Go To English Page
鹿島 久嗣 (かしま ひさし) の 研究業績
- 私のこれまでの研究業績をまとめたものです。
- 個別の論文がどのくらいイケているかは:
あたりが参考になるかも知れませんが、おそらくグラフカーネルをはじめとするグラフ構造データの解析に関するものであろうかと思います。
- 最近では人と機械の協働によって困難な問題を解決するヒューマンコンピュテーション、あるいはそのプラットフォームとなるクラウドソーシングの研究にも力を入れています。
<受賞歴>
<研究費獲得状況>
研究代表者
- 2021/10-2027/3: 戦略的創造研究推進事業(CREST) 研究領域:「信頼されるAIシステム」 研究領域:「人とAIの協働ヒューマンコンピュテーション基盤」
- 2020/4-2024/3: 科学研究費補助金 基盤研究(B): 「複雑な関係データに基づく意思決定のための機械学習研究」
- 2015/4-2020/3: 科学研究費補助金 基盤研究(A): 「ビッグデータ時代の複雑構造データを扱う機械学習法の研究」
- 2014/4-2016/3: 科学研究費補助金 新学術領域研究(研究領域提案型): 「機械学習に基づく材料探索技術の開発」
- 2013/4-2014/3: 第9回 マイクロソフトリサーチ CORE 連携研究プログラム: 「Machine Learning for Crowdsourcing Quality Control」
- 2010/10-2014/3: 戦略的創造研究推進事業(さきがけ) 研究領域:「知の創生と情報社会」 「高精度でスケーラブルな多項関係予測の実現」
- 2010/4-2014/3: 科学研究費補助金 若手研究(A) :「グラフ構造データの予測的分析のための機械学習手法の研究」
研究分担者
共同研究
<論文等の出版物>
学位論文
ジャーナル論文
- Jiuding Duan, Hisashi Kashima.
Learning to Rank for Multi-step Ahead Time-Series Forecasting.
IEEE Access, 2021. # 時系列の長期予測をランキング問題として定式化
- 林 勝悟, 河原 吉伸, 鹿島 久嗣.
能動的変化点検知.
人工知能学会論文誌, Vol.35, No.5, 2020. # 新たな機械学習問題「能動変化検知」とその一般的解法の提案
- 林 勝悟, 谷本 啓, 鹿島 久嗣.
一般化蒸留を用いた少量時系列データの長期予測.
人工知能学会論文誌, Vol.35, No.5, 2020. # 訓練時のみ利用可能な将来のデータも用いた教師モデルを利用して、時系列の長期予測精度を向上
- Shonosuke Harada, Hirotaka Akita, Masashi Tsubaki, Yukino Baba, Ichigaku Takigawa, Yoshihiro Yamanishi, Hisashi Kashima.
Dual Graph Convolutional Neural Network for Predicting Chemical Networks.
BMC Bioinformatics (presented at GIW/ABACBS 2019), 2020. # 「グラフのグラフ」のリンク予測法の提案と化合物間関係の予測への応用
- Eli Kaminuma, Yukino Baba, Masahiro Mochizuki, Hirotaka Matsumoto, Haruka Ozaki, Toshitsugu Okayama, Takuya Kato, Shinya Oki, Takatomo Fujisawa, Yasukazu Nakamura, Masanori Arita, Osamu Ogasawara, Hisashi Kashima Toshihisa Takagi.
DDBJ Data Analysis Challenge: A Machine Learning Competition to Predict Arabidopsis Chromatin Feature Annotations from DNA Sequences.
Genes & Genetic Systems, Vol. 95, 2020. # バイオ分野におけるデータ解析コンペティション実施報告
- Shun Ito, Yukino Baba, Tetsu Isomura, Hisashi Kashima.
Synthetic Accessibility Assessment Using Auxiliary Responses.
Expert Systems with Applications (ESWA), 2020. # クラウドソーシングによる化合物合成可能性判定
- Jiyi Li, 馬場 雪乃, 鹿島 久嗣.
超問題:専門知識を要するクラウドソーシングタスクの回答統合法.
日本データベース学会和文論文誌, Vol.17-J, 2019. # 多数決の結果が正解とならない難しい問題に対する回答統合法を提案
- Yukino Baba, Tetsu Isomura, Hisashi Kashima.
Wisdom of Crowds for Synthetic Accessibility Evaluation.
Journal of Molecular Graphics and Modelling, Vol.80, pp.217-223, 2018.
- Atsuto Seko, Hiroyuki Hayashi, Hisashi Kashima, Isao Tanaka.
Matrix- and Tensor-based Recommender Systems for the Discovery of Currently Unknown Inorganic Compounds.
Physical Review Materials, Vol.2, No.1, 2018.
- Takuya Kuwahara, Yukino Baba, Hisashi Kashima, Takeshi Kishikawa, Junichi Tsurumi, Tomoyuki Haga, Yoshihiro Ujiie, Takamitsu Sasaki, Hideki Matsushima.
Supervised and Unsupervised Intrusion Detection Based on CAN Message Frequencies for In-Vehicle Network.
Journal of Information Processing, Vol.26, pp.306-313 2018.
- Sho Yokoi, Hiroshi Kajino, Hisashi Kashima.
Link Prediction in Sparse Networks Using Incidence Matrix Factorization.
Journal of Information Processing, Vol.25, pp.477-485, 2017.
- 則 のぞみ, 鹿島 久嗣, 山下 和人, 猪飼 宏, 今中 雄一.
マルチタスク学習による集中治療室入室患者のリスクモデル構築.
電子情報通信学会論文誌, Vol.J100-D, No.2, pp.194-204, 2017.
- Satoshi Oyama, Yukino Baba, Ikki Ohmukai, Hiroaki Dokoshi, Hisashi Kashima.
Crowdsourcing Chart Digitizer: Task Design and Quality Control for Making Legacy Open Data Machine-Readable.
International Journal of Data Science and Analytics, Vol.2, No.1-2, pp.45-60, 2016.
- Yukino Baba, Kei Kinoshita, Hisashi Kashima.
Participation Recommendation System for Crowdsourcing Contests.
Expert Systems With Applications, Vol.43, pp.174-183, 2016.
- Naoki Otani, Yukino Baba, Hisashi Kashima.
Quality Control of Crowdsourced Classication Using Hierarchical Class Structures.
Expert Systems With Applications, Vol.58, pp.155-163, 2016..
- 梶村 俊介, 馬場 雪乃, 梶野 洸, 鹿島 久嗣.
列挙型クラウドソーシングタスクのための品質管理法.
人工知能学会論文誌, Vol.31, No.2, p.K-F79_1-9, 2016.
- Kai Morino, Yoshito Hirata, Ryota Tomioka, Hisashi Kashima, Kenji Yamanishi, Norihiro Hayashi, Shin Egawa, Kazuyuki Aihara.
Predicting Disease Progression from Short Biomarker Series Using Expert Advice Algorithm.
Scientific Reports, Vol.5, No.8953, doi:10.1038/srep08953, 2015.
- 則 のぞみ, ボレガラ ダヌシカ, 鹿島 久嗣.
接続行列埋め込みに基づく複数種類の多項関係の同時予測.
人工知能学会論文誌, Vol.30, No.2, pp.459-465, 2015.
-
Yasunobu Nohara, Eiko Kai, Partha Ghosh, Rafiqul Islam, Ashir Ahmed, Masahiro Kuroda, Sozo Inoue, Tatsuo Hiramatsu, Michio Kimura, Shuji Shimizu, Kunihisa Kobayashi, Yukino Baba, Hisashi Kashima, Koji Tsuda, Masashi Sugiyama, Mathieu Blondel, Naonori Ueda, Masaru Kitsuregawa, Naoki Nakashima.
A Health Checkup and Tele-Medical Intervention Program for Preventive Medicine in Developing Countries: A Verification Study.
Journal of Medical Internet Research (JMIR), Vol.17, No.1, 2015.
- Hiroshi Kajino, Hiromi Arai, Hisashi Kashima.
Preserving Worker Privacy in Crowdsourcing.
Data Mining and Knowledge Discovery, Vol.27, No.5-6, pp.1314-1335, 2014.
- Yukino Baba, Hisashi Kashima, Kei Kinoshita, Goushi Yamaguchi, Yosuke Akiyoshi.
Leveraging Non-expert Crowdsourcing Workers for Improper Task Detection in Crowdsourcing Marketplaces.
Expert Systems With Applications, Vol.41, No.6, pp.2678-2687, 2014.
- 則 のぞみ, ボレガラ ダヌシカ, 鹿島 久嗣.
次元削減による多項関係予測.
人工知能学会論文誌,
Vol.29, No.1, pp.168-176, 2014. (人工知能学会論文賞)
- Hiroto Saigo, Hisashi Kashima, Koji Tsuda.
Fast Iterative Mining Using Sparsity-inducing Loss Functions.
IEICE Transaction on Information and Systems, Vol.E96-D, No.8, pp.1766-1773, 2013.
- 梶野 洸, 坪井 祐太, 佐藤 一誠, 鹿島 久嗣.
エキスパートによる訓練データとクラウドソーシングで作成した訓練データからの教師付き学習.
人工知能学会論文誌,
Vol.28, No.3, pp.243-248, 2013.
- Xu Sun, Hisashi Kashima, Naonori Ueda.
Large-Scale Personalized Human Activity Recognition Using Online Multi-Task Learning.
Transactions on Knowledge and Data Engineering, DOI 10.1109/TKDE.2012.246, 2012.
- Satoshi Oyama, Kohei Hayashi, Hisashi Kashima.
Link Prediction across Time via Cross-temporal Locality Preserving Projections.
IEICE Transaction on Information and Systems, Vol.E95-D, No.11, pp.2664-2673, 2012.
- Atsuhiro Narita, Kohei Hayashi, Ryota Tomioka, Hisashi Kashima.
Tensor Factorization Using Auxiliary Information.
Data Mining and Knowledge Discovery, Vol.25, No.2, pp.298-324, 2012.
- 林 浩平, 竹之内 高志, 冨岡 亮太, 鹿島 久嗣.
自己計測類似度を用いたマルチタスクガウス過程.
人工知能学会論文誌,
Vol.27, No.3, pp.103-110, 2012.
- 梶野 洸, 鹿島 久嗣.
凸最適化に基づくクラウドソーシングを用いたマルチタスク学習.
人工知能学会論文誌,
Vol.27, No.3, pp.133-142, 2012. (人工知能学会論文賞)
- Junichiro Mori, Yuya Kajikawa, Hisashi Kashima, Ichiro Sakata.
Machine Learning Approach for Finding Business Partners and Building Reciprocal Relationships.
Expert Systems With Applications, Vol.39, No.12, pp.10402-10407, 2012.
- 木村 大翼, 久保山 哲二, 渋谷 哲朗, 鹿島 久嗣.
部分パスに基づいた木カーネル.
人工知能学会論文誌,
Vol.26, No.3, pp.473-482, 2011.
- Shohei Hido, Yuta Tsuboi, Hisashi Kashima, Masashi Sugiyama, Takafumi Kanamori.
Statistical Outlier Detection Using Direct Density Ratio Estimation.
Knowledge and Information Systems, Vol26, No.2, pp.309-336, 2011.
- Reiji Teramoto, Hisashi Kashima.
Prediction of Protein-ligand Binding Affinities Using Multiple Instance Learning.
Journal of Molecular Graphics and Modelling,
Vol.29, No.3, pp.492-497, 2010.
- Yosuke Ozawa, Rintaro Saito, Shigeo Fujimori, Hisashi Kashima, Masamichi Ishizaka, Hiroshi Yanagawa, Etsuko Miyamoto-Sato, Masaru Tomita.
Protein Complex Prediction via Verifying and Reconstructing the Topology of Domain-domain Interactions.
BMC Bioinformatics, Vol. 11, No. 350, 2010.
- Hisashi Kashima, Satoshi Oyama, Yoshihiro Yamanishi, Koji Tsuda.
Cartesian Kernel: An Efficient Alternative to the Pairwise Kernel.
IEICE Transaction on Information and Systems, Vol.E93-D, No.10, pp.2672-2679, 2010.
- Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashima, Tetsuro Morimura.
Least Absolute Policy Iteration - A Robust Approach to Value Function Approximation.
IEICE Transaction on Information and Systems, Vol.E93-D, No.9, pp.2555-2565, 2010.
- 松澤 裕文, 比戸 将平, 井手 剛, 鹿島 久嗣.
教師付き学習を用いた教師無し変化解析手法.
電子情報通信学会論文誌, Vol.J93-D, No.6, pp.816-825, 2010.
- Tsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama, Kiyoshi Asai.
Conic Programming for Multi-task Learning.
IEEE Transactions on Knowledge and Data Engineering, Vol.12, No.7, pp.957-968, 2010.
- Tsuyoshi Kato, Kinya Okada, Hisashi Kashima, Masashi Sugiyama.
A Transfer Learning Approach and Selective Integration of Multiple Types of Assays for Biological Network Inference.
International Journal of Knowledge Discovery in Bioinformatics (IJKDB), Vol.1, No.1, pp.66-80, 2010.
- Hiroto Saigo, Masahiro Hattori, Hisashi Kashima, Koji Tsuda.
Reaction Graph Kernels Predict EC Numbers of Unknown Enzymatic Reactions in Plant Secondary Metabolism.
BMC Bioinfomatics, Vol.11, No.Suppl 1:S31, 2010.
- Shohei Hido, Hisashi Kashima, Yutaka Takahashi.
Roughly-balanced Bagging for Imbalanced Data.
Statistical Analysis and Data Mining,
Vol.2, No.5-6, pp.412-426, 2009.
- Hisashi Kashima, Yoshihiro Yamanishi, Tsuyoshi Kato, Masashi Sugiyama, Koji Tsuda.
Simultaneous Inference of Biological Networks of Multiple Species from Genome-wide Data and Evolutionary Information: A Semi-supervised Approach.
Bioinformatics,
Vol.25, No.22, pp.2962-2968, 2009.
- 坪井 祐太, 森 信介, 鹿島 久嗣, 小田 裕樹, 松本 裕治.
日本語単語分割の分野適応のための部分的アノテーションを用いた条件付確率場の学習. 情報処理学会論文誌, Vol.50, No.6, pp.
1234-1247, 2009. (情報処理学会論文賞)
- Yuta Tsuboi, Hisashi Kashima, Shohei Hido, Steffen Bickel, Masashi Sugiyama.
Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation.
Journal of Information Processing, Vol. 17, pp.138-155, 2009.
- Tsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama.
Robust Label Propagation on Multiple Networks.
IEEE Transactions on Neural Networks, Vol.20, No.1, pp. 35-44, 2009.
- Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von Bunau, Motoaki Kawanabe.
Direct Importance Estimation for Covariate Shift Adaptation.
Annals of the Institute of Statistical Mathematics, Vol. 60, No. 4, 2008.
- Hisashi Kashima, Shoko Suzuki, Shohei Hido, Yuta Tsuboi, Toshihiro Takahashi, Tsuyoshi Ide, Rikiya Takahashi, Akira Tajima.
A Semisupervised Approach Using Spatio-temporal Information for Indoor Location Estimation.
In Qiang Yang, Sinno Jialin Pan and Vincent Wenchen Zheng, Estimating Location Using Wi-Fi, IEEE Intelligent Systems, Vol. 23, No. 1, pp. 8-13, Jan/Feb, 2008.
- Shoko Suzuki, Yuta Tsuboi, Hisashi Kashima, Shohei Hido, Toshihiro Takahashi, Tsuyoshi Ide, Rikiya Takahashi, Akira Tajima.
A Dimensionality Reduction Approach. In Qiang Yang, Sinno Jialin Pan and Vincent Wenchen Zheng, Estimating Location Using Wi-Fi, IEEE Intelligent Systems, Vol. 23, No. 1, pp. 8-13,
Jan/Feb, 2008.
- Hisashi Kashima.
Risk-sensitive Learning via Minimization of Empirical Conditional Value-at-risk.
IEICE Transaction on Information and Systems, Vol. E90-D, No. 12, pp. 2043-2052, 2007.
- Tetsuji Kuboyama, Hisashi Kashima, Kiyoko F. Aoki-Kinoshita, Kouichi Hirata, Hiroshi Yasuda.
A Spectrum Tree Kernel.
人工知能学会論文誌, Vol.22, No.2, pp.140-147, 2007. 2007.
- 鹿島 久嗣, 安倍直樹. ネットワーク構造の確率的な時変モデルに基づく教師ありリンク予測.
人工知能学会論文誌, Vol. 22, No. 2, pp.209-217, 2007.
- 鹿島 久嗣, 津村 直史, 井手 剛, 野ヶ山 尊秀, 平出 涼, 江藤 博明, 福田 剛志.
ネットワークデータを用いた分散システムにおける異常検出.
電子情報通信学会論文誌, Vol. J89-D, No. 2, pp.183-198, 2006.
- 鹿島 久嗣, 坂本 比呂志, 小柳 光生.
木構造データに対するカーネル関数の設計と解析. 人工知能学会論文誌,
Vol. 21, No. 1, pp.113-121, 2006. (人工知能学会論文賞)
- Tetsuo Shibuya, Hisashi Kashima, Akihiko Konagaya.
Efficient Filtering Methods for Clustering cDNAs with Spliced Sequence Alignment.
Bioinformatics, Vol.20, No.1, pp.29-39, 2004.
- Takanori Fukao, Hisashi Kashima, Norihiko Adachi.
Decentralized Adaptive Control with Improved Transient Performance.
計測自動制御学会論文集, Vol.35, No.7, pp. 869-878, 1999.
本/解説
- Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, Hisashi Kashima.
Low-rank Tensor Denoising and Recovery via Convex Optimization.
In Regularization, Optimization, Kernels, and Support Vector Machines, 2014.
- 鹿島 久嗣.
ビッグデータに挑むクラウドソーシング.
電子情報通信学会誌, Vol.97, No.5, pp.364-369, 2014.
- 鹿島 久嗣, 馬場 雪乃.
ヒューマンコンピュテーション概説.
人工知能学会誌, Vol. 29, No.1, pp.4-11, 2014.
- Tetsuo Shibuya, Hisashi Kashima, Jun Sese and Shandar Ahmad (編): Pattern Recognition in Bioinformatics, Proceedings of the 7th IAPR International Conference (PRIB 2012), Lecture Notes in Computer Science, Vol.7632, 2012.
- 鹿島 久嗣, 梶野 洸: クラウドソーシングと機械学習, 人工知能学会誌, Vol. 27, No.4, pp.381-388, 2012.
- 鹿島 久嗣: グラフとネットワークの構造データマイニング,
電子情報通信学会誌, Vol.93, No.9, pp.797-802, 2010.
- Yoshihiro Yamanishi and Hisashi Kashima: Prediction of Compound-protein Interactions with Machine Learning Methods,
In Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques, IGI Global, 2010.
- Hisashi Kashima, Hiroto Saigo, Masahiro Hattori and Koji Tsuda:
Graph Kernels in Chemoinformatics, In Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques,
IGI Global, 2010.
- Hisashi Kashima, Tsuyoshi Ide, Tsuyoshi Kato and Masashi
Sugiyama: Recent
Advances and Trends in Large-scale Kernel Methods (invited paper), IEICE
Transactions on Information and Systems, Vol.92, No.7, pp.1338-1353, 2009.
- 鹿島 久嗣: ネットワーク構造予測, 人工知能学会誌, Vol. 22,
No. 3, pp.344-351, 2007.
- 鹿島 久嗣: 構造データマイニングの手法とバイオインフォマティクスへの応用, ソフトウェア・バイオロジー,
Vol.5, pp.21-23, 化学工学会, 2006.
- 鹿島 久嗣: カーネル法による構造データの解析,
電子情報通信学会技術研究報告 言語理解とコミュニケーション/パターン認識・メディア理解, Vol.104, No.668, pp.61-66,
2005.
- 鹿島 久嗣: カーネル法による構造データマイニング, 情報処理, Vol. 46, No. 1,
pp.27-33, 2005.
- 鈴木 英之進, 鹿島 久嗣: 特集「最新!データマイニング手法」, 情報処理, Vol. 46, No. 1,
pp.2-3, 2005.
- Hisashi Kashima, Koji Tsuda and Akihiro Inokuchi: Kernels for Graphs, In Kernel
Methods in Computational Biology, MIT
Press, pp.155-170, 2004.
特許 (成立したもの)
日本国特許
- 比戸 将平, 鹿島 久嗣 (IBM): グラフの類似度計算システム、方法及びプログラム, 特許第5306461号.
- ルディ・レイモンド・ハリー・プテラ, 鹿島 久嗣 (IBM): リンク予測システム、方法及びプログラム, 特許5225183号.
- 柳澤 弘揮, 鹿島 久嗣, 田島 玲 (IBM): 新規顧客候補の評価作業を支援するための装置、方法及びプログラム, 特許第5220582号.
- 鹿島 久嗣, 比戸 将平, 田島 玲 (IBM): 作業評価値予測方法、プログラム及びシステム, 特許第5198981号.
- 比戸 将平, 井手 剛, 鹿島 久嗣, 久保 晴信, 松澤 裕史 (IBM): 変化分析システム、方法及びプログラム, 特許第5159368号.
- 鹿島 久嗣 (IBM): 利用者の行動を支援するシステム, 特許第4140915号.
- 鹿島 久嗣 (IBM): 分類因子検出装置、分類因子検出方法、プログラム、及び記録媒体, 特許第4107658号.
- 江藤 博明, 平出 涼, 鹿島 久嗣, 井手 剛 (IBM): 解析システム、解析方法、解析プログラム、及び記録媒体,
特許第4093483号.
- 井手 剛, 依田 邦和, 鹿島 久嗣, 江藤 博明, 平出 涼 (IBM): 異常検出システム及びその方法,
特許第3922375号.
- 鹿島 久嗣, 小柳 光生 (IBM): データ処理方法、これを用いた情報処理システム及びプログラム, 特許第3873135号.
- 渋谷 哲朗, 鹿島 久嗣 (IBM): データベース検索装置、及びプログラム, 特許第3871301号.
- 鹿島 久嗣, 梶永 泰正 (IBM): 「情報処理方法、情報処理システムおよび記録媒体, 特許3579828号.
米国特許
- Shohei Hido, Hisashi Kashima (IBM):
Graph Similarity Calculation System, Method and Program, U.S.Patent:9122771&8588531.
- Shohei Hido, Ysuyoshi Ide, Hisashi Kashima, Harunobu Kubo, Hirofumi Matsuzawa (IBM):
Change Analysis, U.S.Patent:8417648.
- Shohei Hido, Tsuyoshi Ide, Hisashi Kashima, Shoko Suzuki, Akira Tajima, Rikiya Takahashi, Toshihiro Takahashi, Yuta Tsuboi (IBM):
Location estimation system, method and program, U.S.Patent:8138974.
- Hisashi Kashima, Kazutaka Yamasaki
(IBM): Method for Regression from Interval Target Values by Alternating Linear Gaussian and Expectation-Maximization, U.S.Patent:8140447.
- Shohei Hido, Tsuyoshi Ide, Hisashi Kashima, Shoko Suzuki, Akira Tajima, Rikiya Takahashi, Toshihiro Takahashi, Yuta Tsuboi
(IBM): A Location Estimation Method Using Label Propagation, U.S.Patent:8138974.
- Hisashi Kashima
(IBM): Method and System for L1-based Robust Distribution Clustering of Multinomial Distributions, U.S.Patent:7996340.
- Hiroaki Etoh, Ryo Hirade, Hisashi Kashima, Tsuyoshi Ide
(IBM): Computer Operation Analysis, U.S.Patent:7493361.
- Hisashi Kashima (IBM): System for Supporting User's Behavior, U.S.Patent: 7467120.
- Tsuyoshi Ide, Kunikazu Yoda, Hisashi Kashima (IBM), Hiroaki
Etoh, Ryo Hirade: Anomaly Detection, U.S.Patent: 7346803.
- Akihiro Inokuchi, Hisashi Kashima (IBM): Classification
Factor Detection, U.S.Patent: 7337186.
- Hisashi Kashima, Yasumasa Kajinaga (IBM): Auction Method
and Auction System, and StorageMmedium Therefor, U.S.Patent: 7231365.
- Hisashi Kashima, Teruo Koyanagi (IBM): Classification
Method of Labeled Ordered Trees Using Support Vector Machines, U.S.Patent:
7130,833.
- Tetsuo Shibuya, Hisashi Kashima (IBM): Database Search
Device, Database Search System, Database Search Method, Program and Storage
Medium, U.S.Patent: 6928437.
国際会議/ワークショップ論文
- Shonosuke Harada, Hisashi Kashima.
GraphITE: Estimating Individual Effects of Graph-structured Treatments.
In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM), 2021.
# 化合物のようなグラフ構造をもつ介入がある場合の介入効果推定法
- Takako Onishi, Hisashi Kashima.
Machine Failure Diagnosis by Combining Software Log and Sensor Data.
In Proceedings of IEEE International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), 2021.
# ソフトウェアログとセンサーデータに基づくグラフベース故障診断
- Lu Xiaotian, Arseny Tolmachev, Tatsuya Yamamoto, Koh Takeuchi, Seiji Okajima, Tomoyoshi Takebayashi, Koji Maruhashi, Hisashi Kashima.
Crowdsourcing Evaluation of Saliency-based XAI Methods.
In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2021.
# クラウドソーシングによるXAI手法(AIの判断の解釈手法)の定量評価
- Luu Huu Phuc, Koh Takeuchi, Seiji Okajima, Arseny Tolmachev, Tomoyoshi Takebayashi, Koji Maruhashi, Hisashi Kashima.
Inter-domain Multi-relational Link Prediction.
In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2021.
# 複数ドメイン・複数種の関係グラフ上のリンク予測法
- Shu Nakamura, Koh Takeuchi, Hisashi Kashima, Takeshi Kishikawa, Takashi Ushio, Tomoyuki Haga, Takamitsu Sasaki.
In-Vehicle Network Attack Detection Across Vehicle Models: A Supervised-Unsupervised Hybrid Approach.
In Proceedings of the 24th IEEE International Intelligent Transportation Systems Conference (ITSC), 2021.
# 異車種をまたいだ、車載ネットワークへの攻撃検知法を提案
- Maya Okawa, Tomoharu Iwata, Yusuke Tanaka, Hiroyuki Toda, Takeshi Kurashima, Hisashi Kashima.
Dynamic Hawkes Processes for Discovering Time-evolving Communities’ States behind Diffusion Processes.
In Proceedings of the 27st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2021.
# 時空間的な拡散プロセスをモデル化してSNSや感染症などのイベントを予測
- Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, Hisashi Kashima.
Causal Combinatorial Factorization Machines for Set-wise Recommendation.
In Proceedings of the 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2021. # 組合せ介入の因果効果推定法
- Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, Hisashi Kashima.
Regret Minimization for Causal Inference on Large Treatment Space.
In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS), 2021. # 非常に多数の介入がある場合の因果効果推定法
- Yoichi Chikahara, Shinsaku Sakaue, Akinori Fujino, Hisashi Kashima.
Learning Individually Fair Classifier with Path-Specific Causal-Effect Constraint.
In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS), 2021. # 公平性を保証した予測器の学習法
- Ryoma Sato, Makoto Yamada, Hisashi Kashima.
Random Features Strengthen Graph Neural Networks.
In Proceedings of SIAM International Conference on Data Mining (SDM), 2021. # ノードにランダム特徴を加えることでグラフニューラルネットワークの表現を高める方法とその理論保証
- Koh Takeuchi, Ryo Nishida, Hisashi Kashima, Masaki Onishi.
Grab the Reins of Crowds: Estimating the Effects of Crowd Movement Guidance Using Causal Inference.
In Proceedings of 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2021. # 因果推論を用いた群衆の誘導効果予測
- Ryoma Sato, Makoto Yamada, Hisashi Kashima.
Fast Unbalanced Optimal Transport on Tree.
In Advances in Neural Information Processing Systems (NeurIPS 2020), 2020. # 木の上で定義された不均衡最適輸送問題を高速に解く手法
- Luu Huu Phuc, Koh Takeuchi, Makoto Yamada, Hisashi Kashima.
Simultaneous Link Prediction on Unaligned Networks Using Graph Embedding and Optimal Transport.
In Proceedings of the the 7th IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2020. # ノードの対応が与えられていない2つのネットワーク上でのリンク予測問題の解法を提案
- Hitoshi Kusano, Yuji Horiguchi, Yukino Baba, Hisashi Kashima.
Stress Prediction from Head Motion.
In Proceedings of the the 7th IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2020. # 頭部の動きからユーザのストレス状態を判定する方法を提案
- Yukino Baba, Jiyi Li, Hisashi Kashima.
CrowDEA: Multi-view Idea Prioritization with Crowds.
In Proceedings of the 8th AAAI Conference on Human Computation and Crowdsourcing (HCOMP),, 2020. # 多数のアイディアの評価と整理をクラウドソーシングによって行う方法を提案
- Yan Gu, Jiuding Duan, Hisashi Kashima.
An Intransitivity Model for Matchup and Pairwise Comparison.
In Proceedings of the 25th International Conference on Pattern Recognition (ICPR), 2020. # 推移率を満たさないようなランキング問題に対する一般的な深層学習モデルを提案
- Shounosuke Harada, Hisashi Kashima.
Counterfactual Propagation for Semi-Supervised Individual Treatment Effect Estimation.
In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2020. # 半教師付き因果効果推定問題とグラフ伝播法による解法を提案
- Yasutoshi Ida, Sekitoshi Kanai,Yasuhiro Fujiwara, Tomoharu Iwata, Koh Takeuchi, Hisashi Kashima.
Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance.
In Proceedings of the 37th International Conference on Machine Learning (ICML), 2020. # 凸定式化されたCUR行列分解の決定的な高速解法を提案
- Jiyi Li, Yasushi Kawase, Yukino Baba, Hisashi Kashima.
Performance as a Constraint: An Improved Wisdom of Crowds Using Performance Regularization.
In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), 2020. # 多数決が正しい結果を導かない難しい意見統合問題において、正解率を制約として用いる意見統合法を提案
- Tatsuya Shiraishi, Tam Le, Hisashi Kashima, Makoto Yamada
Topological Bayesian Optimization with Persistence Diagrams.
In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI), 2020.
- Ryoma Sato, Makoto Yamada, Hisashi Kashima.
Approximation Ratios of Graph Neural Networks for Combinatorial Problems.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.
- Yasutoshi Ida, Yasuhiro Fujiwara, Hisashi Kashima.
Fast Sparse Group Lasso.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.
- Rafael Pinot, Laurent Meunier, Alexandre Araujo, Hisashi Kashima, Florian Yger, Cédric Gouy-Pailler, Jamal Atif.
Theoretical Evidence for Adversarial Robustness Through Randomization.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.
- Shogo Hayashi, Yoshinobu Kawahara, Hisashi Kashima.
Active Change-Point Detection.
In Proceedings of the 11th Asian Conference on Machine Learning (ACML), 2019.
- Ryoma Sato, Makoto Yamada, Hisashi Kashima.
Learning to Sample Hard Instances for Graph Algorithms.
In Proceedings of the 11th Asian Conference on Machine Learning (ACML), 2019.
- Shonosuke Harada, Kazuki Taniguchi, Makoto Yamada, Hisashi Kashima.
Context-Regularized Neural Collaborative Filtering for Game App Recommendation
In ACM RecSys LBR track, 2019.
- Daiki Tanaka, Makoto Yamada, Hisashi Kashima, Takeshi Kishikawa, Tomoyuki Haga, Takamitsu Sasaki.
In-Vehicle Network Intrusion Detection and Explanation Using Density Ratio Estimation.
In Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019.
# 車載NWへの攻撃検知とその原因箇所特定を統計的変化検知手法によって実現
- Daiki Tanaka, Yukino Baba, Hisashi Kashima, Yuta Okubo.
Large-scale Driver Identification Using Automobile Driving Data.
In Proceedings of 2019 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2019.
# モバイルセンサーデータに基づくドライバー識別を一万人規模で検証
- Shonosuke Harada, Kazuki Taniguchi, Makoto Yamada, Hisashi Kashima.
In-app Purchase Prediction Using Bayesian Personalized Dwell Day Ranking.
In Proceedings of AdKDD 2019 Workshop (AdKDD), 2019.
# モバイルゲームアプリ内での購買行動予測に使用期間情報を利用する手法を提案
- Kosuke Yoshimura, Tomoaki Iwase, Yukino Baba, Hisashi Kashima.
Interdependence Model for Multi-label Classification.
In Proceedings of the 28th International Conference on Artificial Neural Networks (ICANN), 2019.
# マルチラベル分類問題に対する新しいモデル「相互依存モデル」を提案
- Takeru Sunahase, Yukino Baba, Hisashi Kashima.
Probabilistic Modeling of Peer Correction and Peer Assessment.
In Proceedings of the 12th International Conference on Educational Data Mining (EDM), 2019.
# MOOC等のオンライン学習環境での相互添削情報を利用した学習者の能力推定手法を提案
-
Shogo Hayashi, Akira Tanimoto, Hisashi Kashima.
Long-Term Prediction of Small Time-Series Data Using Generalized Distillation.
In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), 2019.
-
Yusuke Sakata, Yukino Baba, Hisashi Kashima.
CrowNN: Human-in-the-loop Network with Crowd Crowd-generated Inputs.
In Proceedings of the 44th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019.
-
Jill-J?nn Vie, Hisashi Kashima.
Factorization Machines for Knowledge Tracing.
In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), 2019.
-
Hirotaka Akita, Kosuke Nakago, Tomoki Komatsu, Yohei Sugawara, Shin-ichi Maeda, Yukino Baba, Hisashi Kashima.
BayesGrad: Explaining Predictions of Graph Convolutional Networks.
In Proceedings of the 25th International Conference on Neural Information Processing (ICONIP), 2018.
-
Ryoma Sato, Takehiro Yamamoto, Hisashi Kashima.
Short-term Precipitation Prediction with Skip-connected PredNet.
In Proceedings of the 27th International Conference on Artificial Neural Networks (ICANN), 2018.
-
Jiyi Li, Hisashi Kashima.
Incorporating Worker Similarity for Label Aggregation in Crowdsourcing.
In Proceedings of the 27th International Conference on Artificial Neural Networks (ICANN), 2018.
- Jiyi Li, Yukino Baba, Hisashi Kashima.
Simultaneous Clustering and Ranking from Pairwise Comparisons.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pp.XX-XX, 2018.
- Guoxi Zhang, Tomoharu Iwata, Hisashi Kashima.
On Reducing Dimensionality of Labeled Data Efficiently.
In Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2018.
- Takuya Kuwahara, Yukino Baba, Hisashi Kashima, Takeshi Kishikawa, Junichi Tsurumi, Tomoyuki Haga, Yoshihiro Ujiie, Takamitsu Sasaki, Hideki Matsushima.
Payload-based Statistical Intrusion Detection for In-vehicle Networks.
In Proceedings of the Australian Workshop on Machine Learning for Cyber-security (co-located with PAKDD 2018), 2018
- Ryusuke Takahama, Yukino Baba, Nobuyuki Shimizu, Sumio Fujita, Hisashi Kashima.
AdaFlock: Adaptive Feature Discovery for Human-in-the-loop Predictive Modeling.
In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), 2018.
- Yukino Baba, Tomoumi Takase, Kyohei Atarashi, Satoshi Oyama, Hisashi Kashima.
Data Analysis Competition Platform for Educational Purposes: Lessons Learned and Future Challenges.
In Proceedings of the 8th Symposium on Educational Advances in Artificial Intelligence (EAAI), 2018.
- Junpei Naito, Yukino Baba, Hisashi Kashima, Takenori Takaki, Takuya Funo.
Predictive Modeling of Learning Continuation in Preschool Education Using Temporal Patterns of Development Tests
In Proceedings of the 8th Symposium on Educational Advances in Artificial Intelligence (EAAI), 2018.
- Koh Takeuchi, Hisashi Kashima, Naonori Ueda.
Autoregressive Tensor Factorization for Spatio-temporal Predictions.
In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), 2017.
- Jiyi Li, Yukino Baba, Hisashi Kashima.
Hyper Questions: Unsupervised Targeting of a Few Experts in Crowdsourcing.
In Proceeding of the 26th ACM International Conference on Information and Knowledge Management (CIKM), 2017.
- Hirotaka Akita, Yukino Baba, Hisashi Kashima, Atsuto Seko.
Atomic Distance Kernel for Material Property Prediction.
In Proceeding of the 24th International Conference on Neural Information Processing (ICONIP), 2017.
- Kosuke Yoshimura, Yukino Baba, Hisashi Kashima.
Quality Control for Crowdsourced Multi-Label Classification using RAkEL.
In Proceeding of the 24th International Conference on Neural Information Processing (ICONIP), 2017.
- Jiyi Li, Tomohiro Arai, Yukino Baba, Hisashi Kashima, Shotaro Miwa.
Distributed Multi-task Learning for Sensor Network.
In Proceeding of the European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2017.
- Guoxi Zhang, Tomoharu Iwata, Hisashi Kashima.
Robust Multi-view Topic Modeling by Incorporating Detecting Anomalies.
In Proceeding of the European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2017.
- Jiuding Duan, Jiyi Li, Yukino Baba, Hisashi Kashima.
A Generalized Model for Multidimensional Intransitivity.
In Proceedings of the 21st Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2017.
- Takeru Sunahase, Yukino Baba, Hisashi Kashima
Pairwise HITS: Quality Estimation from Pairwise Comparisons in Creator-Evaluator Crowdsourcing Process.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI), 2017.
- Nozomi Nori, Hisashi Kashima, Kazuto Yamashita, Susumu Kunisawa, Yuichi Imanaka.
Learning Implicit Tasks for Patient-Specific Risk Modeling in ICU.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI), 2017.
- Yuji Horiguchi, Yukino Baba, Hisashi Kashima, Masahito Suzuki, Hiroki Kayahara, Jun Maeno.
Predicting Fuel Consumption and Flight Delays for Low-cost Airlines.
In Proceedings of the 29th Conference on Innovative Applications of Artificial Intelligence (IAAI), 2017.
-
Kaito Fujii, Hisashi Kashima.
Budgeted Stream-based Active Learning via Adaptive Submodular Maximization.
In Advances in Neural Information Processing Systems (NIPS) 29, 2016.
-
Patrick Joerger, Yukino Baba, Hisashi Kashima.
Learning to Enumerate.
In Proceedings of the 25th International Conference on Artificial Neural Networks (ICANN), pp.XX-XX, Barcelona, Spain, 2016.
-
Sho Yokoi, Hiroshi Kajino, Hisashi Kashima.
Link Prediction by Incidence Matrix Factorization.
In Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI), pp.XX-XX, The Hague, Holland, 2016.
- Ryusuke Takahama, Toshihiro Kamishima, Hisashi Kashima.
Progressive Comparison for Ranking Estimation.
In Proc. 25th International Joint Conference on Artificial Intelligence (IJCAI),
pp.XX-XX, New York, NY, USA, 2016.
- Naoki Otani, Yukino Baba, Hisashi Kashima.
Quality Control for Crowdsourced Hierarchical Classification.
In Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM),
pp.937-942, Atlantic City, NJ, USA, 2015.
-
Satoshi Oyama, Yukino Baba, Ikki Ohmukai, Hiroaki Dokoshi, Hisashi Kashima.
From One Star to Three Stars: Upgrading Legacy Open Data Using Crowdsourcing.
In Proceedings of the 2015 International Conference on Data Science and Advanced Analytics (DSAA), pp.1-9, Paris, France, 2015.
-
Junpei Komiyama, Junya Honda, Hisashi Kashima, Hiroshi Nakagawa.
Regret Lower Bound and Optimal Algorithm in Dueling Bandit Problem.
In Proceedings of the 28nd Annual Conference on Learning Theory (COLT), pp.1141-1154, Paris, France, 2015.
-
Jiuding Duan, Atsuto Seko, Hisashi Kashima.
Quantum Energy Prediction Using Graph Kernel.
In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC), pp.1651-1656, Hong Kong, China, 2015.
- Yukino Baba, Hisashi Kashima, Yasunobu Nohara, Eiko Kai, Partha Ghosh, Rafiqul Islam, Ashir Ahmed, Masahiro Kuroda, Sozo Inoue, Tatsuo Hiramatsu, Michio Kimura, Shuji Shimizu, Kunihisa Kobayashi, Koji Tsuda, Masashi Sugiyama, Mathieu Blondel, Naonori Ueda, Masaru Kitsuregawa, Naoki Nakashima.
Predictive Approaches for Low-cost Preventive Medicine Program in Developing Countries.
In Proc. 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2015.
- Nozomi Nori, Hisashi Kashima, Kazuto Yamashita, Hiroshi Ikai, Yuichi Imanaka.
Simultaneous Modeling of Multiple Diseases for Mortality Prediction in Acute Hospital Care.
In Proc. 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2015.
- Shunsuke Kajimura, Yukino Baba, Hiroshi Kajino, Hisashi Kashima.
Quality Control for Crowdsourced POI Collection.
In Proc. 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2015.
- Yukino Baba, Nozomi Nori, Shigeru Saito, Hisashi Kashima.
Crowdsourced Data Analytics: A Case Study of Predictive Modeling Competition.
In Proc. 2014 International Conference on Data Science and Advanced Analytics (DSAA), pp.XX-XX, Shanghai, China, 2014.
- Toshihiro Watanabe, Hisashi Kashima.
A Label Completion Approach to Crowd Aproximation.
In Proc. 21st International Conference on Neural Information Processing (ICONIP), pp.377-385, Kuching, Sarawak, Malaysia, 2014.
- Ryoma Kawajiri, Masamichi Shimosaka, Hisashi Kashima.
Steered Crowdsensing: Incentive Design towards Quality-Oriented Place-Centric Crowdsensing.
In Proc. ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), pp.XX-XX, Seattle, Washingron, USA, 2014.
- Hiroshi Kajino, Yukino Baba, Hisashi Kashima.
Instance-privacy Preserving Crowdsourcing.
In Proc. 2nd Conference on Human Computation and Crowdsourcing (HCOMP), Pittsburgh, USA, 2014.
- Issei Sato, Hisashi Kashima, Hiroshi Nakagawa.
Latent Confusion Analysis by Normalized Gamma Construction.
In Proc. 31th International Conference on Machine Learning (ICML), Beijing, China, 2014.
- Toshiko Matsui, Yukino Baba, Toshihiro Kamishima and Hisashi Kashima.
Crowdordering.
In Proc. 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp.336-347, Tainan, Taiwan, 2014.
- Jingjing Wang, Satoshi Oyama, Masahito Kurihara and HisashiKashima.
Learning an Accurate Entity Resolution Model from Crowdsourced Labels.
In Proc. the 8th International Conference on Ubiquitous Information Management and Communication (ICUIMC/IMCOM),
Siem Reap, Cambodia, 2014.
- Yukino Baba and Hisashi Kashima.
Statistical Quality Estimation for General Crowdsourcing Tasks,
In Proc. 19th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
pp.554-562, Chicago, USA, 2013.
- Satoshi Oyama, Yukino Baba, Yuko Sakurai and Hisashi Kashima.
Utilizing Workers' Self-reported Confidence to Integrate Multiple Crowdsourced Labels.
In Proc. 23rd International Joint Conference on Artificial Intelligence (IJCAI),
pp.2554-2560, Beijing, China, 2013.
- Hiroshi Kajino, Yuta Tsuboi and Hisashi Kashima:
Clustering Crowds,
In Proc. 27th AAAI Conference on Artificial Intelligence (AAAI), pp.XX-XX, Bellevue, Washington, USA, 2013.
- Yukino Baba, Hisashi Kashima, Kei Kinoshita, Goushi Yamaguchi, Yosuke Akiyoshi:
Leveraging Crowdsourcing to Detect Improper Tasks in Crowdsourcing Marketplaces,
In Proc. 25th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI), pp.XX-XX, Bellevue, Washington, USA, 2013.
- Yoshifumi Aimoto and Hisashi Kashima:
Matrix Factorization with Aggregated Observations,
In Proc. 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp.XX-XX, Gold Coast, Australia, 2013.
(Best Student Paper Runner Up Award)
- Shohei Hido and Hisashi Kashima:
Hash-based Structural Similarity for Semi-supervised Learning on Attribute Graphs,
In Proc. 23rd International Conference on Pattern Recognition (ICPR), Tsukuba, Japan, 2012.
- Michael E. Houle, Hisashi Kashima and Michael Nett:
Fast Similarity Computation in Factorized Tensors,
In Proc. 5th International Conference on Similarity Search and Applications (SISAP), pp.226-239, Toronto, Canada, 2012.
- Daisuke Kimura and Hisashi Kashima: Fast Computation of Subpath Kernel for Trees,
In Proc. 29th International Conference on Machine Learning (ICML), pp.XXX-XXX, Edinburgh, Scotland, 2012.
- Hiroshi Kajino, Yuta Tsuboi, Issei Sato and Hisashi Kashima:
Learning from Crowds and Experts,
In Proc. 4th Human Computation Workshop (HCOMP), pp.107-113, Toronto, Ontario, Canada, 2012.
- Hiroshi Kajino, Yuta Tsuboi and Hisashi Kashima:
A Convex Formulation for Learning from Crowds,
In Proc. 26th AAAI Conference on Artificial Intelligence (AAAI), pp.73-79, Toronto, Ontario, Canada, 2012.
- Nozomi Nori, Danushka Bollegara and Hisashi Kashima:
Multinomial Relation Prediction in Social Data: A Dimension Reduction Approach,
In Proc. 26th AAAI Conference on Artificial Intelligence (AAAI), pp.115-121, Toronto, Ontario, Canada, 2012.
- Satoshi Oyama, Kohei Hayashi and Hisashi Kashima:
Cross-temporal Link Prediction,
In Proc. 11th International Conference on Data Mining (ICDM), pp.1188-1193, Vancouver, Canada, 2011.
- Xu Sun, Hisashi Kashima, Ryota Tomioka and Naonori Ueda:
A New Multi-task Learning Method for Personalized Activity Recognition,
In Proc. 11th International Conference on Data Mining (ICDM), pp.1218-1223, Vancouver, Canada, 2011.
- Ryota Tomioka, Taiji Suzuki, Kohei Hayashi and Hisashi Kashima:
Statistical Performance of Convex Tensor Decomposition,
In Proc. 25th Annual Conference on Neural Information Processing Systems (NIPS), Granada, Spain, 2011.
- Atsuhiro Narita, Kohei Hayashi, Ryota Tomioka and Hisashi Kashima:
Tensor Factorization Using Auxiliary Information,
In Proc. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), pp.501-516, Athens, Greece, 2011. (Best Student Paper Award)
- Yuta Tsuboi, Yuya Unno, Hisashi Kashima and Naoaki Okazaki:
Fast Newton-CG Method for Batch Learning of Conditional Random Fields,
In Proc. 25th AAAI Conference on Artificial Intelligence (AAAI), pp.489-494, San Francisco, California, USA, 2011.
- Daisuke Kimura, Tetsuji Kuboyama, Tetsuo Shibuya and Hisashi Kashima:
A Subpath Kernel for Rooted Unordered Trees,
In Proc. 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp.62-74, Shenzeng, China, 2011.
- Xu Sun, Hisashi Kashima, Ryota Tomioka and Naonori Ueda:
Large Scale Real-life Action Recognition Using Conditional Random Fields with Stochastic Training,
In Proc. 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp.222-233, Shenzeng, China, 2011.
- Junichiro Mori, Yuya Kajikawa, Ichiro Sakata and Hisashi Kashima:
Predicting Customer-supplier Relationships Using Network-based Features,
In Proc. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp.1916-1920, Macau, China, 2010.
- Xu Sun, Hisashi Kashima, Takuya Matsuzaki and Naonori Ueda:
A Robust, Accurate, and Fast Stochastic Gradient Training Method for Modeling Latent-Information in Data,
In Proc. 10th International Conference on Data Mining (ICDM), Sydney, Australia, 2010.
- Rudy Raymond and Hisashi Kashima:
Fast and Scalable Algorithms for Semi-supervised Link Prediction on Static and Dynamic Graphs,
In Proc. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), pp.131-147, Barcelona, Spain, 2010.
- Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya and Toshiyuki Tanaka:
Return Density Approximation for Reinforcement Learning,
In Proc. 26th Conference on Uncertainty in Artificial Intelligence (UAI), Catalina Island, California, USA, 2010.
- Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama and Hisashi Kashima: A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices,
In Proc. 26th International Conference on Machine Learning (ICML), pp.1087-1094, Haifa, Israel, 2010.
- Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya and
Toshiyuki Tanaka: Nonparametric Return Density Estimation Reinforcement
Learning, In Proc. 26th International Conference on Machine Learning (ICML), pp.799-806,
Haifa, Israel, 2010.
- Mutsumi Fukuzaki, Mio Seki, Hisashi Kashima and Jun Sese:
Finding Itemset-Sharing Patterns in a Large Itemset-Associated Graph,
In Proc. 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp.147-159, Hyderabad, India, 2010.
- Junichiro Mori, Yuya Kajikawa and Hisashi Kashima: Finding Your Business Partners by Using Machine Learning,
In Proc. 19th International Conference on Management of Technology (IAMOT), Cairo, Egypt, 2010.
- Hisashi Kashima, Shohei Hido, Yuta Tsuboi, Akira Tajima,
Takeshi Ueno, Naoki Shibata, Ichiro Sakata and Toshiya Watanabe: Predictive Modeling of Patent Quality by
Using Text Mining (スライド),
In Proc. 19th International Conference on
Management of Technology (IAMOT), Cairo, Egypt, 2010.
- Hiroto Saigo, Masahiro Hattori, Hisashi Kashima and Koji
Tsuda: Reaction Graph Kernels Predict EC Numbers of Unknown Enzymatic
Reactions in Plant Secondary Metabolism, In Proc. 8th Asia Pacific
Bioinformatics Conference (APBC2010), Bangalore, India, 2010.
- Shohei Hido and Hisashi Kashima: A Linear-time Graph Kernel,
In Proc. 9th IEEE International Conference on Data Mining (ICDM), pp.179-188, Miami, Florida, USA, 2009.
- Mutsumi Fukuzaki, Mio Seki, Hisashi Kashima and Jun Sese:
Side Effect Prediction Using Cooperative Pathways. In Proc. IEEE International
Conference on Bioinformatics and Biomedicine 2009 (IEEE BIBM), pp.142-147, Washington
D.C., USA, 2009.
- Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashima and
Tetsuro Morimura: Least Absolute Policy Iteration for Robust Value Function
Approximation, 2009 IEEE International
Conference on Robotics and Automation (ICRA), pp.2904-2909, Kobe, Japan, 2009.
- Hisashi Kashima, Satoshi Oyama, Yoshihiro Yamanishi and
Koji Tsuda: On Pairwise Kernels: An
Efficient Alternative and Generalization Analysis, In Proc. 13th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD), pp.1030-1037, Bangkok, Thailand, 2009.
- Hisashi Kashima, Tsuyoshi Kato, Yoshihiro Yamanishi,
Masashi Sugiyama and Koji Tsuda: Link
Propagation: A Fast Semi-supervised Learning Algorithm for Link
Prediction, In Proc. 2009
SIAM Conference on Data Mining (SDM), pp. 1099-1110, Sparks, Nevada, 2009.
- Shohei Hido, Yuta Tsuboi, Hisashi Kashima, Masashi
Sugiyama and Takafumi Kanamori: Inlier-based
Outlier Detection via Direct Density Ratio Estimation, In Proc. 8th IEEE International Conference on Data
Mining (ICDM), pp.223-232, Pisa, Italy, 2008.
- Hisashi Kashima, Jianying Hu, Bonnie Ray and Moninder
Singh: K-means
Clustering of Proportional Data Using L1 Distance (スライド), In Proc. 19th
International Conference on Pattern Recognition (ICPR), Tampa, Florida, USA,
2008.
- Yuta Tsuboi and Hisashi Kashima: A
New Objective Function for Sequence Segmentation, In Proc. 19th
International Conference on Pattern Recognition (ICPR), Tampa, Florida, USA,
2008.
- Hisashi Kashima, Kazutaka Yamasaki, Hiroto Saigo and
Akihiro Inokuchi: Regression
with Interval Output Values (スライド), In Proc. 19th
International Conference on Pattern Recognition (ICPR), Tampa, Florida, USA,
2008.
- Yuta Tsuboi, Hisashi Kashima, Shinsuke Mori, Hiroki Oda and Yuji
Matsumoto: Training Conditional
Random Fields Using Incomplete Annotations (スライド), In
Proc. 22nd International Conference on Computational Linguistics (COLING), pp.897-904,
Manchester, UK, 2008.
- Shohei Hido, Tsuyoshi Ide, Hisashi Kashima, Harunobu Kubo
and Hirofumi Matsuzawa: Unsupervised Change Analysis Using Supervised
Learning, In Proc. 12th Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), pp.148-159, Osaka, Japan, 2008.
- Tsuyoshi Kato, Hisashi Kashima and Masashi Sugiyama:
Integration of Multiple Networks for Robust Label Propagation, In Proc. 2008
SIAM International Conference on Data Mining (SDM), pp.716-726, Atlanta, Georgia, USA,
2008.
- Shohei Hido and Hisashi Kashima: Roughly Balanced Bagging
for Imbalanced Data, In Proc. 2008 SIAM International Conference on Data
Mining (SDM), pp.143-152, Atlanta, Georgia, USA, 2008.
- Yuta Tsuboi, Hisashi Kashima, Shohei Hido, Steffen Bickel
and Masashi Sugiyama: Direct
Density Ratio Estimation for Large-scale Covariate Shift Adaptation (スライド),
In Proc. 2008 SIAM International Conference on Data Mining (SDM), pp.443-454, Atlanta,
Georgia, USA, 2008.
- Hisashi Kashima, Shoko Suzuki, Shohei Hido, Yuta Tsuboi,
Toshihiro Takahashi, Tsuyoshi Ide, Rikiya Takahashi and Akira Tajima: A Semi-supervised Approach to Indoor
Location Estimation (スライド),
In IEEE ICDM Data
Mining Contest, Omaha, Nebraska, USA, 2007 (15チーム中
1位)
- Shoko Suzuki, Yuta Tsuboi, Hisashi Kashima, Shohei Hido,
Toshihiro Takahashi, Tsuyoshi Ide, Rikiya Takahashi and Akira Tajima: A Semi-supervised Approach to
Transferring the Learned Knowledge for Indoor Location Estimation, In IEEE ICDM Data Mining
Contest, Omaha, Nebraska, USA, 2007 (17チーム中 3位)
- Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul
von Bunau and Motoaki Kawanabe: Direct
Importance Estimation with Model Selection and Its Application to Covariate
Shift Adaptation, In Proc. 21st
Annual Conference on Neural Information Processing Systems (NIPS),
Vancouver, B.C., Canada, 2007.
- Tsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama and
Kiyoshi Asai: Multi-task
Learning via Conic Programming, In Proc. 21st Annual Conference on Neural
Information Processing Systems (NIPS), Vancouver, B.C., Canada, 2007.
- Tetsuji Kuboyama, Kouichi Hirata, Kiyoko F. Aoki-Kinoshita,
Hisashi Kashima and Hiroshi Yasuda: A
Gram Distribution Kernel Applied to Glycan Classification and Motif
Extraction, In Proc. 17th
International Conference on Genome Informatics (GIW), Yokohama, Japan,
2006.
- Hisashi Kashima and Naoki Abe: A Parameterized Probabilistic Model of Network
Evolution for Supervised Link Prediction, In Proc. 6th IEEE International
Conference on Data Mining (ICDM), pp.340-349, Hong Kong, 2006.
- Tetsuji Kuboyama, Hisashi Kashima, Kiyoko F.
Aoki-Kinoshita, Koichi Hirata and Hiroshi Yasuda: A Spectrum Tree Kernel, In
Proc. The International
Workshop on Data-Mining and Statistical Science (DMSS), Sapporo,
Japan, 2006.
- Tetsuji Kuboyama, Kilho Shin and Hisashi Kashima: Flexible Tree Kernels
Based on Counting the Number of Tree Mappings, In Proc. Workshop on Mining
and Learning (held with ECML/PKDD 2006), Berlin, Germany, 2006.
- Hisashi Kashima: Risk-Sensitive Learning via Expected Shortfall
Minimization , In Proc. 2006 SIAM Conference on Data Mining
(SDM), pp.529-533, Bethesda, Maryland, USA, 2006. (full paper version)
- Hisashi Kashima, Tadashi Tsumura, Tsuyoshi Ide, Takahide
Nogayama, Ryo Hirade, Hiroaki Etoh and Takeshi Fukuda: Network-Based Problem
Detection for Distributed Systems, In Proc. 21st International Conference on Data
Engineering (ICDE), pp.978-989, Tokyo, Japan, 2005.
- Tsuyoshi Ide and Hisashi Kashima: Eigenspace-based
Anomaly Detection in Computer Systems, In Proc. 10th ACM SIGKDD Conference
(KDD), pp.440-449, Seattle, Washington, USA, 2004.
- Hisashi Kashima and Yuta Tsuboi: Kernel-Based Discriminative Learning
Algorithms for Labeling Sequences, Trees and Graphs, In Proc. 21st International
Conference on Machine Learning (ICML), pp.58-65, Banff, Alberta, Canada, 2004.
- Makoto Kano, Hisashi Kashima, Tetsuo Shibuya, Kaori Ide,
Aiko Kashihara, Noriko Nakagawa, Mariko Hatakeyama, Seiki Kuramitsu and
Akihiko Konagaya: A
Method for Normalization of Gene Expression Data, In Proc. Genome Informatics Workshop
(GIW), Yokohama, Japan, 2003.
- Akihiro Inokuchi and Hisashi Kashima: Mining
Significant Pairs of Patterns from Graph Structures with Class Labels, In
Proc. 3rd IEEE
International Conference on Data Mining (ICDM), pp.83-90, Melbourne, Florida,
USA, 2003.
- Hisashi Kashima , Koji Tsuda and Akihiro Inokuchi: Marginalized Kernels Between Labeled
Graphs, In Proc. 20th
International Conference on Machine Learning (ICML), pp.321-328, Washington DC,
USA, 2003.
- Hisashi Kashima and Akihiro Inokuchi: Kernels for Graph Classification, In Proc. 1st ICDM Workshop on Active Mining (AM), Maebashi, Japan, 2002.
- Hisashi Kashima and Teruo Koyanagi: Kernels for Semi-Structured Data, In Proc.
19th International Conference
on Machine Learning (ICML), pp.291-298, Sydney, Australia, 2002.
- Takanori Fukao, Hisashi Kashima and Norihiko Adachi:
Decentralized Adaptive Control of Dynamic Interconnected Systems with Improved
Performance, In Proc. 8th IFAC Symposium on Large Scale Systems: Theory and
Applications, pp. 138-143, 1998.
- Takanori Fukao, Hisashi Kashima and Norihiko Adachi: Robust
Adaptive Control of Large-Scale Systems with Unmodeled Dynamic
Interconnections, Proc. of the 2nd Asian Control Conference, Vol 2, pp. 5-8,
1997.
国内の会議/研究会論文
- 馬場 雪乃, 鹿島 久嗣, 木下 慶, 山口 豪志, 秋好 陽介:
機械学習による不適切なクラウドソーシングタスクの検出
第5回データ工学と情報マネジメントに関するフォーラム (DEIM2013), 2013. (優秀論文賞)
- 梶野 洸, 荒井 ひろみ, 鹿島 久嗣:
クラウドソーシングにおけるワーカープライバシを保護した品質管理
第5回データ工学と情報マネジメントに関するフォーラム (DEIM2013), 2013. (筆頭著者による学生プレゼンテーション賞)
- 則 のぞみ, ボレガラ ダヌシカ, 鹿島 久嗣:
ソーシャルWebサービスにおけるユーザ行動予測:次元削減アプローチ
人工知能学会全国大会 (第26回), 2012.
- 梶野 洸, 坪井 祐太, 佐藤 一誠, 鹿島 久嗣:
既存の教師データとクラウドソーシングを併用した教師付き学習
人工知能学会全国大会 (第26回), 2012.
- 木村 大翼, 鹿島 久嗣:
木構造の垂直方向の構造に基づいた線形時間木カーネル
人工知能学会全国大会 (第26回), 2012.
- 梶野 洸, 鹿島 久嗣:
クラウドソーシングを用いた教師付き学習の凸最適化による定式化
第14回 情報論的学習理論ワークショップ (IBIS 2011), 信学技報, vol. 111, no. 275, IBISML2011-76, pp. 231-236, 2011. (筆頭著者によるポスター奨励賞)
- 木村 大翼, 鹿島 久嗣:
部分パスに基づいた線形時間木カーネル
第14回 情報論的学習理論ワークショップ (IBIS 2011), 信学技報, vol. 111, no. 275, IBISML2011-85, pp. 291-296, 2011.
- 林 浩平, 竹之内高志, 冨岡 亮太, 鹿島 久嗣:
カーネル法に基づく行列あるいはテンソル補完
第14回 情報論的学習理論ワークショップ (IBIS 2011), 信学技報, vol. 111, no. 275, IBISML2011-53, pp. 71-77, 2011. (筆頭著者によるHonorable Mention)
- 成田 敦博, 林 浩平, 冨岡 亮太, 鹿島 久嗣:
補助情報を用いたテンソル分解
第4回 電子情報通信学会 情報論的学習理論と機械学習研究会(IBISML), 信学技報, Vol.110, No.476, IBISML2010-124, pp.139-146, 2011.
- 諏訪 恭平, 冨岡 亮太, 矢入 健久, 鹿島 久嗣:
複数情報源に対する主成分分析 (スライド)
第4回 電子情報通信学会 情報論的学習理論と機械学習研究会(IBISML), 信学技報, Vol.110, No.476, IBISML2010-125, pp.147-152, 2011.
- 鹿島 久嗣, 山西 芳裕, 加藤 毅, 杉山 将, 津田 宏治:
複数生物種ネットワークの同時予測:半教師つき学習によるアプローチ
(スライド),
第21回 情報処理学会 バイオ情報学研究会 (SIG-BIO), Vol.2010-BIO-21, No.19, 2010. (情報処理学会山下記念研究賞)
- 鹿島 久嗣, 加藤 毅, 山西 芳裕, 杉山 将, 津田 宏治: リンク伝播法:
リンク予測のための半教師付き学習法 (スライド),
第73回 人工知能学会 人工知能基本問題研究会 (SIG-FPAI), 2009.
- 福崎 睦美, 関 美緒, 鹿島 久嗣, 瀬々 潤: アイテム集合を付与したグラフからの頻出グラフ発見, DEIMフォーラム2009, 2009.
- 鹿島 久嗣, 小山 聡, 山西 芳裕, 津田 宏治: 高速なペアワイズカーネルの提案と汎化誤差解析について (スライド), 第11回 情報論的学習理論ワークショップ (IBIS 2008),
2008.
- 坪井 祐太, 鹿島 久嗣, 森 信介, 小田 裕樹, 松本 裕治: 部分的かつ曖昧なラベル付き構造データからのマルコフ条件付確率場の学習
(スライド),
情報処理学会 自然言語処理研究会(NL-182), 2007.
- 比戸 将平,坪井 祐太,鹿島 久嗣,杉山 将: Ma href="http://2boy.org/~yuta/publications/ibis2007.pdf">密度比推定を用いた特異点検出手法, 第10回 情報論的学習理論ワークショップ (IBIS
2007), 2007.
- Tsuyoshi Kato,Hisashi Kashima, Masashi Sugiyama:
Probabilistic Label Propagation on Multiple Networks, 第10回 情報論的学習理論ワークショップ (IBIS
2007) , 2007.
- 鹿島 久嗣, 山崎 一孝, 西郷 浩人, 猪口 明博: 目的変数が範囲で与えられる回帰問題に対するEM法, The International Workshop on
Data-Mining and Statistical Science (DMSS2007) (スライド), 2007. (人工知能学会研究会優秀賞)
- Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul
von Bunau, Motoaki Kawanabe: Kullback-Leibler
importance estimation procedure for covariate shift adaptation, The International Workshop on
Data-Mining and Statistical Science (DMSS2007) , 2007.
- Tsuyoshi Ide and Hisashi Kashima: Effective
Dimension in Anomaly Detection: Its Application to Computer Systems, New
Frontiers in Artificial Intelligence (Post-proceedings of the Eighteenth
Annual Conference of Japanese Society of Artificial Intelligence), Lecture
Notes in Artificial Intelligence, Vol. 3609, pp. 189-204, 2007.
- Tetsuji Kuboyama, Koichi Hirata, Hisashi Kashima and
Kiyoko F. Aoki-Kinoshita: The Gram Distribution Kernel: A Tree Kernel for
Glycan Classification, 人工知能学会 第63回 人工知能基本問題研究会 (SIG-FPAI),
2006.
- 久保山 哲二, 申 吉浩, 鹿島 久嗣, 平田 耕一: 共通構造の数え上げによる半構造データカーネルの設計,
電子情報通信学会
第17回データ工学ワークショップ (DEWS2006), 2006
- 鹿島 久嗣: リスク回避型学習, 第8回 情報論的学習理論ワークショップ (IBIS 2005),
2005.
- 坪井 祐太, 鹿島 久嗣: 構造データのラベル付け学習モデルの設計,(スライド) 第8回 情報論的学習理論ワークショップ (IBIS 2005),
2005.
- 鹿島 久嗣, 坪井 祐太: 構造化データのラベル付け学習とカーネル法(スライド), 構造化データの機械学習研究会(MOST),
2005.
- 鹿島 久嗣, 坪井 祐太: カーネル法に基づく構造データのラベリング学習アルゴリズム, 電子情報通信学会
人工知能と知識処理研究会(AI), 2004.
- 井手 剛, 鹿島 久嗣: 固有空間におけるコンピュータシステムの障害検知,
人工知能学会全国大会, 2004. (筆頭著者による人工知能学会全国大会優秀賞)
- 猪口 明博, 鹿島 久嗣: クラスラベル付きグラフデータからの有用なパターンペア発見, 人工知能学会
知識ベースシステム研究会, SIG-KBS, 2004. (人工知能学会研究会優秀賞)
- Tetsuo Shibuya, Christian Schoenbach, Hisashi Kashima and
Akihiko Konagaya: Accurate cDNA Clustering Algorithm based on Spliced Sequence
Alignment, 電子情報通信学会コンピュテーション研究会, COMP-2002-9-14, 17-24, 2002.
- 鹿島 久嗣, 小柳 光生: 半構造データに対するサポートベクターマシンの適用, 人工知能学会 人工知能基礎論研究会,
SIG-FAI-A104, 2002.
- 鹿島 久嗣: 確率的ブーリアンネットワークを用いた遺伝子ネットワークの同定, 人工知能学会 分子生物情報研究会,
2001.
- 鹿島 久嗣: 乗算型学習アルゴリズムを用いた属性選択, 人工知能学会全国大会, 2001.
- Hisashi Kashima and Yasumasa Kajinaga: Optimal Winner
Determination Algorithms for E-procurement Auction,電子情報通信学会 コンピュテーション研究会,
COMP-2000-57-63, 17-23, 2000.
セミナー等での講演
- 鹿島 久嗣, 小山 聡: 「クラウドソーシングとビッグデータ解析」,
情報処理学会研究報告 CVIM(コンピュータビジョンとイメージメディア), 2014/9/2.
- 鹿島 久嗣, 小山 聡: 「クラウドソーシングで挑むビッグデータ解析」(スライド),
クラウドソーシングとソーシャルメディア,
情報処理学会 連続セミナー ビッグデータの深化と真価 ~最新技術から活用事例まで~, 2013/12/16.
- 鹿島 久嗣: 「機械学習とクラウドソーシング - 機械の知と人間の知の融合」(スライド),
情報論的学習理論と機械学習研究会 (IBISML) チュートリアル, 2013/11/11.
- 鹿島 久嗣: 「ネットワーク分析のための機械学習~標準タスクと基本モデル~」(スライド),
ビッグデータに立ち向かう機械学習,
情報処理学会 連続セミナー ビッグデータとスマートな社会, 2012/11/19.
- 鹿島 久嗣: 「ネットワークと機械学習」(スライド),
言語処理学会第18回年次大会(NLP2012), 2012/3/13.
- 鹿島 久嗣: 「広がる機械学習の応用」(スライド),
情報処理学会東海支部 講演会, 2012/1/10.
- 鹿島 久嗣: 「特許の質の予測:機械学習とテキストマイニングによるアプローチ」(スライド),
「イノベーションと知財マネジメント」公開セミナー, 2010/3/5.
- 鹿島 久嗣: 「機械学習とその応用」(スライド1, スライド2), 京都大学 工学部情報学科, 2009/5/15.
- 鹿島 久嗣: 「生体ネットワーク予測の機械学習」(スライド), 日本バイオインフォマティクス学会
バイオインフォマティクス夏の学校2007, 2007/8/7.
- Hisashi Kashima: 「Methods for Predicting Network
Structures」(スライド), The International Workshop
on Data-Mining and Statistical Science (DMSS2006), 2006/9/26.
- 鹿島 久嗣: 「ネットワーク構造解析 - 機械学習によるアプローチ -」(スライド), 人工知能学会 第63回 人工知能基本問題研究会 (SIG-FPAI),
2006/9/8.
- 鹿島 久嗣, 坪井 祐太, 工藤 拓: 「言語処理における識別モデルの発展 -- HMMからCRFまで --」(スライド), 言語処理学会第12回年次大会(NLP2006),
2006/3/13.
- 鹿島 久嗣, 坂本 比呂志: 「木構造データに対するカーネル関数の設計と解析」(スライド), 木とカーネルのセミナー, 九州工業大学, 2006/1/13.
- 鹿島 久嗣: 「構造データマイニングの手法とバイオインフォマティクスへの応用」, シンポジウム:産業応用に向けたバイオインフォマティクス,
化学工学会 第37回秋期大会, 2005/9/17.
- 鹿島 久嗣: 「カーネル法による構造データの解析」(スライド), 電子情報通信学会パターン認識・メディア理解研究会,
国立情報学研究所(NII), 2005/2/25.
- 鹿島 久嗣: 「A
Kernel-based Approach to Sequence Labeling Problems」(スライド) バイオインフォマティクスセミナー,
京都大学科学研究所バイオインフォマティクスセンター, 2004/9/6.
- 鹿島 久嗣: 「構造をもつインスタンスに対するカーネル関数のアルゴリズム設計」,
生命情報科学特別講義, 産業技術総合研究所 生命情報科学研究センター(CBRC), 2003/1/8.
翻訳
- 元田 浩, 栗田 多喜夫, 樋口 知之, 松本 裕治, 村田 昇(監訳), Christopher M. Bishop(著): パターン認識と機械学習 - ベイズ理論による統計的予測
(上)(下) (原題: Pattern Recognition and Machine Learning), シュプリンガー・ジャパン, 2007-2008.
(鹿島は6章および付録Cの翻訳を担当)
- 山名 早人(監訳), 石川 隼輔, 堀井 洋, 村上 明子, 鹿島 久嗣, 小柳 光生(訳), Rael
Dornfest, Paul Bausch, Tara Calishain(著): Google Hacks 第3版
プロが使うテクニック & ツール 100選, O'Reilly Japan, 2007.
- Jim Spohrer, Paul P. Maglio, Jeffrey T. Kreulen, Savitha
Srinivasan(著), 恐神 貴行, 鹿島 久嗣, 加納 真, 水田 秀行(訳): Becoming a Service
Scientist, 情報処理, Vol. 47, No. 5, pp. 461-466, 2006.
- 山名 早人(監訳), 石川 隼輔, 堀井 洋, 村上 明子, 鹿島 久嗣, 小柳 光生(訳), Tara
Calishain, Rael Dornfest(著): Google Hacks 第2版 プロが使うテクニック
& ツール 100選, O'Reilly Japan, 2005.
その他の記事/報告/テクニカルレポート
- 鹿島 久嗣: The 21st
International Conference on Machine Learning (ICML) 2004 参加報告, 人工知能学会誌,
Vol. 20, No. 1, 2005.
- 瀧本 英二, 鹿島 久嗣, 黒木 学: Banff (COLT, ICML, UAI) 参加報告, 電子情報通信学会
情報・システムソサイエティ誌, Vol. 9, No. 3, 2004.
- 鹿島 久嗣: Web探訪 :
カーネル法, 人工知能学会誌, Vol. 18, No. 2, pp. 208-209, 2003.
リンク