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Abstract

A new approach for cost-sensitive classification is proposed. We extend the framework
of cost-sensitive learning to mitigate risks of huge costs occurring with low probabilities,
and propose an algorithm that achieves this goal. Instead of minimizing the expected cost
commonly used in cost-sensitive learning, our algorithm minimizes expected shortfall, also
known as conditional value-at-risk, which is considered as a good risk metric in the area
of financial engineering. The proposed algorithm is a general meta-learning algorithm that
can exploit existing example-dependent cost-sensitive learning algorithms, and is capable of
dealing with not only alternative actions in ordinary classification tasks, but also allocative
actions in resource-allocation type tasks. Experiments on tasks with example-dependent
costs show promising results.

Keywords: risk-sensitive learning, cost-sensitive learning, meta learning, risk manage-
ment, expected shortfall, conditional value-at-risk

1. Introduction

Classification learning is one of the fundamental tasks in data mining. It is widely seen in
many important tasks in the real world such as diagnostics in health care, credit admin-
istration in finance, campaign management in direct marketing, and so on. Its task is to
predict the actions (or classes) of the target objects whose appropriate action (or classes) are
unknown given pairs of an object and its appropriate action (or class) as training examples.
In other words, it aims to minimize the probability of misclassification.

However, there are many cases where it is not enough only to minimize the number of
mistakes. For example, the cost of misdiagnosis of classifying healthy people as sick and
that of classifying sick people as healthy are apparently not equal, since the latter leads to
serious results. Moreover, the degree of seriousness differs among patients.

Similarly, when we make management decision on what project should be invested, the
execution cost, profit from success, and loss from failure depend on the characteristics of
the project.

Cost-sensitive learning (Elkan, 2001; Bradford et al., 1998; Domingos, 1999; Fan et al.,
1999; Zadrozny and Elkan, 2001; Geibel et al., 2004; Zadrozny et al., 2003; Abe and
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Zadrozny, 2004) is a suitable framework for such cases where costs are different among
classes or objects, and the amounts of them are unknown at the stage of prediction. Wider
range of problems can be treated in the framework since it aims to minimize not the proba-
bility of misclassification, but the expected cost of misclassification. The ordinary classifica-
tion problem is understood as a special case that assumes that all costs of misclassification
are 0 or 1.

However, from the standpoint of risk management, there are situations where cost-
sensitive learning is still not enough. Minimizing the expected cost indeed decrease potential
cost averagely, but since it does not aggressively suppress the occurrence of huge costs, it
can not avoid such a risk of disasters. Therefore, if there is not a little chance of huge costs,
and also if users are interested in mitigating the risk, minimization of the expected cost
does not reflect the objective. Actually, risk aversion is one of the central topics in financial
engineering. For example in portfolio theory, it is expected to find a portfolio that maximizes
profit while suppressing the risks of huge costs occurring with low probabilities (Luenberger,
1998).

In this paper, we propose an approach of risk-sensitive classification that considers
cost distributions not to decrease the expected cost, but to mitigate the risks of huge
costs. Concretely, instead of the expected cost, we employ a risk metric called expected
shortfall (Artzner et al., 1999), also known as conditional value-at-risk, which is attract-
ing considerable attentions in financial engineering. We propose a risk-sensitive learning
algorithm that minimizes the expected shortfall as the objective function. Our algorithm
is a meta-learning algorithm, which is quite a general procedure that can convert existing
cost-sensitive learners to risk-sensitive learners.

This paper is organized as follows. In Section 2, we review the definition and the existing
approaches of cost-sensitive learning, and then point out a drawback from the standpoint of
risk management. In Section 3, we introduce our risk-sensitive learning approach using ex-
pected shortfall as the objective function, and propose a meta learning algorithm, MetaRisk.
We also introduce reduction from cost-sensitive learners to risk-sensitive learners not only
with alternative actions, but also with allocative actions that are not considered in ordi-
nary cost-sensitive learning problems. In Section 4, we show some experimental results on
two datasets, a synthetic dataset and a more realistic dataset for credit administration. In
Section 5, we review related works, and discuss their relations to our approach. Finally, we
conclude this paper with discussion and future work.

2. Cost-Sensitive Learning

In this section, we review the definition and the existing approaches of cost-sensitive learn-
ing, especially with example-dependent costs. And then, we point out a drawback of these
approaches from the standpoint of risk management.

2.1 Decision Model

Let X be a set of all target objects, for example X = RM and Y be a finite set of actions
taken against the target objects. For example in the context of direct marketing, x € X is
a customer profile, and Y is a set of possible marketing actions such as direct mail, email,
telemarketing, and so on.
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Function h is called hypothesis, and defined as h(x,y;0) : X x Y — R, where 6 is its
model parameters. An action §j € Y taken against x € X is determined by
g = argmax h(x,y;0). (1)
yey
Usually, only one action is assumed to be taken at a time, hence we call this type of actions
alternative actions.
We might assume the following stochastic constraint in h(x, y; ),

D h(x,y;0) =1, s.t. h(x,y;0) > 0, (2)
yey

for Vx € X,Vy € Y. Instead of (1), we can make stochastic selection of one of alternative
actions with probability distribution (2).

If it is allowed to take multiple actions at a time, and to allocate resources to each of
|Y'| actions in proportion to h(x,y;0) with (2), those kind of actions are called allocative.
Allocative actions are popular in the context of portfolio selection (Luenberger, 1998) where
funds are allocatively invested to financial products.

In this paper, we deal with those two cases, in one of which an action is alternatively
chosen with (1), and in the other of which stochastic selection or resource allocation is
allowed with (2).

2.2 Cost Function

Cost function is a function c¢(x,y) : X x Y — R, which indicates how bad an action y € Y’
taken against x € X is.

For instance in medical diagnosis, ¢(x, y) is the badness of the medical treatment y taken
for a patient with the results of medical tests x. ¢(x,y) becomes small if the treatment is
appropriate, and becomes large if not. If the treatment is significantly inappropriate, and
his or her health is lost, ¢(x,y) becomes huge.

In this paper, we deal with the most general problem setting in cost-sensitive learning,
where the true cost function is unknown, and depends on examples (Zadrozny and Elkan,
2001; Geibel et al., 2004; Abe and Zadrozny, 2004). Note that although those literatures
assume that the cost function also depends on classes, we adopt the notation without the de-
pendency since it is convenient to think that the cost function incorporates the dependency
on classes implicitly.

Also, following the context of cost-sensitive learning, we evaluate actions in terms of
cost instead of reward or profit, but the following discussion still holds for reward or profit
by simply changing those signs.

Let ¢(x,h(0)) be the cost of the action for x by using hypothesis h(x,y;6). In the case
of alternative actions (1), ¢(x, h(6)) becomes

c(x,h(0)) = c(x,argmax h(x,y;0)). (3)
yey
In the case of allocative actions, it is not trivial to represent c(x,h(6)). We consider the
simplest case where ¢(x, h(6)) is represented as

c(x, h(0)) = Y h(x,y; 0)e(x, y), (4)

yey
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where the cost of each action linearly depends the amounts of investment to the action.
This form corresponds to the return of a portfolio used in portfolio theory (Luenberger,
1998).

Note that if we make stochastic selection of an alternative action by (2), we can also
use (4), but this is not the realized cost, but the expected cost for x.

2.3 Cost-Sensitive Learning

Cost-sensitive learning (Elkan, 2001; Bradford et al., 1998; Domingos, 1999; Fan et al., 1999;
Zadrozny and Elkan, 2001; Geibel et al., 2004; Zadrozny et al., 2003; Abe and Zadrozny,
2004) is a framework for supervised classification learning with cost functions c¢(x,y). In
cost-sensitive learning, the expected cost is conventionally used as the objective function
for training to find the best #. The expected cost with respect to data distribution D over
X x RY is defined as

cP(9) = Ep [c(x,h(e))} . (5)

Unfortunately, since we do not know D, we exploit training examples F instead. N training
examples in E are assumed to be independently sampled from D. Let the i-th training
example in F be e = (x), {c)(x() y)1,cy), where x) € X is the i-th target object and
¢ (X(i), y) is the cost of action y € Y for 2. Note that the cost of every action is given
for each training example.

The empirical expected cost for the training examples is defined as

Zc @ h(o (6)

=1

From Hoeffding’s inequality (Hoeffding, 1963), the following inequality holds for € > 0,

2N 2 )

Pr [| cEg) - cP) |>€}<2exp (— 7

where

B > maxc(x,h(0)) — minc(x, h(0)).
Since CF(0) is a good approximation of CP(#) for sufficiently large N, parameter 6 is
determined so that C¥(6) is minimized (Zadrozny and Elkan, 2001; Geibel et al., 2004; Abe
and Zadrozny, 2004).

2.4 Drawback of Mean-Cost Minimization Approach

Suppose that M test data are challenged after training. Since the total cost of M decisions
approaches to M - C'P (0) as M becomes large, minimization of CF(0) in the training phase
sounds reasonable.

However, let us imagine such a situation where M is relatively small so that the above
approximation does not hold, and also the occurrences of huge costs are fatal. For example, if
we have to make important management decisions, several consecutive mistaken judgements
might directly leads to risk of bankruptcy. Also, if the costs follow heavy-tailed distributions
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with infinite variances, the expected cost is highly affected by one big cost. In those cases
where there are chances of unacceptably huge costs occurring even with small probability,
one would like to avoid those risks as far as possible.

Let us consider another example. Assume that two hypotheses h(6;) and h(f2), and
both of them have identical expected costs. h(f;) has a cost distribution with high peak
around its expected cost, and h(f2) has one with a gentle slope and a heavy tail in its high
cost area. In this situation, risk aversive investors would apparently prefer h(6;) to h(62).

The above discussion implies us that minimization of the expectation of ¢(x, h(6)) is not
enough, and suggests the need to consider the distribution of ¢(x,h(f)) and aggressively
avoid the risk of huge costs.

3. Risk-Sensitive Learning

Motivated by the discussion in the previous section, we propose our risk-sensitive learning
approach using a new objective function that aggressively avoids the risk of huge costs, and
then propose a meta-learning algorithm that reduces cost-sensitive learners to risk-sensitive
learners.

3.1 Risk-Sensitive Learning via Expected Shortfall Minimization
3.1.1 VALUE-AT-RISK

In the area of financial engineering, various risk metrics have been studied for decision
making with low risk of huge costs. Probably, one of the most popular risk metrics is value-
at-risk (VaR) (Mausser and Rosen, 1998). Value-at-risk is defined to be the §-quantile of
cost distribution for a given constant 0 < § < 1. In other words, it is the minimum of
the top 100(1 — 3)% costs. In our problem setting, the value-at-risk ozg (0) with respect to
hypothesis h and data distribution D is defined as (See Figure 1.)

oB(®)=min { o € R | Bp [ 1 (ctxn(6)>a)]<1-5},

where I(-) is a function that returns 1 when its argument is true, and returns 0 otherwise.
Note that the value-at-risk depends on model parameters 6.

Although value-at-risk is a widely-accepted risk metric, some drawbacks have been
pointed out (Mausser and Rosen, 1998). One problem is that once the cost surpasses
the value-at-risk, it is not cared at all how huge the cost becomes. On the other hand, we
are rather interested in suppressing the amount of huge costs itself. Also, value-at-risk has
been shown to be non-convex in most cases theoretically and empirically, which is extremely
inconvenient. If the cost distribution follows a Gaussian distribution, the value-at-risk be-
comes a linear combination of the mean and the standard deviation of the cost, and the
above problems are resolved. However, the assumption usually does not hold.

3.1.2 EXPECTED SHORTFALL

Expected shortfall (Artzner et al., 1999), also known as conditional value-at-risk, is at-
tracting attentions as a relatively new risk metric in the field of financial engineering. It
is defined as the expected costs above the value-at-risk, in other words, the expectation of
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Expected shortfall ¢7(8) =
Expected cost of the top 100(1 — 3)% costs
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>
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Figure 1: Expected cost, value at risk, and expected shortfall.

the top 100(1 — 3)% costs (See Figure 1.), hence it can consider the amount of huge costs.
Moreover, expected shortfall has desirable characteristics such as convexity (Rockafellar and
Uryasev, 2000). This is exactly the risk metric that we want to employ as the objective
function of risk-sensitive learning.
In our problem setting, the expected shortfall (bg (0) with respect to hypothesis h and
data distribution D is defined as
1
3B (0) = =55 [ 1 (e, h(8)) > aB(0) ) -e(x, (@) |
where ozg (0) is the value-at-risk defined above, and note that the definition of the expected
shortfall includes value-at-risk.
Since the expected shortfall is the expected costs surpassing ozg (@), (7) is decomposed
into two terms as
1 +
Digy _ D D
3B (0) = aB(6) + 7—5Pp | clx h(6)) —aB(®) ],

where [z]T is a function that returns  when x > 0, and returns 0 otherwise.

3.2 Model Estimation
3.2.1 METARISK: A RISK-SENSITIVE LEARNER TO MINIMIZE EXPECTED SHORTFALL

Let us derive an algorithm to optimize parameter #. Although (7) is the objective function
that we want to minimize, we employ the following empirical expected shortfall defined on
training examples F instead of D which is unknown.

1 & ; +
850) = af O+ 1=y ; [ e, h(0) - aB(0) |, (7)

where ag (0) is the value-at-risk for the training examples F,

N
ag(ﬁ):min{aeR’%ZI(C(X(i),h(m)Za)Sl—ﬁ}. (8)
i=1
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Algorithm: MetaRisk(E, j3)

[Step:1] Set & := 0. i

[Step:2] For the current @, find ¢’ = argmin CZ (),
0

and set 6 :=6'.

[Step:3| For the current 6. find the empirical
VaR ag(ﬁ), and set & := ag(ﬁ).
[Step:4] Continue [Step:2] and [Step:3] until the

convergence of FﬂE 0,q).

Figure 2: MetaRisk: Risk-sensitive meta-learning algorithm.

Now, if we suppose that ag (#) is a known constant & in (7), we only have to minimize
the second term of the second term (7),

CE(9) = %Z [ex® n(o) ~a]". ()

=1

Note that (9) is convex if ¢(x(®, h(8)) is convex with respect to 6. For the time being, we
assume existence of algorithms to find 6 that minimizes (9).

Next, we fix 6, and find the VaR (8) for 6. Since (8) is defined for the training examples
E, it is rewritten as

WE

1
E9) = mi (k) il
@5 (0) k:r{unN { c(x, h(6)) ‘ N

1(e(x, n(0)) = c(xP, h(6))) <15}

1

7

which is equivalent to ¢(x*®), h(6)) where k is the index of the training datum with the
| (1 — B)N|-th largest cost by 6. Ozg(é) is naively computed by sorting the costs by 6 in
O(Nlog N), or it can be reduced to O(N) by using efficient algorithms for finding order
statistics (Cormen et al., 1990).

Based on the above discussion, we propose a risk-sensitive meta-learning algorithm
named MetaRisk (Figure 2)*, which minimizes the empirical expected shortfall by exploiting
existing cost-sensitive learners, and by finding the model parameter and the corresponding
value-at-risk alternately.

3.2.2 OPTIMALITY AND CONVERGENCE OF METARISK

The optimality and convergence of the algorithm (Figure 2) are directly guaranteed by the
following theorem by Rockafellar and Uryasev (2000) that shows the convexity of the upper
bound of expected shortfall.

Theorem 1 (Rockafellar and Uryasev, 2000, Theorem 1&2) Let

_l’_

1 N ‘
a=aN Z [ e, n(0) —a |, (10)

*. MetaRisk is named after the cost-sensitive meta-learning algorithm MetaCost (Domingos, 1999).

FﬁE(G,a) =a+
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MetaRisk
cost cost-sensitive
reweighting hypothesis
Cost-sensitive
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Figure 3: Reduction from cost-insensitive learners to risk-sensitive learners.

then
. E : E
m 0) = min F5 (0, o). 11
0111(%( ) 971;1 3( , Q) (11)

FEE(G, «) is convex with respect to «. If (6) is convex with respect ot 6, Fg(@, «) is also
jointly convexr with respect to 6 and «. Also,

ag(ﬁ) = min { a€ argoréninFﬁE(Q,a) } (12)
holds. U

(11) indicates that minimization of (10) is equivalent to minimization of expected short-
fall, and the joint convexity of (10) ensures the gradient-based optimization with respect
to 6 and . Moreover, from (12), aﬁ(&) is the minimizer of Fg(@, «) at 0, hence MetaRisk

exactly performs coordinate-wise descent of F 5(9, Q).

3.3 Reduction from Cost-Sensitive/Insensitive Learners to Risk Sensitive
Learners

3.3.1 RECYCLING EXISTING COST-SENSITIVE LEARNERS

In the previous subsection, we assumed to have learning algorithms to find # that minimizes
(9). However, it is not desired to design from scratch the risk-sensitive versions of existing
learners such as perceptrons, decision trees, or SVMs. In this subsection, we demonstrate ap-
proaches that minimize (9) by iteratively calling existing example-dependent cost-sensitive
learners with reweighted costs based on the current hypothesis.

Several example-dependent cost-sensitive learners (Fan et al., 1999; Zadrozny et al.,
2003; Abe and Zadrozny, 2004) realize cost-sensitive learning by weighting or resampling
training examples according to their costs, and feeding them to cost-insensitive learners.
Merging this mechanism with our reduction enables reduction from existing cost-insensitive
learners to risk-sensitive learners (See Figure 3).
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3.3.2 HYPOTHESIS WITH ALTERNATIVE ACTIONS

Reduction is relatively easy in the case of alternative actions (1). Paying attentions to
its similarity to (6), we notice that this is the expectation of only costs exceeding ag ().
Also, since actions are exclusive to each other, realized costs are limited to the form of
[c®(x) 4) — ] + &. Therefore, substituting

Dy = [y —at (13)

for the original costs, (6) becomes

N
Za ) (x (14)

and this has the same form as the expected cost (6).

The reduction is realized by feeding example-dependent cost-sensitive learners (Geibel
et al., 2004; Zadrozny et al., 2003; Abe and Zadrozny, 2004) with modified training examples
E, where the i-th example of E is defined as

e = (x9 {dDxD y)}yey).

3.3.3 HYPOTHESIS WITH ALLOCATIVE ACTIONS

Next, let us consider the case where stochastic or allocative decision making by the con-
strained hypothesis (2) is allowed. (9) is rewritten as

Z[Z D, y;0)c(x (“,y)—dr- (15)

=1

Unlike the case of alternative actions, ¢(?(x( h(6)) depends on a convex combination of
@ (x% y), hence simple reweighting like (13) does not work.

A natural choice of the classifiers used as h(x,y;60) is the exponential family satisfying
(2) such as multi-class logistic regression. However, in logistic regression, ¢(x, h(6)) is not
convex with respect to its parameters, and even worse, it is a multi-modal function. There-
fore, we employ a family of classifiers with which ¢(x(®), h(0)) is linear with respect to 6. (15)
is convex with respect to its parameters. In this paper, we use gradient boosting (Friedman,
2001; Rosset and Segal, 2002) as our optimization approach.

In gradient boosting, h(x, y; 6) is represented as a linear combination of 7" deterministic

hypotheses fi,..., fr,
h(xay;e)_hT X yagT Zwtft X y

where 6; = (wi,...,w;) are the parameters. Since h(x,y;6) has to satisfy the stochastic
constraints (2), we need

T

Zwt = ]_, s.t. wy > 0.
t=1
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At each boosting round ¢, suppose that we already have h;_1, a new weak hypothesis f; is
sequentially added to h;_1 to construct hy. h; is recursively represented as

hi(x,y;0:) = (1 —y)hi—1(x,y;0i—1) + v fe(x,y)
= h—1(%,y50i—1) + 7 (fr(x,y) — he—1(x, 95 00-1)),

where 0 < v < 1 is a updating parameter at round ¢, and finally, the parameters 6; are

determined as
T

wp = [] (1=)

T=t+1
Once f; is determined, (15) is convex and piecewise linear with respect to ;. Therefore, 4
is easily found by linear search or linear programming.

In order to find the weak hypothesis f; at the boosting round ¢, assume that ~; is
sufficiently small, then the Taylor series expansion of (15) around h;_; gives

N
€8 =3 [ hr s )elx )~ |
=1 Yy

N 9 [Zy hi-1(xDy;0,-1)e(xD, y) — dr , ,
RO 3 a5 0r0) (560 = hia (.00 )

=1 vy
+ O(7).

Neglecting the second or higher order terms, it is enough to find f; that minimized the
second term,

N
2 (S by, > @ ) - (el ) lxn) )
=1 Yy

Y

As is the case with alternative actions, this term is also minimized by feeding example-
dependent cost-sensitive learners with modified training examples E, where (13) is modified
as

(x,y) = e(xW,y) - 1 ( D e (xD,y;01)e(x?,y) > a )
Yy
in the case of allocative actions.

4. Experiments

In order to compare the risk aversion abilities of cost-sensitive learning and risk-sensitive
learning, we conducted two preliminary experiments on a synthetic dataset and a more
realistic dataset for credit administration.

10



RISK-SENSITIVE LEARNING VIA EXPECTED SHORTFALL MINIMIZATION

4.1 Experimental Settings

First, we explain the implementation and datasets used in the experiments. We used the
cost-sensitive perceptron algorithm (Geibel et al., 2004) (See also Appendix.) as the hypoth-
esis h(x,y) in the case of alternative actions and the weak hypothesis f;(x,y) in the case of
allocative actions. Especially for the second dataset, we used the kernelized version of the
cost-sensitive perceptron with Gaussian kernel (A.4) to incorporate nonlinearity into the
hypothesis. All constant parameters of the perceptron are chosen to have the cost-sensitive
perceptron record the best expected cost, and, they are recycled for the perceptrons used
in risk-sensitive learning®. This is because we would like to observe the effect of switching
the objective function from the cost-sensitive one to the risk-sensitive one. We used the
following two datasets.

SYNTHETIC DATASET

In this dataset, there are two dimensional data x = (z1, z2), and two actions y € {+1, —1}.
x1 and xo are uniformly randomly sampled over —5 < x1,22 < 5. The cost for each
action only depends on z; as shown in Figure 4. The cost of action +1 is determined by
c(x,4+1) = 0.1(z1 + 5) (Figure 4, solid line), and the cost of action —1 is determined by
c(x,—1) = N(0,0.5%) (Figure 4, dashed line). In each experiment, 300 data were generated
for training, and 30,000 for test.

Since the expected cost of action —1 is always smaller that that of action +1, it is
enough for cost-sensitive learners to have the trivial hypothesis that always take action —1.
However, the costs of action -1 sometimes exceed those of action +1 because of the noise
added, In the area of large x1, it is needed for risk-sensitive learners to switch the action to
action +1 to suppress the chance of large costs, since the cost of action +1 is more stable
than that of action —1.

CREDIT ADMINISTRATION

Next, we consider a more realistic application of risk sensitive learning, which is to predict
the credit risks of customers. In this task, the learner must predict whether a particular
customer can make a loan or not based on his/her profile. Misclassification of a ”good
customer” as a ”bad customer” loses the potential interest, and on the contrary, misclassi-
fication of a ”bad customer” as a ”good customer” loses most of the loan.

We used the ”"German Credit Data Set” (Michie et al., 1994) from the STATLOG
PROJECT? also used in (Geibel et al., 2004). This dataset includes 700 good customers
and 300 bad customers, and x consists of 20 attributes including sex, age, job, credit history,
purpose, and so on. In our experiment, we used the data included in the dataset whose
attributes are converted into 24 numerical attributes.

Although the original dataset does not have example-dependent costs, we follow the
instruction in (Geibel et al., 2004), and the misclassification cost of a “good customer” as a
“bad customer” is defined to be 0.1 - 2uration . 4y ount, which means 10% interest per year.

12
The average, variance and maximum cost of this type of cost are 6.27, 43.512, and 78.27,

1. For example, the width parameter of the Gaussian kernel (A.4) was determined as o = 50.
I. Data are available from UCI Machine Learning repository (Newman et al., 1998).

11
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-5 0 5

Figure 4: Expected cost for each action on the synthetic dataset. Note that Gaussian noise
N(0,0.5%) with 0.5 standard deviation is added to c(x, —1).

respectively. Also, the misclassification cost of a “bad customer” as a “good customer” is
defined to be 0.75 x amount, which means 75% of the loan is lost. The average, variance
and maximum cost of this type of cost are 29.54, 78.092, and 138.18, respectively. The other
costs are defined to be 0.

While the learner with alternative actions makes binary decisions of whether making loan
or not, we can interpret that the learner with allocative actions determines what fraction
of the loan is allowed. The realized cost becomes (4) in this case.

4.2 Results

The anticipated result is that the cost-sensitive learner has the smallest expected cost,
and the risk-sensitive learner has a smaller expected shortfall for given G than that of the
cost-sensitive learner.

Let us examine the results. Table 4.2 and Table 4.2 show the results for the synthetic
data in the cases of alternative actions and allocative actions, respectively. Similarly, Table
4.2 and Table 4.2 show the results for the German Credit Data Set. The results for the
synthetic data were measured by the averaged values of 5 experiments, and those for the
German Credit Data Set were measured by 3-fold cross validation (666 training data and
334 test data). The columns labeled ‘Cost-Sensitive’ show the results by the cost-sensitive
perceptron. The columns labeled ‘Risk-Sensitive’ show the results by the MetaRisk with
6 = 0.80,0.90,0.95,0.99, respectively. Each row shows the values of the expected shortfall
on test data for the corresponding 3, and the numbers with 4+ show the standard errors.
The row at the bottom show the mean cost. The values indicated by boldface show the
best results among each row.

Overall, as we expected, MetaRisk achieves lower expected shortfalls than those of the
cost-sensitive perceptron at the corresponding s at the price of the mean cost.

12
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Test ES Cost- Risk-Sensitive
(VaR) | Sensitive (=080 (=090 [=0.95 B =0.99
6 =0.99 | 1.30+0.01 1.24+0.01 1.19+0.01 1.11+0.05  1.10+0.09
6 =0.95 | 0.98+0.01 0.91+0.02  0.8440.01  0.83+0.02  0.98+0.02
(6 =0.90 | 0.82+0.01 0.74+0.02  0.71+0.01  0.75+0.02 0.93+0.04
(6 =0.80 | 0.63+0.01  0.58+0.01 0.60+0.01  0.67+0.04  0.85+0.06
Mean Cost | 0.03+0.01  0.10+0.02  0.17+0.01  0.25+0.04  0.3740.01

Table 1: Alternative prediction results for synthetic data.

Test ES Cost- Risk-Sensitive
(VaR) | Sensitive (=080 (=090 (=095 [3=0.99
6 =0.99 | 1.29+0.00 1.20+0.01 1.1240.04 1.07+0.06  0.99+0.05
6 =095 | 0.98+0.00 0.87+0.01  0.814+0.02 0.80+0.02 0.87+0.02
(6 =0.90 | 0.82+0.01 0.71+0.00  0.68+0.01  0.71+o0.01 0.82+0.05
(6 =0.80 | 0.63+0.01  0.56+0.01 0.5840.01  0.64+0.02  0.75+0.08
Mean Cost | 0.03+0.01  0.12+0.01  0.20+0.03  0.26+0.05  0.37+0.08

Table 2: Allocative prediction results for synthetic data.

Also, allocative actions achieve better results than alternative actions since the former
can realize “portfolios” by combining the costs of two actions. Note that the results for
allocative actions are also interpreted as the results from the distribution of the cost expected
for each example when the stochastic selection (2) is performed.

Let us examine the cost distributions of the resulted hypotheses. Figure 5 shows the
cost distributions for the synthetic data by MetaRisk with alternative actions and 5 = 0.95.
Even in such a simple case, the cost distribution shows non-Gaussianity since it is a mixture
of Gaussian distributions and uniform distribution. Generally, the cost distribution easily
becomes non-Gaussian even if each costs follows its own Gaussian distributions, since the
resulted cost distribution becomes an infinite mixture of Gaussian distributions.

Figure 6 the cost distributions for the German Credit Data Set by MetaRisk with
alternative actions and § = 0.95. The cost are significantly skewed to left, and shows
its heavy tail property. In other to confirm the heavy tail property, Figure 7 is double
logarithmic plot of the cost distribution. We can observe linear trend that typical heavy
tail distributions show. In both datasets, traditional mean-variance type approaches are
not appropriate.

5. Related Work

In this section, we review some works related to risk-sensitive learning, and discuss relations
among them.
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Test ES Cost- Risk-Sensitive
(VaR) | Sensitive (= 0.80 B =0.90 B =0.95 B =0.99
(6 =0.99 | 64.47+6.46 66.23+6.45 67.91+£3.95  60.68+7.06 55.34+5.16
6 =0.95 | 34.66+1.14  35.69+1.32 34.45+1.76 30.13+2.30  32.00+3.73
(6 =090 | 23.58+0.94  23.26+0.51  23.04+1.74 21.15+161  22.89+3.04
6 =0.80 | 14.71+0.78 14.40+056 14.93+1.16  14.33+1.10 15.38+1.99
Mean Cost | 3.3140.23 3.5241.12 3.9240.32 3.9040.34 3.99+0.63

Table 3: Alternative prediction results for the German Credit Data Set Michie et al. (1994)
(3-fold cross validation).

Test ES Cost- Risk-Sensitive
(VaR) | Sensitive [ = 0.80 6 =0.90 6 =0.95 6 =0.99
06 =0.99 | 64.47+6.46  60.29+6.70  57.89+3.71  52.74+161  44.29+7.28
6 =0.95 | 34.66+1.14  31.48+2.03 30.03+1.45 26.17+1.27 28.16+3.19
(6 =090 | 23.584+0.94  20.76+1.36  20.25+1.25 19.21+0.85 22.4542.31
6 =0.80 | 14.71+0.78 13.01+0.80 13.73+0.70  14.47+0.58 16.65+1.87
Mean Cost | 3.31+0.2 3.98+0.13 4.6840.22 5.08+0.17 9.95+0.51

Table 4: Allocative prediction results for the German Credit Data Set Michie et al. (1994)
(3-fold cross validation).

5.1 Financial Engineering

Decision making theory considering risk aversion originates Markovitz (1952)’s mean-variance
model, and thereafter, has been actively studied as the portfolio theory in the fields of opera-
tions research and financial engineering (Luenberger, 1998). Value-at-Risk (VaR) (Mausser
and Rosen, 1998) is probably the most commonly used metric of risks. The convexity of
the optimization problem of VaR is guaranteed if the underlying cost distribution follows

Probability
A

Cost

Figure 5: Cost distribution at 5 = 0.95 for the synthetic data shows its non-Gaussianity.
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Figure 6: Cost distribution at § = 0.95 for the German Credit Data shows its non-
Gaussianity.
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Figure 7: Double logarithmic plot of cost distribution at § = 0.95 for the German Credit
Data shows its heavy tail property.

Gaussian distribution, but this assumption does not hold in many real situations. Recently,
a new risk metric called expected shortfall (Artzner et al., 1999) (a.k.a. conditional value-
at-risk) is attracting considerable attention since it considers the amount of costs exceeding
VaR, and conveniently, is convex without the Gaussian assumption of the cost distribution.

Most of the works in this field focus on estimating the amount of risks (Mausser and
Rosen, 1998), or solving mathematical programming for optimal decision making given
models (Rockafellar and Uryasev, 2000), and there are little works from machine learning
perspective such as learning risk-avoiding decision rules from examples.
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5.2 Cost-Sensitive Learning

There are many types of costs treated in cost-sensitive learning (Turney, 2000). In early
works (Bradford et al., 1998; Domingos, 1999; Elkan, 2001), the cost function is assumed
to be known, and not to depend directly on x, but on classes as latent variables. Recently,
direct minimization of the expected cost (6) in more general situations where the cost func-
tion is not known beforehand, and depend on x, has been widely accepted (Fan et al.,
1999; Zadrozny et al., 2003; Geibel et al., 2004; Abe and Zadrozny, 2004; Zadrozny and
Elkan, 2001). There are three types of approaches in existing cost-sensitive learners, one
is decision-theoretic approaches that perform Bayes-optimal decision making based on es-
timated class probabilities and cost distributions (Elkan, 2001; Zadrozny and Elkan, 2001),
another approach is the cost-sensitive versions of the existing cost-insensitive learners such
as decision trees (Bradford et al., 1998), perceptrons (Geibel et al., 2004), and support
vector machines (Fumera and Roli, 2002; Geibel et al., 2004), and the other approach is
meta-learners that exploit existing cost-insensitive learners to realize cost-sensitive learning
by reweighting or resampling examples (Domingos, 1999; Fan et al., 1999; Zadrozny et al.,
2003; Geibel et al., 2004; Abe and Zadrozny, 2004). However, all works are oriented to-
ward minimizing the expected cost, and not toward mitigating the risks of huge costs as we
discussed in this paper.

5.3 Risk-Sensitive Reinforcement Learning

After the seminal work by Herger (1994), there are some attempts to incorporate the idea
of risk aversion in the context of reinforcement learning (Neuneier, 1998; Sato et al., 2001).
However, they all remain to focus on minimizing the value-at-risk in limited cases. For exam-
ple, instead of the expected discounted reward, Herger proposes a-value criterion (Herger,
1994) as the objective function, which is essentially identical to value-at-risk of the dis-
counted reward, and which is not convex. Also, the Bellman equation is presented for the
worst case, that is, f = 1, and it is not possible for general 3.

Neuneier (1998) realized soft risk aversion by employing a parameter that emphasizes
actions whose rewards are less than expected, but this parameter is rather intuitive, and
does not have clear correspondence to the risk metric to be optimized.

The above methods are both designed as the variants of Q-learning, hence do not aim
directly to optimize the risk metrics, but aim to estimate the expected discounted reward
function accurately.

On the other hand, Sato et al. (2001) propose an approach that directly optimizes
an objective function defined as a linear combination of the mean and the variance of
discounted reward. This is based on the assumption of the mean-variance model where the
distribution of the discounted reward follows Gaussian distribution, which does not hold in
most situations. Moreover, in the case of alternative actions, the objective function is not
convex even under the assumption.

5.4 Robust Statistics

Robust statistics (Hampel et al., 1986; Rousseeuw and Leroy, 1987) aims to robust es-
timation of models by eliminating influence of outliers, which is an antithetical to our
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risk-sensitive approach. There are some classes of robust estimators, one of which is L-
estimator defined as a linear combination of order statistics. For example, least trimmed
square (Rousseeuw and Leroy, 1987) is an instance of L-estimator which minimizes the sum
of squared losses less than some quantile by trimming off the largest losses. The idea of
trimmed estimator has been generalized for general loss functions (Cizek, 2004).

By definition, minimization of expected shortfall is identical to minimization of the losses
above §-quantile. Our risk-sensitive approach goes against the trimmed estimators in that
sense. In contrast to cutting off outliers to robustify estimators, it makes the most of the
outliers, and aggressively “overfits” to them to avoid potential risks. In addition, trimmed
estimation is not usually convex optimization problems while minimizing expected shortfall
is.

6. Conclusion and Future Works

In this paper, we tackled cost-sensitive learning problem from the perspective of risk aver-
sion, and proposed to minimize not the expected cost but the risk metric called expected
shortfall which is being widely accepted in the area of financial engineering. Its definition
and characteristics such as convexity play key roles to elegantly realize risk aversion, which
has not been discussed in the area of data mining. The proposed method is a meta-learning
algorithm that exploits any existing cost-sensitive learner to solve risk-sensitive learning
problems with alternative or allocative actions.

Although we focused on supervised classification problems in this paper, this idea is
also applicable to a wide class of data mining problems, such as clustering, regression, and
so on. Also, from another perspective, the cost function can be substituted by general
loss functions such as log-likelihood. This indicates that the meta-learning framework we
proposed in this paper has possibilities of converting existing machine learning algorithms
to have large margin and sparsity properties by enforcing them to focus on difficult examples
just like boosting and suport vector machines.

Finally, we conclude this paper with mentioning some possible future works. Although
we used the expected shortfall in a stand-alone manner in this paper, there might be cases
where one wants not only to minimize risks of large costs, but also to minimize the expected
cost at the same time. Actually, such idea is widely accepted in portfolio theory that
maximizes expected returns while suppressing risks. Similarly, we should incorporate the
expected cost into the objective function in real applications. One way to do this is to
employ a linear combination of the expected cost (6) and the risk metric (7) as the objective
function,

nC¥(0) + (1= )5 (6),

where 0 < n < is a mixing constant. It is easily confirmed that this objective function also
has convexity, and MetaRisk can be extended to afford this objective function.

Another possibility is to develop tailor-made algorithms for risk-sensitive learning that
minimize (10) with respect to both 6 and « at the same time, while MetaRisk optimizes
0 and « alternately in this paper. In the case of allocative actions, we assumed a linear
constraint (4) on the cost of action portfolio, and this made it possible to take the gradient
boosting approach. However, this assumption might be too strong in some applications.
As Theorem 1 assures, expected shortfall is convex if we make a more general assumption
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that c(x,h(#)) is convex. Approaches from direct convex optimization might be pursued
in such cases. From the viewpoint of computational efficiency, perceptron learning that we
employed in the experiment is incremental with respect to 6, but MetaRisk itself is a batch
algorithm. This is not efficient for huge data, and thoroughly on-line type algorithms are
desirable.

The other direction of the future research is to loosen the assumption on the train-
ing data. The assumption that we know costs for all actions seems to be too strong.
There should be many cases where we know the cost for the action we really took, for
example, data on direct marketing usually has the results only for the actions that were
actually taken. This kind of situations might be modeled as an one-benefit learning prob-
lem (Zadrozny, 2005), or similarly, an associative reinforcement learning problem (Kael-
bling, 1994; Williams, 1992). More generally, reinforcement learning with the expected
shortfall of discounted reward might be seen beyond them.
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Appendix: Cost-Sensitive Perceptron (Geibel et al., 2004)

In order to make this paper self-contained, we briefly review the cost-sensitive percep-
tron (Geibel et al., 2004) employed in the experiment.

Suppose that we have two actions Y = {+1, —1}. The decision rule (1) is defined as the
sign of (0, x),

§ = sign ( (0,x) )

Note that we suppose that the feature vector x has a constant element for incorporating
the bias like xT = (x'',1), where x indicates the original feature vector.

In terms of hypothesis h, the hypothesis of the cost-sensitive perceptron is represented
as

h(x,y;0) = y(0,%).

The objective function (6) is written as

1

CEB) = > ex D, + 1)1 = 1) + e(x D, ~1)1(5 = ~1),

i=1

Without loss of generality, we can suppose either of ¢(x(),+1) and ¢(x(®, —1) is zero by
subtracting min{c(x¥, +1), ¢(x®, —1)} from both costs, which does not effect the minimizer
of CE(0) at all.
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Instead of the original objective function, the cost-sensitive perceptron employs the
following convex objective function,

N
- w2 [a0x) ] (A

Intuitively, the cost of each action is multiplied by the confidence level of the current hy-
pothesis, |(#,x®)|. Since (A.1) has a trivial solution § = 0, margin € > 0 is employed for
avoiding this.

N
1 , , +
=20 > el [ ylox?) +c] (A.2)
i=1 ye{+1,-1}

Fortunately, the scale of € does not influence the final solution at all.
Taking the subgradient of (A.2),

= N
X %Z ex 9, )yxOT (0, x0) +¢>0),
= ye{r1-1}

hence the incremental rules for on-line update of # become
o If (§,x) > —¢, then 6 — 6 — ye(x@, +1)x) |
o If (9,x) < ¢, then 6 «— 6 4 ye(x¥, —1)x) |

where the learning rates ~; satisfy the conditions for stochastic approximation such as

limy—oo e = 0,3 g0yt = 00, and Y 52077 < oo.
The dual version of the cost-sensitive perceptron is derived by representing the param-
eters as a linear combination of feature vectors,

N
=3 alx)

1

<

where a(Ds are the dual parameters of 6. Replacing all the parameters by the dual param-
eters, the dual decision rule becomes

g = sign ( i\[: aW)(xV) x) ), (A.3)

j=1
and similarly, the incremental rules become
o If Z LaD(x0) x0y > —e then a « a) — ye(x® +1)
o If Z LaD(x0) x@y < ¢ then a® « a® + y,e(x?), 1) .
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The inner product (x,x’) can be replaced by a kernel function,
K(x,x') = (x,x),
and (A.3) becomes

N
y = sign ( Za(j)K(x(j),x) ) .
j=1

One possible choice of the kernel function is the Gaussian kernel,

K(x,x') = exp ( x=x P ) (A4)

o2

where o is a width parameter.
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