be pre-trained probabilistic models such as MEMMs
or CRFs, or might be designed manually. Since
> ye=i, P(Ylz)®@(2,y) can be considered as a new
feature vector, the weight vector w is updated by

—w‘)ld—i—ZP ylz)P ZP ylz)P

() Yy = ()

»4)(6)

Y yt=

when the prediction for the ¢-th position of e is
wrong, i.e. yt“) # y,gl).

Next, we derive a dual form of the marginalized label-
ing perceptron, and obtain a fully-kernelized labeler.
Let ¢f(x,y;t) be the number of times a feature f
appears in (z,y) with including the ¢t-th position of
(z,y), and ®;(x,y;t) be the vector form. First, we
rewrite the primal form (5) as follows by adding terms
that do not depend on ;.

g = argmax Z P(ylz)(w, ®(z,y))
VR =g
+ > Y Pylz)(w, ®(x,y;t))
Gt €8y Yyt =Yt
- Y Pylz)(w, &(z,y))

P(ylz)(w, ®(z,y;t)). (7)



// Initialization
a:=0
// Training
for round =1, ..., max_round,
fori=1,...,|E|,
// kernel computation
for j=1,...,|E|,

fort=1,....,7% and 7=1,..., 7D,
for y, € ¥y, and_QT € 3y,
compute K(ac(”, @ 7.t Ury Gt)
end _for
end_for
end_for
// prediction & update
for t =1,. T“)
predlct Uy )_ by using Equation (9)
lf yt ;é yt )
air(y;) = aun(y,”) + 1
air(g1) = (") — 1
end_if
end_for
end_for
end_for

Figure 3. Kernel Marginalized Labeling Perceptron

The update rule is then rewritten as

W =w Ly Plyle)®(z, yit) = Y Plyle)d(z,y;1).
yyr=y," yiye=3,"

By introducing example weights o, w is rewritten as

a linear combination,

|E| 7

w = ZZ ZQJT Ur) ZPy|ac

j=11=1y-€%, Yiyr =i

D y;T). (8)

Finally, substituting Equation (8) into Equation (7),

kernels for structured data such as sequences, trees,
and graphs have been studied actively (Gartner, 2003).
We extend these kernels for labeling problems. In all
kernels, for the sake of simplicity, we suppose that the
prior P(y|x) can be decomposed as

HP yt‘ﬂft

However, the following discussion can be generalized
to exploit more general models like CRFs. In the re-
mainder of this section, we use K(7,t,¥-,%:) to refer
the kernel function given i and j. The important point
in computing our kernels is that all features can be con-
structed by combining smaller features. For instance,
in Figure 4, suppose that the feature (b) appears with
its rightmost position at ¢, and the feature (c) ap-
pears with its leftmost position at t. Then, the fea-
ture (a), the combination of the two features, appears
with its second variable at ¢. All the marginalized ker-
nels that we propose in this paper are decomposed into
the upstream kernels Ky (7,t), the downstream kernels
Kp(t,t), and the pointwise kernels Kp(7,t,9,,7:) as
follows.

P(ylx) =

K(r,t,9-,45:) =Ky (7,t)- Kp (TtyT,g}t)'KD(T,t)
Ky (7 t) Z P(yy ()2 (1) Pyl ()2 (1)
(1) v, (t)
{® (] <> p(r);m), @ (), ¥y (1)) (1)
Kp(rt)=Y Y Plyp(n)z® (1) Py 6)zh ()

yp(7) yp (1)

(0@ (1), yp(r);7), (@Y (1), yp (1); 1)) (12)

KP(T t Zj‘rvgt)_

P(ij,|9) P(gs <<b D i), @) g 1))

we obtain the kernel marginalized labeling perceptron,

|E| ()

=g S 3K

Dy j=17=1y,e%,

27

where

K(w(])7wa T,t7:qu—, gt) =

S Y Plyle?)p(

YyYr=Yr Yy, =Gt

(10)
y'|x)((zD y;7), B(,y's 1))

is called the marginalized kernel since the kernel is
marginalized over all possible assignments of labels for
hidden variables with fixed labels at 7 and ¢. The al-
gorithm is described in Figure 3.

4. Kernel Computation

In this section, we propose several instances of the
marginalized kernel (10) for labeling sequences, or-
dered trees, and directed acyclic graphs. Recently,

(ZZP(yTIx(“) Gelz") (@@, o

Ur Yt
» Ly Tatvija gt)’ (9)

7), (), g 1))
(13)

where yy;(7) is the set of the hidden variables lying
upstream of 7, y(7) is the set of the hidden variables
lying downstream of 7, and y; (7)Ny p(7) = {y-}. The
denominator of Kp(7,t,9,,J:) cancels the overlap of
Ky(7,t) and Kp(7,t). Although explicit computation
of the marginalization in Ky and Kp is prohibitive,
we can efficiently compute them by using dynamic pro-
gramming in many cases. The major advantage of the
decomposition is that, given the i-th example and the
j-th examples, marginalized kernels for all possible val-
ues of (7,t,9r,:) can be computed at the same time.

4.1. Sequence Labeling

Now we introduce kernels for sequence labeling. To
consider the long-distance dependencies in sequences,



Figure 4. Combining upstream features and downstream
features to make larger features. Appearance of the fea-
ture (a) with its second variable at ¢ is guaranteed by the
appearances of the feature (b) with its rightmost position
at t and the feature (c) with its leftmost position at ¢.

we define each feature as a consecutive pair of a hidden
variable and an observable variable of arbitrary length,
as in Figure 2. Since the lengths of the features are not
restricted, and features of various lengths are mixed,
we vary the weight ¢, according to the length of the
feature f by using the parameter ¢ > 0. If the length
of the feature is d, and if we observe the feature N
times in (z,y), ¢7(z,y) is defined as N - ¢

Ky (7,t) for labeling sequences is the kernel that con-
siders only the appearances of features with their right-
most positions at 7 and ¢, and which is marginalized
over all possible assignments for yy(7) and yy(¢).
Similarly, Kp(7,t) is the kernel that considers only
the appearances of features with their leftmost posi-
tions at 7 and ¢, and which is marginalized over all
possible assignments for y,(7) and yp(¢).

The algorithm consists of two dynamic programming
loops, one for K7, and the other for Kp, just like the
forward-backward algorithm.

Ky(r,t) = k(@@ 2 (Ku(r— 1,6 — 1)+ 1) (14)
Kp(r,t) = k9, o) (Kp(r + 1,6+ 1) + 1), (15)
where

k(xs—j)v xgl)) =

ST N PlD) P

Yr €3y Yt €3y
Koo (i1 5 ) koo (290 22
y(?/nyt) $(l‘7' 5xt )
Note that Ky (7,0) = Ky7(0,t) = Kp(r,|[TW| 4+ 1) =
Kp(|ITW| 4 1,t) = 0. Kp is computed as follows.
KP(T7ta ZjT7gt)

_ AP | Pl ey i, 50 a (2, 27

(czk(xgj),mgi)))Q

, (16)

where k, and k, are functions that return 1 when the
arguments are identical, and return 0 elsewhere. How-
ever, we can replace them with kernels between the two
variables. Apparently, the time complexity of comput-
ing the kernels is O(T("T0)).2

2Gappy matching as in Lodhi et al. (2002) is allowed
by introducing a penalty parameter 0 < A\ < 1. An appear-

4.2. Tree Labeling

The kernel for labeling ordered trees (Figure 5) is
based on the labeled ordered tree kernel (Kashima &
Koyanagi, 2002). We allow arbitrary tree-structured
features such as in Figure 5. By using the mixing
parameter ¢ as in the sequence labeling, ¢(x,y) is
defined to be N - ¢? where N is the number of times
the feature f appears as subgraphs in (x,vy), and d is
the size of f. Ky(7,t) for labeling trees is the kernel
that considers only the appearances of features with
their leaf positions at 7 and ¢, and that is marginal-
ized over all possible assignments for y; (1) and y; (¢).
Similarly, Kp(7,t) is the kernel that considers only
appearances of features with their root positions at 7
and ¢, and that is marginalized over all possible as-
signments for y,(7) and yp(t).

The algorithm consists of two dynamic programming
loops, one for Ky, and the other for Kp, just as in
the inside-outside algorithm. Let ch(7,v) be the index
of the v-th child node of the 7-th node, pa(r) be the
index of the parent node of the 7-th node, #ch(7) be
the number of the child nodes of the 7-th node, and
chID(7) be the index that means the 7-th node is the
chID(7)-th child of its parent node.

Similar to the recursive computation of the labeled or-
dered tree kernel (Kashima & Koyanagi, 2002), Kp
is computed by dynamic programming in a post-order
traversal by using

Kp(r,t) = k(@) 2")Sp (7t #ch(r), #ch(t)),
where Sp is also defined recursively as follows,

Sr(r,t,v,u) = Kp(ch(r,v),ch(t,u))Sp(r,t,v — 1,u —
+SF(T7 t,U - ]_,’LL) + SF(Tv t,U,’U, - 1)
—Sp(r,t,v—1,u—1),

where Sp(7,t,0,u) = Sp(r,t,v,0) = 1. Intuitively,
Sp(7,t,v,u) is the sum of the contributions of all
the way of matching between the nodes indexed from
ch(r,1) to ch(r,v) and the nodes indexed from ch(t, 1)
to ch(t,u).

At the same time, for the sake of the computation of
Ky, we also define Sg(7,t,v,u), the sum of the contri-
butions of all the way of matching between the nodes
indexed from ch(7,v) to ch(r,#ch(7)) and the nodes
indexed from ch(t,u) to ch(t,#ch(t)), as

Sp(r,t,v,u) = Kp(ch(r,v),ch(t,u))Sp(r, t,v+ 1,u+1)

=Sp(r, t,v+1Lu+1),

ance of a feature is counted as Y if g gaps are inserted.

The recursive equation (14) is modified by using the accu-
mulated upstream kernel Sr as follows.

k@, 20)(Su(r —1,t —1) +1)
KU(T, t) + )\SU(T,t— 1)
+ASy (T —1,8) + NSy (r — 1,t — 1)

KU(T,t) =
Su(T, t) =

The downstream kernel (15) is modified accordingly.



Figure 5. Ordered trees: shadowed nodes indicate observ-
able variables, and white nodes indicate hidden variables.

e ""‘-:KU (pa(r), pa(t) )

Sp(pa(t),pa(t),chID(r) —1,chID(t) — 1)
Sp(pa(r),pa(t),chID(r) + 1,chID(t) 4 1)

Figure 6. Intuitive image for computing Ky (7,t).

where Sp(7,t,#ch(r) + 1,u) = Sp(7,t,v,#ch(t) +
1) =1.

Ky is computed by dynamic programming in a pre-
order traversal. Ky (7,t) is computed by combining
the upstream kernel of the parents and the down-
stream kernels of the siblings (Figure 6),

Ku(r,t) = k@Y, af")(1+ Ku(pa(r),pa(t))
-Sr(pa(r),pa(t),chID(t) — 1,chID(t) — 1)
-Sp(pa(T), pa(t),chID(T) + 1,chID(t) + 1)),

Note that the pointwise kernel Kp is the same as in
Equation (16). A similar analysis to that of Kashima
and Koyanagi (2002) can show that the time complex-
ity of computing the kernel is O(T) 7)),

4.3. Graph Labeling

Finally, we propose a kernel for labeling directed
acyclic graphs (DAGs) (Figure 7). Unfortunately, it
has been shown to be NP-hard to use arbitrary graph-
structured features (Gértner et al., 2003). There-
fore, we propose a marginalized kernel using directed
path features like Figure 2, based on the DAG ker-
nel (Scholkopf et al., 2004).

Ky (7,t) for labeling DAGs is the kernel that considers
only the appearances of features with their end posi-
tions at 7 and ¢, and which is marginalized over all

Figure 7. Directed acyclic graphs: shadowed nodes indi-
cate observable variables, and white nodes indicate hidden
variables.

possible assignments for y;;(7) and y;;(¢). Similarly,
Kp(r,t) is the kernel that considers only the appear-
ances of features with their start positions at 7 and ¢,
and which is marginalized over all possible assignments
for yp(7) and yp(t). As in the kernels for sequence
labeling, we can write Ky and Kp recursively,

KU(T,t):c%(xgj%xﬁ“)(u >y KU(uu))

vEPa(T) u€Pa(t)

KD(T,t)c2k(x§j>,x§“)<1+ >y KD(v,u)>,

veCh(T) ueCh(t)

where Pa(r) and Ch(r) are the set of in-
dices of the parent nodes and the child nodes
of the 7-th node, respectively. Note that
the pointwise kernel Kp is the same as Equa-
tion (16). The time complexity of computing
this kernel is O(|T®W||TW)|(max, , |Pa(r)||Pa(t)] +
max., |Ch(7)||Ch(t)])).

5. Experiments

Finally, we will show the result for experiments on
NLP data to assess the importance of large structural
features in a real-life situation. We conducted two ex-
periments on Named Entity Recognition (NER) and
Product Usage Information Extraction tasks. We com-
pared the performance of the kernel marginalized la-
beling perceptron with the HM-Perceptrons, which is
limited to smaller features in nature.

5.1. Named Entity Recognition

NER is a kind of information extraction task that deals
with identifying proper names such as person names
and organization names in sentences. We used a sub-
corpus consisting of the first 300 sentences (8,541 to-
kens) from the Spanish corpus provided for the Special
Session of CoNLL2002 on NER. The task is to label
each word with one of the nine labels, i.e. |3, =9,
that represents the types and boundaries of named en-
tities, including a dummy label for non-named entities.
The kernel between two observable labels is designed
by using words and their spelling features, which are
described in Altun et al. (2003b) as the S2 features.



Table 1. Named Entity Recognition task result

Table 2. Product Usage Information Extraction task result

ACCURACY PRECISION RECALL

ACCURACY PRECISION RECALL

SEQUENCE KERNEL 88.4% (3.9) 52.3% (17.5) 19.3% (2.2)
HM-PERCEPTRON  82.9% (7.4) 21.8% (9) 15.6%(4.5) 1

O ported

Figure 8. An example of lexicalized dependency trees for
the sentence “They ported their server to a linux cluster
for its availability” where the hidden variable label “D-p”
is for the name of products which a customer uses, “D-r”
is for the reason of use, and “O” is dummy label.

In both algorithms, it is combined with a second de-
gree polynomial kernel. A window of size 3 is also used
in HM-Perceptrons according to (Altun et al., 2003c).
For the proposed perceptron algorithm, we used the se-
quence kernel withthe mixing parameter ¢ = 1 which,
was determined in preliminary experiments. The prior
over hidden variables is modeled as a uniformed dis-
tribution, i.e. P(yi|z;) = 1/|E,|. The performances
are evaluated according to the labeling accuracies (in-
cluding correct answers for dummy labels), precision
and recall of named entity labels, and the F1 measure
which is the harmonic mean of the precision and recall.
Table 1 shows the results of the NER task in a 3-fold
cross-validation. The values in parentheses represent
the standard deviations on each cross-validation. The
proposed perceptron algorithm with the sequence ker-
nel outperforms the other method. Note that the F1
measure score is a more suitable measure for evaluating
NER tasks than the labeling accuracy because the ma-
jority of the annotated labels are dummy labels. The
good performance of the proposed sequence kernel is
due to the nature of NER tasks. NER tasks are known
as one of the NLP problems which require considering
a wide context. For instance, the same phrase “White
house” can be a location or an organization entity in
different contexts. This empirical result supports the
advantages of the fully-kernelized labeler that can han-
dle rich contextual information efficiently without any
manual selection of an appropriate feature size.

5.2. Product Usage Information Extraction

Product Usage Information Extraction is a special case
of NER tasks which deals with extracting information
about the usage of products from a sales log written by

SEQUENCE KERNEL 88.4% (1.4) 45.7% (10) 85.2% (17.7) 36
TREE KERNEL 89.8% (1.2) 51.5% (5.2) 32.3% (17.4) 37.9
HM-PERCEPTRON  87.7%(2.0) 40%(16 5)  29%(11.4)

sales representatives. We used 184 sentences (3,570 to-
kens) from an annotated sales log written in Japanese.
This task aims to identify the product name (p), its
vendor (v), the number of products bought (n), and
the reason for buying (r) linked to a classification of
the customer state that indicates whether the costomer
is already using (D), wishes to use (P), or rejects (R)
using the products. In total, there are |X,| = 12 dif-
ferent labels including a dummy label (O).

All of the Japanese sentences were previously seg-
mented into words, and these words were annotated
with the part-of-speech and base form. In all of the al-
gorithms, we designed the kernel between two observ-
able labels by using words, part-of-speech tags, base
forms, and character type features. We used it by
combining with the second degree polynomial kernel.
In this task, we use not only the sequence kernel for
the proposed perceptron, but also the tree kernel. For
the tree kernel, we used (lexicalized) dependency trees
that represent linguistic structures of the sentences in
terms of the dependencies between words. Figure 8
shows an example of a dependency tree in English. To
build the dependency trees for the data set, we used a
Japanese statistical parser (Kanayama et al., 2000).
For both kernels, the mixing parameter is ¢ = 0.8.
Table 2 shows the result of the Product Usage Informa-
tion Extraction task in 3-fold cross-validation. The pa-
rameter settings and the evaluation measures are the
same as in the NER task. Again, we can see the advan-
tage of the proposed perceptron algorithm against the
HM-Perceptrons. Furthermore, the tree kernel utiliz-
ing dependency trees shows higher performance than
the sequence kernel, which elaborates the advantage of
using structured information.

6. Conclusion

In this paper, we introduced an efficient fully-
kernelized learning algorithm for labeling structured
data such as sequences, trees, and graphs. Our ap-
proach can handle large features including arbitrary
numbers of variables by using the pointwise label pre-
diction inspired by Kakade et al. (2002), and the
marginalized kernels. We also proposed several in-
stances of the marginalized kernels for labeling se-
quences, ordered trees and directed acyclic graphs. In

the preliminary experiments on information extraction

3The accuracy of the parser is 88%.



tasks using real-world data, our approach was shown
to be promising.

As a related work, Weston et al. (2003) have proposed
another general framework that aims at learning the
direct mapping from ®,(z) to ®,(y) with arbitrary
kernels. However, features depending on both & and
y are not used. Also, they provide no efficient way to
decode ®,(y) into y.

One possible extension of this research is to incor-
porate more complicated prior distributions such as
MEMMs and CRFs in the marginalized kernels, al-
though we employed a very simple form of prior dis-
tribution in this paper. It is an interesting question
whether our approach boosts such probabilistic mod-
els.

Another extension might be an SVM version of our ap-
proach. Since HM-SVMs (Altun et al., 2003c) consider
an entire label sequence as an example, maximization
of the margin between correct label sequences and the
second best label sequences is not always acceptable
in problems where each sequence has some difficult la-
bels. On the other hand, our approach avoids this
problem by considering a label at each position as an
individual example.
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